sun8i-ce-cipher.c 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
// SPDX-License-Identifier: GPL-2.0
/*
 * sun8i-ce-cipher.c - hardware cryptographic offloader for
 * Allwinner H3/A64/H5/H2+/H6/R40 SoC
 *
 * Copyright (C) 2016-2019 Corentin LABBE <clabbe.montjoie@gmail.com>
 *
 * This file add support for AES cipher with 128,192,256 bits keysize in
 * CBC and ECB mode.
 *
11
 * You could find a link for the datasheet in Documentation/arm/sunxi.rst
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 */

#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/pm_runtime.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/des.h>
#include <crypto/internal/skcipher.h>
#include "sun8i-ce.h"

static int sun8i_ce_cipher_need_fallback(struct skcipher_request *areq)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
	struct scatterlist *sg;

	if (sg_nents(areq->src) > MAX_SG || sg_nents(areq->dst) > MAX_SG)
		return true;

	if (areq->cryptlen < crypto_skcipher_ivsize(tfm))
		return true;

	if (areq->cryptlen == 0 || areq->cryptlen % 16)
		return true;

	sg = areq->src;
	while (sg) {
		if (sg->length % 4 || !IS_ALIGNED(sg->offset, sizeof(u32)))
			return true;
		sg = sg_next(sg);
	}
	sg = areq->dst;
	while (sg) {
		if (sg->length % 4 || !IS_ALIGNED(sg->offset, sizeof(u32)))
			return true;
		sg = sg_next(sg);
	}
	return false;
}

static int sun8i_ce_cipher_fallback(struct skcipher_request *areq)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
	struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
	struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
	int err;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
	struct sun8i_ce_alg_template *algt;

	algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher);
	algt->stat_fb++;
#endif

66 67 68 69
	skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm);
	skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags,
				      areq->base.complete, areq->base.data);
	skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst,
70 71
				   areq->cryptlen, areq->iv);
	if (rctx->op_dir & CE_DECRYPTION)
72
		err = crypto_skcipher_decrypt(&rctx->fallback_req);
73
	else
74
		err = crypto_skcipher_encrypt(&rctx->fallback_req);
75 76 77
	return err;
}

78
static int sun8i_ce_cipher_prepare(struct crypto_engine *engine, void *async_req)
79
{
80
	struct skcipher_request *areq = container_of(async_req, struct skcipher_request, base);
81 82 83 84 85 86 87 88 89 90
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
	struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
	struct sun8i_ce_dev *ce = op->ce;
	struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
	struct sun8i_ce_alg_template *algt;
	struct sun8i_ce_flow *chan;
	struct ce_task *cet;
	struct scatterlist *sg;
	unsigned int todo, len, offset, ivsize;
91
	u32 common, sym;
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
	int flow, i;
	int nr_sgs = 0;
	int nr_sgd = 0;
	int err = 0;

	algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher);

	dev_dbg(ce->dev, "%s %s %u %x IV(%p %u) key=%u\n", __func__,
		crypto_tfm_alg_name(areq->base.tfm),
		areq->cryptlen,
		rctx->op_dir, areq->iv, crypto_skcipher_ivsize(tfm),
		op->keylen);

#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
	algt->stat_req++;
#endif

	flow = rctx->flow;

	chan = &ce->chanlist[flow];

	cet = chan->tl;
	memset(cet, 0, sizeof(struct ce_task));

116 117 118 119
	cet->t_id = cpu_to_le32(flow);
	common = ce->variant->alg_cipher[algt->ce_algo_id];
	common |= rctx->op_dir | CE_COMM_INT;
	cet->t_common_ctl = cpu_to_le32(common);
120
	/* CTS and recent CE (H6) need length in bytes, in word otherwise */
121
	if (ce->variant->cipher_t_dlen_in_bytes)
122 123 124
		cet->t_dlen = cpu_to_le32(areq->cryptlen);
	else
		cet->t_dlen = cpu_to_le32(areq->cryptlen / 4);
125

126
	sym = ce->variant->op_mode[algt->ce_blockmode];
127 128 129
	len = op->keylen;
	switch (len) {
	case 128 / 8:
130
		sym |= CE_AES_128BITS;
131 132
		break;
	case 192 / 8:
133
		sym |= CE_AES_192BITS;
134 135
		break;
	case 256 / 8:
136
		sym |= CE_AES_256BITS;
137 138 139
		break;
	}

140
	cet->t_sym_ctl = cpu_to_le32(sym);
141 142
	cet->t_asym_ctl = 0;

143 144
	rctx->addr_key = dma_map_single(ce->dev, op->key, op->keylen, DMA_TO_DEVICE);
	if (dma_mapping_error(ce->dev, rctx->addr_key)) {
145 146 147 148
		dev_err(ce->dev, "Cannot DMA MAP KEY\n");
		err = -EFAULT;
		goto theend;
	}
149
	cet->t_key = cpu_to_le32(rctx->addr_key);
150 151 152

	ivsize = crypto_skcipher_ivsize(tfm);
	if (areq->iv && crypto_skcipher_ivsize(tfm) > 0) {
153 154 155
		rctx->ivlen = ivsize;
		rctx->bounce_iv = kzalloc(ivsize, GFP_KERNEL | GFP_DMA);
		if (!rctx->bounce_iv) {
156 157 158 159
			err = -ENOMEM;
			goto theend_key;
		}
		if (rctx->op_dir & CE_DECRYPTION) {
160 161
			rctx->backup_iv = kzalloc(ivsize, GFP_KERNEL);
			if (!rctx->backup_iv) {
162 163 164 165
				err = -ENOMEM;
				goto theend_key;
			}
			offset = areq->cryptlen - ivsize;
166 167
			scatterwalk_map_and_copy(rctx->backup_iv, areq->src,
						 offset, ivsize, 0);
168
		}
169
		memcpy(rctx->bounce_iv, areq->iv, ivsize);
170 171 172
		rctx->addr_iv = dma_map_single(ce->dev, rctx->bounce_iv, rctx->ivlen,
					       DMA_TO_DEVICE);
		if (dma_mapping_error(ce->dev, rctx->addr_iv)) {
173 174 175 176
			dev_err(ce->dev, "Cannot DMA MAP IV\n");
			err = -ENOMEM;
			goto theend_iv;
		}
177
		cet->t_iv = cpu_to_le32(rctx->addr_iv);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	}

	if (areq->src == areq->dst) {
		nr_sgs = dma_map_sg(ce->dev, areq->src, sg_nents(areq->src),
				    DMA_BIDIRECTIONAL);
		if (nr_sgs <= 0 || nr_sgs > MAX_SG) {
			dev_err(ce->dev, "Invalid sg number %d\n", nr_sgs);
			err = -EINVAL;
			goto theend_iv;
		}
		nr_sgd = nr_sgs;
	} else {
		nr_sgs = dma_map_sg(ce->dev, areq->src, sg_nents(areq->src),
				    DMA_TO_DEVICE);
		if (nr_sgs <= 0 || nr_sgs > MAX_SG) {
			dev_err(ce->dev, "Invalid sg number %d\n", nr_sgs);
			err = -EINVAL;
			goto theend_iv;
		}
		nr_sgd = dma_map_sg(ce->dev, areq->dst, sg_nents(areq->dst),
				    DMA_FROM_DEVICE);
		if (nr_sgd <= 0 || nr_sgd > MAX_SG) {
			dev_err(ce->dev, "Invalid sg number %d\n", nr_sgd);
			err = -EINVAL;
			goto theend_sgs;
		}
	}

	len = areq->cryptlen;
	for_each_sg(areq->src, sg, nr_sgs, i) {
208
		cet->t_src[i].addr = cpu_to_le32(sg_dma_address(sg));
209
		todo = min(len, sg_dma_len(sg));
210
		cet->t_src[i].len = cpu_to_le32(todo / 4);
211 212 213 214 215 216 217 218 219 220 221 222
		dev_dbg(ce->dev, "%s total=%u SG(%d %u off=%d) todo=%u\n", __func__,
			areq->cryptlen, i, cet->t_src[i].len, sg->offset, todo);
		len -= todo;
	}
	if (len > 0) {
		dev_err(ce->dev, "remaining len %d\n", len);
		err = -EINVAL;
		goto theend_sgs;
	}

	len = areq->cryptlen;
	for_each_sg(areq->dst, sg, nr_sgd, i) {
223
		cet->t_dst[i].addr = cpu_to_le32(sg_dma_address(sg));
224
		todo = min(len, sg_dma_len(sg));
225
		cet->t_dst[i].len = cpu_to_le32(todo / 4);
226 227 228 229 230 231 232 233 234 235 236
		dev_dbg(ce->dev, "%s total=%u SG(%d %u off=%d) todo=%u\n", __func__,
			areq->cryptlen, i, cet->t_dst[i].len, sg->offset, todo);
		len -= todo;
	}
	if (len > 0) {
		dev_err(ce->dev, "remaining len %d\n", len);
		err = -EINVAL;
		goto theend_sgs;
	}

	chan->timeout = areq->cryptlen;
237 238 239
	rctx->nr_sgs = nr_sgs;
	rctx->nr_sgd = nr_sgd;
	return 0;
240 241 242

theend_sgs:
	if (areq->src == areq->dst) {
243 244
		dma_unmap_sg(ce->dev, areq->src, sg_nents(areq->src),
			     DMA_BIDIRECTIONAL);
245 246
	} else {
		if (nr_sgs > 0)
247 248 249 250
			dma_unmap_sg(ce->dev, areq->src, sg_nents(areq->src),
				     DMA_TO_DEVICE);
		dma_unmap_sg(ce->dev, areq->dst, sg_nents(areq->dst),
			     DMA_FROM_DEVICE);
251 252 253 254
	}

theend_iv:
	if (areq->iv && ivsize > 0) {
255 256
		if (rctx->addr_iv)
			dma_unmap_single(ce->dev, rctx->addr_iv, rctx->ivlen, DMA_TO_DEVICE);
257 258
		offset = areq->cryptlen - ivsize;
		if (rctx->op_dir & CE_DECRYPTION) {
259 260
			memcpy(areq->iv, rctx->backup_iv, ivsize);
			kfree_sensitive(rctx->backup_iv);
261 262 263 264
		} else {
			scatterwalk_map_and_copy(areq->iv, areq->dst, offset,
						 ivsize, 0);
		}
265
		kfree(rctx->bounce_iv);
266 267 268
	}

theend_key:
269
	dma_unmap_single(ce->dev, rctx->addr_key, op->keylen, DMA_TO_DEVICE);
270 271 272 273 274

theend:
	return err;
}

275
static int sun8i_ce_cipher_run(struct crypto_engine *engine, void *areq)
276 277
{
	struct skcipher_request *breq = container_of(areq, struct skcipher_request, base);
278 279 280 281 282
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(breq);
	struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
	struct sun8i_ce_dev *ce = op->ce;
	struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(breq);
	int flow, err;
283

284 285
	flow = rctx->flow;
	err = sun8i_ce_run_task(ce, flow, crypto_tfm_alg_name(breq->base.tfm));
286
	crypto_finalize_skcipher_request(engine, breq, err);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	return 0;
}

static int sun8i_ce_cipher_unprepare(struct crypto_engine *engine, void *async_req)
{
	struct skcipher_request *areq = container_of(async_req, struct skcipher_request, base);
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
	struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
	struct sun8i_ce_dev *ce = op->ce;
	struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
	struct sun8i_ce_flow *chan;
	struct ce_task *cet;
	unsigned int ivsize, offset;
	int nr_sgs = rctx->nr_sgs;
	int nr_sgd = rctx->nr_sgd;
	int flow;

	flow = rctx->flow;
	chan = &ce->chanlist[flow];
	cet = chan->tl;
	ivsize = crypto_skcipher_ivsize(tfm);

	if (areq->src == areq->dst) {
		dma_unmap_sg(ce->dev, areq->src, nr_sgs, DMA_BIDIRECTIONAL);
	} else {
		if (nr_sgs > 0)
			dma_unmap_sg(ce->dev, areq->src, nr_sgs, DMA_TO_DEVICE);
		dma_unmap_sg(ce->dev, areq->dst, nr_sgd, DMA_FROM_DEVICE);
	}

	if (areq->iv && ivsize > 0) {
		if (cet->t_iv)
			dma_unmap_single(ce->dev, rctx->addr_iv, rctx->ivlen, DMA_TO_DEVICE);
		offset = areq->cryptlen - ivsize;
		if (rctx->op_dir & CE_DECRYPTION) {
			memcpy(areq->iv, rctx->backup_iv, ivsize);
			kfree_sensitive(rctx->backup_iv);
		} else {
			scatterwalk_map_and_copy(areq->iv, areq->dst, offset,
						 ivsize, 0);
		}
		kfree(rctx->bounce_iv);
	}

	dma_unmap_single(ce->dev, rctx->addr_key, op->keylen, DMA_TO_DEVICE);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

	return 0;
}

int sun8i_ce_skdecrypt(struct skcipher_request *areq)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
	struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
	struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
	struct crypto_engine *engine;
	int e;

	rctx->op_dir = CE_DECRYPTION;
	if (sun8i_ce_cipher_need_fallback(areq))
		return sun8i_ce_cipher_fallback(areq);

	e = sun8i_ce_get_engine_number(op->ce);
	rctx->flow = e;
	engine = op->ce->chanlist[e].engine;

	return crypto_transfer_skcipher_request_to_engine(engine, areq);
}

int sun8i_ce_skencrypt(struct skcipher_request *areq)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
	struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
	struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
	struct crypto_engine *engine;
	int e;

	rctx->op_dir = CE_ENCRYPTION;
	if (sun8i_ce_cipher_need_fallback(areq))
		return sun8i_ce_cipher_fallback(areq);

	e = sun8i_ce_get_engine_number(op->ce);
	rctx->flow = e;
	engine = op->ce->chanlist[e].engine;

	return crypto_transfer_skcipher_request_to_engine(engine, areq);
}

int sun8i_ce_cipher_init(struct crypto_tfm *tfm)
{
	struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
	struct sun8i_ce_alg_template *algt;
	const char *name = crypto_tfm_alg_name(tfm);
	struct crypto_skcipher *sktfm = __crypto_skcipher_cast(tfm);
	struct skcipher_alg *alg = crypto_skcipher_alg(sktfm);
	int err;

	memset(op, 0, sizeof(struct sun8i_cipher_tfm_ctx));

	algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher);
	op->ce = algt->ce;

388
	op->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
389 390 391 392 393 394
	if (IS_ERR(op->fallback_tfm)) {
		dev_err(op->ce->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
			name, PTR_ERR(op->fallback_tfm));
		return PTR_ERR(op->fallback_tfm);
	}

395 396 397 398
	sktfm->reqsize = sizeof(struct sun8i_cipher_req_ctx) +
			 crypto_skcipher_reqsize(op->fallback_tfm);


399 400
	dev_info(op->ce->dev, "Fallback for %s is %s\n",
		 crypto_tfm_alg_driver_name(&sktfm->base),
401
		 crypto_tfm_alg_driver_name(crypto_skcipher_tfm(op->fallback_tfm)));
402

403 404 405
	op->enginectx.op.do_one_request = sun8i_ce_cipher_run;
	op->enginectx.op.prepare_request = sun8i_ce_cipher_prepare;
	op->enginectx.op.unprepare_request = sun8i_ce_cipher_unprepare;
406 407 408 409 410 411 412

	err = pm_runtime_get_sync(op->ce->dev);
	if (err < 0)
		goto error_pm;

	return 0;
error_pm:
413
	pm_runtime_put_noidle(op->ce->dev);
414
	crypto_free_skcipher(op->fallback_tfm);
415 416 417 418 419 420 421
	return err;
}

void sun8i_ce_cipher_exit(struct crypto_tfm *tfm)
{
	struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);

422
	kfree_sensitive(op->key);
423
	crypto_free_skcipher(op->fallback_tfm);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	pm_runtime_put_sync_suspend(op->ce->dev);
}

int sun8i_ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
			unsigned int keylen)
{
	struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
	struct sun8i_ce_dev *ce = op->ce;

	switch (keylen) {
	case 128 / 8:
		break;
	case 192 / 8:
		break;
	case 256 / 8:
		break;
	default:
		dev_dbg(ce->dev, "ERROR: Invalid keylen %u\n", keylen);
		return -EINVAL;
	}
444
	kfree_sensitive(op->key);
445
	op->keylen = keylen;
446
	op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA);
447 448 449
	if (!op->key)
		return -ENOMEM;

450 451
	crypto_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
	crypto_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
452

453
	return crypto_skcipher_setkey(op->fallback_tfm, key, keylen);
454 455 456 457 458 459 460 461 462 463 464 465
}

int sun8i_ce_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
			 unsigned int keylen)
{
	struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
	int err;

	err = verify_skcipher_des3_key(tfm, key);
	if (err)
		return err;

466
	kfree_sensitive(op->key);
467
	op->keylen = keylen;
468
	op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA);
469 470 471
	if (!op->key)
		return -ENOMEM;

472 473
	crypto_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
	crypto_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
474

475
	return crypto_skcipher_setkey(op->fallback_tfm, key, keylen);
476
}