pata_octeon_cf.c 27.4 KB
Newer Older
1 2 3 4 5 6 7
/*
 * Driver for the Octeon bootbus compact flash.
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
8
 * Copyright (C) 2005 - 2012 Cavium Inc.
9 10 11 12 13 14
 * Copyright (C) 2008 Wind River Systems
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/libata.h>
15
#include <linux/hrtimer.h>
16
#include <linux/slab.h>
17 18 19
#include <linux/irq.h>
#include <linux/of.h>
#include <linux/of_platform.h>
20 21 22
#include <linux/platform_device.h>
#include <scsi/scsi_host.h>

23
#include <asm/byteorder.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include <asm/octeon/octeon.h>

/*
 * The Octeon bootbus compact flash interface is connected in at least
 * 3 different configurations on various evaluation boards:
 *
 * -- 8  bits no irq, no DMA
 * -- 16 bits no irq, no DMA
 * -- 16 bits True IDE mode with DMA, but no irq.
 *
 * In the last case the DMA engine can generate an interrupt when the
 * transfer is complete.  For the first two cases only PIO is supported.
 *
 */

#define DRV_NAME	"pata_octeon_cf"
40 41 42 43
#define DRV_VERSION	"2.2"

/* Poll interval in nS. */
#define OCTEON_CF_BUSY_POLL_INTERVAL 500000
44

45 46 47 48
#define DMA_CFG 0
#define DMA_TIM 0x20
#define DMA_INT 0x38
#define DMA_INT_EN 0x50
49 50

struct octeon_cf_port {
51
	struct hrtimer delayed_finish;
52 53
	struct ata_port *ap;
	int dma_finished;
54 55 56 57 58
	void		*c0;
	unsigned int cs0;
	unsigned int cs1;
	bool is_true_ide;
	u64 dma_base;
59 60 61 62 63 64
};

static struct scsi_host_template octeon_cf_sht = {
	ATA_PIO_SHT(DRV_NAME),
};

65 66 67 68 69
static int enable_dma;
module_param(enable_dma, int, 0444);
MODULE_PARM_DESC(enable_dma,
		 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");

70 71 72 73 74 75 76 77 78 79 80 81
/**
 * Convert nanosecond based time to setting used in the
 * boot bus timing register, based on timing multiple
 */
static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
{
	unsigned int val;

	/*
	 * Compute # of eclock periods to get desired duration in
	 * nanoseconds.
	 */
82
	val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
83 84 85 86 87
			  1000 * tim_mult);

	return val;
}

88
static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
89 90
{
	union cvmx_mio_boot_reg_cfgx reg_cfg;
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
	unsigned int tim_mult;

	switch (multiplier) {
	case 8:
		tim_mult = 3;
		break;
	case 4:
		tim_mult = 0;
		break;
	case 2:
		tim_mult = 2;
		break;
	default:
		tim_mult = 1;
		break;
	}

108 109
	reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
	reg_cfg.s.dmack = 0;	/* Don't assert DMACK on access */
110
	reg_cfg.s.tim_mult = tim_mult;	/* Timing mutiplier */
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
	reg_cfg.s.rd_dly = 0;	/* Sample on falling edge of BOOT_OE */
	reg_cfg.s.sam = 0;	/* Don't combine write and output enable */
	reg_cfg.s.we_ext = 0;	/* No write enable extension */
	reg_cfg.s.oe_ext = 0;	/* No read enable extension */
	reg_cfg.s.en = 1;	/* Enable this region */
	reg_cfg.s.orbit = 0;	/* Don't combine with previous region */
	reg_cfg.s.ale = 0;	/* Don't do address multiplexing */
	cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
}

/**
 * Called after libata determines the needed PIO mode. This
 * function programs the Octeon bootbus regions to support the
 * timing requirements of the PIO mode.
 *
 * @ap:     ATA port information
 * @dev:    ATA device
 */
static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
{
131
	struct octeon_cf_port *cf_port = ap->private_data;
132 133 134 135
	union cvmx_mio_boot_reg_timx reg_tim;
	int T;
	struct ata_timing timing;

136
	unsigned int div;
137 138 139 140 141 142 143 144
	int use_iordy;
	int trh;
	int pause;
	/* These names are timing parameters from the ATA spec */
	int t1;
	int t2;
	int t2i;

145 146 147 148 149 150 151 152 153
	/*
	 * A divisor value of four will overflow the timing fields at
	 * clock rates greater than 800MHz
	 */
	if (octeon_get_io_clock_rate() <= 800000000)
		div = 4;
	else
		div = 8;
	T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
154 155 156 157 158 159 160 161 162 163 164 165 166 167

	if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
		BUG();

	t1 = timing.setup;
	if (t1)
		t1--;
	t2 = timing.active;
	if (t2)
		t2--;
	t2i = timing.act8b;
	if (t2i)
		t2i--;

168
	trh = ns_to_tim_reg(div, 20);
169 170 171
	if (trh)
		trh--;

172 173 174 175
	pause = (int)timing.cycle - (int)timing.active -
		(int)timing.setup - trh;
	if (pause < 0)
		pause = 0;
176 177 178
	if (pause)
		pause--;

179 180
	octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
	if (cf_port->is_true_ide)
181
		/* True IDE mode, program both chip selects.  */
182
		octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
183 184 185 186


	use_iordy = ata_pio_need_iordy(dev);

187
	reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	/* Disable page mode */
	reg_tim.s.pagem = 0;
	/* Enable dynamic timing */
	reg_tim.s.waitm = use_iordy;
	/* Pages are disabled */
	reg_tim.s.pages = 0;
	/* We don't use multiplexed address mode */
	reg_tim.s.ale = 0;
	/* Not used */
	reg_tim.s.page = 0;
	/* Time after IORDY to coninue to assert the data */
	reg_tim.s.wait = 0;
	/* Time to wait to complete the cycle. */
	reg_tim.s.pause = pause;
	/* How long to hold after a write to de-assert CE. */
	reg_tim.s.wr_hld = trh;
	/* How long to wait after a read to de-assert CE. */
	reg_tim.s.rd_hld = trh;
	/* How long write enable is asserted */
	reg_tim.s.we = t2;
	/* How long read enable is asserted */
	reg_tim.s.oe = t2;
	/* Time after CE that read/write starts */
211
	reg_tim.s.ce = ns_to_tim_reg(div, 5);
212 213 214 215
	/* Time before CE that address is valid */
	reg_tim.s.adr = 0;

	/* Program the bootbus region timing for the data port chip select. */
216 217
	cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
	if (cf_port->is_true_ide)
218
		/* True IDE mode, program both chip selects.  */
219 220
		cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
			       reg_tim.u64);
221 222 223 224
}

static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
{
225 226
	struct octeon_cf_port *cf_port = ap->private_data;
	union cvmx_mio_boot_pin_defs pin_defs;
227 228 229 230 231 232 233 234
	union cvmx_mio_boot_dma_timx dma_tim;
	unsigned int oe_a;
	unsigned int oe_n;
	unsigned int dma_ackh;
	unsigned int dma_arq;
	unsigned int pause;
	unsigned int T0, Tkr, Td;
	unsigned int tim_mult;
235
	int c;
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

	const struct ata_timing *timing;

	timing = ata_timing_find_mode(dev->dma_mode);
	T0	= timing->cycle;
	Td	= timing->active;
	Tkr	= timing->recover;
	dma_ackh = timing->dmack_hold;

	dma_tim.u64 = 0;
	/* dma_tim.s.tim_mult = 0 --> 4x */
	tim_mult = 4;

	/* not spec'ed, value in eclocks, not affected by tim_mult */
	dma_arq = 8;
	pause = 25 - dma_arq * 1000 /
252
		(octeon_get_io_clock_rate() / 1000000); /* Tz */
253 254 255 256 257

	oe_a = Td;
	/* Tkr from cf spec, lengthened to meet T0 */
	oe_n = max(T0 - oe_a, Tkr);

258 259 260 261 262 263 264
	pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);

	/* DMA channel number. */
	c = (cf_port->dma_base & 8) >> 3;

	/* Invert the polarity if the default is 0*/
	dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
265 266 267 268 269 270 271 272

	dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
	dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);

	/*
	 * This is tI, C.F. spec. says 0, but Sony CF card requires
	 * more, we use 20 nS.
	 */
273
	dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
274 275 276 277 278 279 280 281 282 283 284 285 286
	dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);

	dma_tim.s.dmarq = dma_arq;
	dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);

	dma_tim.s.rd_dly = 0;	/* Sample right on edge */

	/*  writes only */
	dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
	dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);

	pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
		 ns_to_tim_reg(tim_mult, 60));
287
	pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
288 289 290
		 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
		 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);

291
	cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
}

/**
 * Handle an 8 bit I/O request.
 *
 * @dev:        Device to access
 * @buffer:     Data buffer
 * @buflen:     Length of the buffer.
 * @rw:         True to write.
 */
static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
					 unsigned char *buffer,
					 unsigned int buflen,
					 int rw)
{
	struct ata_port *ap		= dev->link->ap;
	void __iomem *data_addr		= ap->ioaddr.data_addr;
	unsigned long words;
	int count;

	words = buflen;
	if (rw) {
		count = 16;
		while (words--) {
			iowrite8(*buffer, data_addr);
			buffer++;
			/*
			 * Every 16 writes do a read so the bootbus
			 * FIFO doesn't fill up.
			 */
			if (--count == 0) {
				ioread8(ap->ioaddr.altstatus_addr);
				count = 16;
			}
		}
	} else {
		ioread8_rep(data_addr, buffer, words);
	}
	return buflen;
}

/**
 * Handle a 16 bit I/O request.
 *
 * @dev:        Device to access
 * @buffer:     Data buffer
 * @buflen:     Length of the buffer.
 * @rw:         True to write.
 */
static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
					  unsigned char *buffer,
					  unsigned int buflen,
					  int rw)
{
	struct ata_port *ap		= dev->link->ap;
	void __iomem *data_addr		= ap->ioaddr.data_addr;
	unsigned long words;
	int count;

	words = buflen / 2;
	if (rw) {
		count = 16;
		while (words--) {
			iowrite16(*(uint16_t *)buffer, data_addr);
			buffer += sizeof(uint16_t);
			/*
			 * Every 16 writes do a read so the bootbus
			 * FIFO doesn't fill up.
			 */
			if (--count == 0) {
				ioread8(ap->ioaddr.altstatus_addr);
				count = 16;
			}
		}
	} else {
		while (words--) {
			*(uint16_t *)buffer = ioread16(data_addr);
			buffer += sizeof(uint16_t);
		}
	}
	/* Transfer trailing 1 byte, if any. */
	if (unlikely(buflen & 0x01)) {
		__le16 align_buf[1] = { 0 };

		if (rw == READ) {
			align_buf[0] = cpu_to_le16(ioread16(data_addr));
			memcpy(buffer, align_buf, 1);
		} else {
			memcpy(align_buf, buffer, 1);
			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
		}
		words++;
	}
	return buflen;
}

/**
 * Read the taskfile for 16bit non-True IDE only.
 */
static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
{
	u16 blob;
	/* The base of the registers is at ioaddr.data_addr. */
	void __iomem *base = ap->ioaddr.data_addr;

	blob = __raw_readw(base + 0xc);
	tf->feature = blob >> 8;

	blob = __raw_readw(base + 2);
	tf->nsect = blob & 0xff;
	tf->lbal = blob >> 8;

	blob = __raw_readw(base + 4);
	tf->lbam = blob & 0xff;
	tf->lbah = blob >> 8;

	blob = __raw_readw(base + 6);
	tf->device = blob & 0xff;
	tf->command = blob >> 8;

	if (tf->flags & ATA_TFLAG_LBA48) {
		if (likely(ap->ioaddr.ctl_addr)) {
			iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);

			blob = __raw_readw(base + 0xc);
			tf->hob_feature = blob >> 8;

			blob = __raw_readw(base + 2);
			tf->hob_nsect = blob & 0xff;
			tf->hob_lbal = blob >> 8;

			blob = __raw_readw(base + 4);
			tf->hob_lbam = blob & 0xff;
			tf->hob_lbah = blob >> 8;

			iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
			ap->last_ctl = tf->ctl;
		} else {
			WARN_ON(1);
		}
	}
}

static u8 octeon_cf_check_status16(struct ata_port *ap)
{
	u16 blob;
	void __iomem *base = ap->ioaddr.data_addr;

	blob = __raw_readw(base + 6);
	return blob >> 8;
}

static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
				 unsigned long deadline)
{
	struct ata_port *ap = link->ap;
	void __iomem *base = ap->ioaddr.data_addr;
	int rc;
	u8 err;

	DPRINTK("about to softreset\n");
	__raw_writew(ap->ctl, base + 0xe);
	udelay(20);
	__raw_writew(ap->ctl | ATA_SRST, base + 0xe);
	udelay(20);
	__raw_writew(ap->ctl, base + 0xe);

	rc = ata_sff_wait_after_reset(link, 1, deadline);
	if (rc) {
461
		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
		return rc;
	}

	/* determine by signature whether we have ATA or ATAPI devices */
	classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
	return 0;
}

/**
 * Load the taskfile for 16bit non-True IDE only.  The device_addr is
 * not loaded, we do this as part of octeon_cf_exec_command16.
 */
static void octeon_cf_tf_load16(struct ata_port *ap,
				const struct ata_taskfile *tf)
{
	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
	/* The base of the registers is at ioaddr.data_addr. */
	void __iomem *base = ap->ioaddr.data_addr;

	if (tf->ctl != ap->last_ctl) {
		iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
		ap->last_ctl = tf->ctl;
		ata_wait_idle(ap);
	}
	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
		__raw_writew(tf->hob_feature << 8, base + 0xc);
		__raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
		__raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
			tf->hob_feature,
			tf->hob_nsect,
			tf->hob_lbal,
			tf->hob_lbam,
			tf->hob_lbah);
	}
	if (is_addr) {
		__raw_writew(tf->feature << 8, base + 0xc);
		__raw_writew(tf->nsect | tf->lbal << 8, base + 2);
		__raw_writew(tf->lbam | tf->lbah << 8, base + 4);
		VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
			tf->feature,
			tf->nsect,
			tf->lbal,
			tf->lbam,
			tf->lbah);
	}
	ata_wait_idle(ap);
}


static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
{
/*  There is only one device, do nothing. */
	return;
}

/*
 * Issue ATA command to host controller.  The device_addr is also sent
 * as it must be written in a combined write with the command.
 */
static void octeon_cf_exec_command16(struct ata_port *ap,
				const struct ata_taskfile *tf)
{
	/* The base of the registers is at ioaddr.data_addr. */
	void __iomem *base = ap->ioaddr.data_addr;
	u16 blob;

	if (tf->flags & ATA_TFLAG_DEVICE) {
		VPRINTK("device 0x%X\n", tf->device);
		blob = tf->device;
	} else {
		blob = 0;
	}

	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
	blob |= (tf->command << 8);
	__raw_writew(blob, base + 6);


	ata_wait_idle(ap);
}

545
static void octeon_cf_ata_port_noaction(struct ata_port *ap)
546 547 548 549 550 551 552 553
{
}

static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
{
	struct ata_port *ap = qc->ap;
	struct octeon_cf_port *cf_port;

554
	cf_port = ap->private_data;
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	DPRINTK("ENTER\n");
	/* issue r/w command */
	qc->cursg = qc->sg;
	cf_port->dma_finished = 0;
	ap->ops->sff_exec_command(ap, &qc->tf);
	DPRINTK("EXIT\n");
}

/**
 * Start a DMA transfer that was already setup
 *
 * @qc:     Information about the DMA
 */
static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
{
570
	struct octeon_cf_port *cf_port = qc->ap->private_data;
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
	union cvmx_mio_boot_dma_intx mio_boot_dma_int;
	struct scatterlist *sg;

	VPRINTK("%d scatterlists\n", qc->n_elem);

	/* Get the scatter list entry we need to DMA into */
	sg = qc->cursg;
	BUG_ON(!sg);

	/*
	 * Clear the DMA complete status.
	 */
	mio_boot_dma_int.u64 = 0;
	mio_boot_dma_int.s.done = 1;
586
	cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
587 588

	/* Enable the interrupt.  */
589
	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
590 591 592

	/* Set the direction of the DMA */
	mio_boot_dma_cfg.u64 = 0;
593 594 595
#ifdef __LITTLE_ENDIAN
	mio_boot_dma_cfg.s.endian = 1;
#endif
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	mio_boot_dma_cfg.s.en = 1;
	mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);

	/*
	 * Don't stop the DMA if the device deasserts DMARQ. Many
	 * compact flashes deassert DMARQ for a short time between
	 * sectors. Instead of stopping and restarting the DMA, we'll
	 * let the hardware do it. If the DMA is really stopped early
	 * due to an error condition, a later timeout will force us to
	 * stop.
	 */
	mio_boot_dma_cfg.s.clr = 0;

	/* Size is specified in 16bit words and minus one notation */
	mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;

	/* We need to swap the high and low bytes of every 16 bits */
	mio_boot_dma_cfg.s.swap8 = 1;

	mio_boot_dma_cfg.s.adr = sg_dma_address(sg);

	VPRINTK("%s %d bytes address=%p\n",
		(mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
		(void *)(unsigned long)mio_boot_dma_cfg.s.adr);

621
	cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
622 623 624 625 626 627 628 629 630 631 632 633
}

/**
 *
 *	LOCKING:
 *	spin_lock_irqsave(host lock)
 *
 */
static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
					struct ata_queued_cmd *qc)
{
	struct ata_eh_info *ehi = &ap->link.eh_info;
634
	struct octeon_cf_port *cf_port = ap->private_data;
635 636 637 638 639 640 641 642 643 644 645
	union cvmx_mio_boot_dma_cfgx dma_cfg;
	union cvmx_mio_boot_dma_intx dma_int;
	u8 status;

	VPRINTK("ata%u: protocol %d task_state %d\n",
		ap->print_id, qc->tf.protocol, ap->hsm_task_state);


	if (ap->hsm_task_state != HSM_ST_LAST)
		return 0;

646
	dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
647 648 649 650 651 652 653 654 655
	if (dma_cfg.s.size != 0xfffff) {
		/* Error, the transfer was not complete.  */
		qc->err_mask |= AC_ERR_HOST_BUS;
		ap->hsm_task_state = HSM_ST_ERR;
	}

	/* Stop and clear the dma engine.  */
	dma_cfg.u64 = 0;
	dma_cfg.s.size = -1;
656
	cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
657 658 659

	/* Disable the interrupt.  */
	dma_int.u64 = 0;
660
	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
661 662 663

	/* Clear the DMA complete status */
	dma_int.s.done = 1;
664
	cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

	status = ap->ops->sff_check_status(ap);

	ata_sff_hsm_move(ap, qc, status, 0);

	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
		ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);

	return 1;
}

/*
 * Check if any queued commands have more DMAs, if so start the next
 * transfer, else do end of transfer handling.
 */
static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
{
	struct ata_host *host = dev_instance;
	struct octeon_cf_port *cf_port;
	int i;
	unsigned int handled = 0;
	unsigned long flags;

	spin_lock_irqsave(&host->lock, flags);

	DPRINTK("ENTER\n");
	for (i = 0; i < host->n_ports; i++) {
		u8 status;
		struct ata_port *ap;
		struct ata_queued_cmd *qc;
		union cvmx_mio_boot_dma_intx dma_int;
		union cvmx_mio_boot_dma_cfgx dma_cfg;

		ap = host->ports[i];
699
		cf_port = ap->private_data;
700 701 702

		dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
		dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
703 704 705

		qc = ata_qc_from_tag(ap, ap->link.active_tag);

706 707 708 709 710 711
		if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
			continue;

		if (dma_int.s.done && !dma_cfg.s.en) {
			if (!sg_is_last(qc->cursg)) {
				qc->cursg = sg_next(qc->cursg);
712
				handled = 1;
713 714
				octeon_cf_dma_start(qc);
				continue;
715
			} else {
716
				cf_port->dma_finished = 1;
717 718
			}
		}
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
		if (!cf_port->dma_finished)
			continue;
		status = ioread8(ap->ioaddr.altstatus_addr);
		if (status & (ATA_BUSY | ATA_DRQ)) {
			/*
			 * We are busy, try to handle it later.  This
			 * is the DMA finished interrupt, and it could
			 * take a little while for the card to be
			 * ready for more commands.
			 */
			/* Clear DMA irq. */
			dma_int.u64 = 0;
			dma_int.s.done = 1;
			cvmx_write_csr(cf_port->dma_base + DMA_INT,
				       dma_int.u64);
			hrtimer_start_range_ns(&cf_port->delayed_finish,
					       ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
					       OCTEON_CF_BUSY_POLL_INTERVAL / 5,
					       HRTIMER_MODE_REL);
			handled = 1;
		} else {
			handled |= octeon_cf_dma_finished(ap, qc);
		}
742 743 744 745 746 747
	}
	spin_unlock_irqrestore(&host->lock, flags);
	DPRINTK("EXIT\n");
	return IRQ_RETVAL(handled);
}

748
static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
749
{
750
	struct octeon_cf_port *cf_port = container_of(hrt,
751
						      struct octeon_cf_port,
752
						      delayed_finish);
753 754 755 756 757
	struct ata_port *ap = cf_port->ap;
	struct ata_host *host = ap->host;
	struct ata_queued_cmd *qc;
	unsigned long flags;
	u8 status;
758
	enum hrtimer_restart rv = HRTIMER_NORESTART;
759 760 761 762 763 764 765 766 767 768 769 770 771 772

	spin_lock_irqsave(&host->lock, flags);

	/*
	 * If the port is not waiting for completion, it must have
	 * handled it previously.  The hsm_task_state is
	 * protected by host->lock.
	 */
	if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
		goto out;

	status = ioread8(ap->ioaddr.altstatus_addr);
	if (status & (ATA_BUSY | ATA_DRQ)) {
		/* Still busy, try again. */
773 774 775
		hrtimer_forward_now(hrt,
				    ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
		rv = HRTIMER_RESTART;
776 777 778
		goto out;
	}
	qc = ata_qc_from_tag(ap, ap->link.active_tag);
779
	if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
780 781 782
		octeon_cf_dma_finished(ap, qc);
out:
	spin_unlock_irqrestore(&host->lock, flags);
783
	return rv;
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
}

static void octeon_cf_dev_config(struct ata_device *dev)
{
	/*
	 * A maximum of 2^20 - 1 16 bit transfers are possible with
	 * the bootbus DMA.  So we need to throttle max_sectors to
	 * (2^12 - 1 == 4095) to assure that this can never happen.
	 */
	dev->max_sectors = min(dev->max_sectors, 4095U);
}

/*
 * We don't do ATAPI DMA so return 0.
 */
static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
{
	return 0;
}

static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
{
	struct ata_port *ap = qc->ap;

	switch (qc->tf.protocol) {
	case ATA_PROT_DMA:
		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);

		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
		octeon_cf_dma_setup(qc);	    /* set up dma */
		octeon_cf_dma_start(qc);	    /* initiate dma */
		ap->hsm_task_state = HSM_ST_LAST;
		break;

	case ATAPI_PROT_DMA:
		dev_err(ap->dev, "Error, ATAPI not supported\n");
		BUG();

	default:
		return ata_sff_qc_issue(qc);
	}

	return 0;
}

static struct ata_port_operations octeon_cf_ops = {
	.inherits		= &ata_sff_port_ops,
	.check_atapi_dma	= octeon_cf_check_atapi_dma,
	.qc_prep		= ata_noop_qc_prep,
	.qc_issue		= octeon_cf_qc_issue,
	.sff_dev_select		= octeon_cf_dev_select,
835 836
	.sff_irq_on		= octeon_cf_ata_port_noaction,
	.sff_irq_clear		= octeon_cf_ata_port_noaction,
837 838 839 840 841 842
	.cable_detect		= ata_cable_40wire,
	.set_piomode		= octeon_cf_set_piomode,
	.set_dmamode		= octeon_cf_set_dmamode,
	.dev_config		= octeon_cf_dev_config,
};

843
static int octeon_cf_probe(struct platform_device *pdev)
844 845 846
{
	struct resource *res_cs0, *res_cs1;

847 848 849 850 851 852
	bool is_16bit;
	const __be32 *cs_num;
	struct property *reg_prop;
	int n_addr, n_size, reg_len;
	struct device_node *node;
	const void *prop;
853 854 855 856 857 858 859 860
	void __iomem *cs0;
	void __iomem *cs1 = NULL;
	struct ata_host *host;
	struct ata_port *ap;
	int irq = 0;
	irq_handler_t irq_handler = NULL;
	void __iomem *base;
	struct octeon_cf_port *cf_port;
861
	int rv = -ENOMEM;
862 863


864 865
	node = pdev->dev.of_node;
	if (node == NULL)
866 867
		return -EINVAL;

868
	cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
869 870
	if (!cf_port)
		return -ENOMEM;
871

872
	cf_port->is_true_ide = (of_find_property(node, "cavium,true-ide", NULL) != NULL);
873

874 875 876 877 878
	prop = of_get_property(node, "cavium,bus-width", NULL);
	if (prop)
		is_16bit = (be32_to_cpup(prop) == 16);
	else
		is_16bit = false;
879

880 881
	n_addr = of_n_addr_cells(node);
	n_size = of_n_size_cells(node);
882

883
	reg_prop = of_find_property(node, "reg", &reg_len);
884 885 886
	if (!reg_prop || reg_len < sizeof(__be32))
		return -EINVAL;

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	cs_num = reg_prop->value;
	cf_port->cs0 = be32_to_cpup(cs_num);

	if (cf_port->is_true_ide) {
		struct device_node *dma_node;
		dma_node = of_parse_phandle(node,
					    "cavium,dma-engine-handle", 0);
		if (dma_node) {
			struct platform_device *dma_dev;
			dma_dev = of_find_device_by_node(dma_node);
			if (dma_dev) {
				struct resource *res_dma;
				int i;
				res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
				if (!res_dma) {
					of_node_put(dma_node);
903
					return -EINVAL;
904 905 906 907 908
				}
				cf_port->dma_base = (u64)devm_ioremap_nocache(&pdev->dev, res_dma->start,
									 resource_size(res_dma));
				if (!cf_port->dma_base) {
					of_node_put(dma_node);
909
					return -EINVAL;
910 911 912 913 914 915 916 917 918 919
				}

				irq_handler = octeon_cf_interrupt;
				i = platform_get_irq(dma_dev, 0);
				if (i > 0)
					irq = i;
			}
			of_node_put(dma_node);
		}
		res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
920 921 922
		if (!res_cs1)
			return -EINVAL;

923
		cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
924
					   resource_size(res_cs1));
925
		if (!cs1)
926 927 928 929
			return rv;

		if (reg_len < (n_addr + n_size + 1) * sizeof(__be32))
			return -EINVAL;
930 931 932

		cs_num += n_addr + n_size;
		cf_port->cs1 = be32_to_cpup(cs_num);
933 934
	}

935
	res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
936 937
	if (!res_cs0)
		return -EINVAL;
938 939 940 941

	cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
				   resource_size(res_cs0));
	if (!cs0)
942
		return rv;
943 944 945 946

	/* allocate host */
	host = ata_host_alloc(&pdev->dev, 1);
	if (!host)
947
		return rv;
948 949 950

	ap = host->ports[0];
	ap->private_data = cf_port;
951
	pdev->dev.platform_data = cf_port;
952 953
	cf_port->ap = ap;
	ap->ops = &octeon_cf_ops;
954
	ap->pio_mask = ATA_PIO6;
955
	ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
956

957 958
	if (!is_16bit) {
		base = cs0 + 0x800;
959 960 961 962 963 964
		ap->ioaddr.cmd_addr	= base;
		ata_sff_std_ports(&ap->ioaddr);

		ap->ioaddr.altstatus_addr = base + 0xe;
		ap->ioaddr.ctl_addr	= base + 0xe;
		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
965 966
	} else if (cf_port->is_true_ide) {
		base = cs0;
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
		ap->ioaddr.cmd_addr	= base + (ATA_REG_CMD << 1) + 1;
		ap->ioaddr.data_addr	= base + (ATA_REG_DATA << 1);
		ap->ioaddr.error_addr	= base + (ATA_REG_ERR << 1) + 1;
		ap->ioaddr.feature_addr	= base + (ATA_REG_FEATURE << 1) + 1;
		ap->ioaddr.nsect_addr	= base + (ATA_REG_NSECT << 1) + 1;
		ap->ioaddr.lbal_addr	= base + (ATA_REG_LBAL << 1) + 1;
		ap->ioaddr.lbam_addr	= base + (ATA_REG_LBAM << 1) + 1;
		ap->ioaddr.lbah_addr	= base + (ATA_REG_LBAH << 1) + 1;
		ap->ioaddr.device_addr	= base + (ATA_REG_DEVICE << 1) + 1;
		ap->ioaddr.status_addr	= base + (ATA_REG_STATUS << 1) + 1;
		ap->ioaddr.command_addr	= base + (ATA_REG_CMD << 1) + 1;
		ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
		ap->ioaddr.ctl_addr	= cs1 + (6 << 1) + 1;
		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;

982
		ap->mwdma_mask	= enable_dma ? ATA_MWDMA4 : 0;
983

984 985 986 987
		/* True IDE mode needs a timer to poll for not-busy.  */
		hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
			     HRTIMER_MODE_REL);
		cf_port->delayed_finish.function = octeon_cf_delayed_finish;
988 989
	} else {
		/* 16 bit but not True IDE */
990
		base = cs0 + 0x800;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
		octeon_cf_ops.sff_data_xfer	= octeon_cf_data_xfer16;
		octeon_cf_ops.softreset		= octeon_cf_softreset16;
		octeon_cf_ops.sff_check_status	= octeon_cf_check_status16;
		octeon_cf_ops.sff_tf_read	= octeon_cf_tf_read16;
		octeon_cf_ops.sff_tf_load	= octeon_cf_tf_load16;
		octeon_cf_ops.sff_exec_command	= octeon_cf_exec_command16;

		ap->ioaddr.data_addr	= base + ATA_REG_DATA;
		ap->ioaddr.nsect_addr	= base + ATA_REG_NSECT;
		ap->ioaddr.lbal_addr	= base + ATA_REG_LBAL;
		ap->ioaddr.ctl_addr	= base + 0xe;
		ap->ioaddr.altstatus_addr = base + 0xe;
	}
1004 1005
	cf_port->c0 = ap->ioaddr.ctl_addr;

1006 1007 1008
	rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (rv)
		return rv;
1009 1010 1011

	ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);

1012 1013 1014
	dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
		 is_16bit ? 16 : 8,
		 cf_port->is_true_ide ? ", True IDE" : "");
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024
	return ata_host_activate(host, irq, irq_handler,
				 IRQF_SHARED, &octeon_cf_sht);
}

static void octeon_cf_shutdown(struct device *dev)
{
	union cvmx_mio_boot_dma_cfgx dma_cfg;
	union cvmx_mio_boot_dma_intx dma_int;

J
Jingoo Han 已提交
1025
	struct octeon_cf_port *cf_port = dev_get_platdata(dev);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

	if (cf_port->dma_base) {
		/* Stop and clear the dma engine.  */
		dma_cfg.u64 = 0;
		dma_cfg.s.size = -1;
		cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);

		/* Disable the interrupt.  */
		dma_int.u64 = 0;
		cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);

		/* Clear the DMA complete status */
		dma_int.s.done = 1;
		cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);

		__raw_writeb(0, cf_port->c0);
		udelay(20);
		__raw_writeb(ATA_SRST, cf_port->c0);
		udelay(20);
		__raw_writeb(0, cf_port->c0);
		mdelay(100);
	}
1048 1049
}

1050 1051 1052 1053 1054 1055
static struct of_device_id octeon_cf_match[] = {
	{
		.compatible = "cavium,ebt3000-compact-flash",
	},
	{},
};
A
Aaro Koskinen 已提交
1056
MODULE_DEVICE_TABLE(of, octeon_cf_match);
1057

1058 1059 1060 1061
static struct platform_driver octeon_cf_driver = {
	.probe		= octeon_cf_probe,
	.driver		= {
		.name	= DRV_NAME,
1062 1063
		.of_match_table = octeon_cf_match,
		.shutdown = octeon_cf_shutdown
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	},
};

static int __init octeon_cf_init(void)
{
	return platform_driver_register(&octeon_cf_driver);
}


MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_ALIAS("platform:" DRV_NAME);

module_init(octeon_cf_init);