bitops.h 11.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
#ifndef _ASM_IA64_BITOPS_H
#define _ASM_IA64_BITOPS_H

/*
 * Copyright (C) 1998-2003 Hewlett-Packard Co
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 *
8 9
 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
 * O(1) scheduler patch
L
Linus Torvalds 已提交
10 11
 */

J
Jiri Slaby 已提交
12 13 14 15
#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif

L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#include <linux/compiler.h>
#include <linux/types.h>
#include <asm/intrinsics.h>

/**
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This function is atomic and may not be reordered.  See __set_bit()
 * if you do not require the atomic guarantees.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 *
 * The address must be (at least) "long" aligned.
31 32 33
 * Note that there are driver (e.g., eepro100) which use these operations to
 * operate on hw-defined data-structures, so we can't easily change these
 * operations to force a bigger alignment.
L
Linus Torvalds 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 *
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 */
static __inline__ void
set_bit (int nr, volatile void *addr)
{
	__u32 bit, old, new;
	volatile __u32 *m;
	CMPXCHG_BUGCHECK_DECL

	m = (volatile __u32 *) addr + (nr >> 5);
	bit = 1 << (nr & 31);
	do {
		CMPXCHG_BUGCHECK(m);
		old = *m;
		new = old | bit;
	} while (cmpxchg_acq(m, old, new) != old);
}

/**
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
static __inline__ void
__set_bit (int nr, volatile void *addr)
{
	*((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
}

/*
 * clear_bit() has "acquire" semantics.
 */
#define smp_mb__before_clear_bit()	smp_mb()
#define smp_mb__after_clear_bit()	do { /* skip */; } while (0)

/**
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and may not be reordered.  However, it does
 * not contain a memory barrier, so if it is used for locking purposes,
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 * in order to ensure changes are visible on other processors.
 */
static __inline__ void
clear_bit (int nr, volatile void *addr)
{
	__u32 mask, old, new;
	volatile __u32 *m;
	CMPXCHG_BUGCHECK_DECL

	m = (volatile __u32 *) addr + (nr >> 5);
	mask = ~(1 << (nr & 31));
	do {
		CMPXCHG_BUGCHECK(m);
		old = *m;
		new = old & mask;
	} while (cmpxchg_acq(m, old, new) != old);
}

N
Nick Piggin 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/**
 * clear_bit_unlock - Clears a bit in memory with release
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit_unlock() is atomic and may not be reordered.  It does
 * contain a memory barrier suitable for unlock type operations.
 */
static __inline__ void
clear_bit_unlock (int nr, volatile void *addr)
{
	__u32 mask, old, new;
	volatile __u32 *m;
	CMPXCHG_BUGCHECK_DECL

	m = (volatile __u32 *) addr + (nr >> 5);
	mask = ~(1 << (nr & 31));
	do {
		CMPXCHG_BUGCHECK(m);
		old = *m;
		new = old & mask;
	} while (cmpxchg_rel(m, old, new) != old);
}

/**
125 126 127
 * __clear_bit_unlock - Non-atomically clears a bit in memory with release
 * @nr: Bit to clear
 * @addr: Address to start counting from
N
Nick Piggin 已提交
128
 *
129
 * Similarly to clear_bit_unlock, the implementation uses a store
130
 * with release semantics. See also arch_spin_unlock().
N
Nick Piggin 已提交
131
 */
132
static __inline__ void
133
__clear_bit_unlock(int nr, void *addr)
134
{
135 136
	__u32 * const m = (__u32 *) addr + (nr >> 5);
	__u32 const new = *m & ~(1 << (nr & 31));
137 138 139

	ia64_st4_rel_nta(m, new);
}
N
Nick Piggin 已提交
140

L
Linus Torvalds 已提交
141 142
/**
 * __clear_bit - Clears a bit in memory (non-atomic version)
143 144 145 146 147 148
 * @nr: the bit to clear
 * @addr: the address to start counting from
 *
 * Unlike clear_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
L
Linus Torvalds 已提交
149 150 151 152
 */
static __inline__ void
__clear_bit (int nr, volatile void *addr)
{
153
	*((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
L
Linus Torvalds 已提交
154 155 156 157
}

/**
 * change_bit - Toggle a bit in memory
158
 * @nr: Bit to toggle
L
Linus Torvalds 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
 * @addr: Address to start counting from
 *
 * change_bit() is atomic and may not be reordered.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
static __inline__ void
change_bit (int nr, volatile void *addr)
{
	__u32 bit, old, new;
	volatile __u32 *m;
	CMPXCHG_BUGCHECK_DECL

	m = (volatile __u32 *) addr + (nr >> 5);
	bit = (1 << (nr & 31));
	do {
		CMPXCHG_BUGCHECK(m);
		old = *m;
		new = old ^ bit;
	} while (cmpxchg_acq(m, old, new) != old);
}

/**
 * __change_bit - Toggle a bit in memory
183
 * @nr: the bit to toggle
L
Linus Torvalds 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
static __inline__ void
__change_bit (int nr, volatile void *addr)
{
	*((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
}

/**
 * test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
202
 * It also implies the acquisition side of the memory barrier.
L
Linus Torvalds 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
 */
static __inline__ int
test_and_set_bit (int nr, volatile void *addr)
{
	__u32 bit, old, new;
	volatile __u32 *m;
	CMPXCHG_BUGCHECK_DECL

	m = (volatile __u32 *) addr + (nr >> 5);
	bit = 1 << (nr & 31);
	do {
		CMPXCHG_BUGCHECK(m);
		old = *m;
		new = old | bit;
	} while (cmpxchg_acq(m, old, new) != old);
	return (old & bit) != 0;
}

N
Nick Piggin 已提交
221 222 223 224 225 226 227 228 229
/**
 * test_and_set_bit_lock - Set a bit and return its old value for lock
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This is the same as test_and_set_bit on ia64
 */
#define test_and_set_bit_lock test_and_set_bit

L
Linus Torvalds 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/**
 * __test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
static __inline__ int
__test_and_set_bit (int nr, volatile void *addr)
{
	__u32 *p = (__u32 *) addr + (nr >> 5);
	__u32 m = 1 << (nr & 31);
	int oldbitset = (*p & m) != 0;

	*p |= m;
	return oldbitset;
}

/**
 * test_and_clear_bit - Clear a bit and return its old value
252
 * @nr: Bit to clear
L
Linus Torvalds 已提交
253 254 255
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
256
 * It also implies the acquisition side of the memory barrier.
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
 */
static __inline__ int
test_and_clear_bit (int nr, volatile void *addr)
{
	__u32 mask, old, new;
	volatile __u32 *m;
	CMPXCHG_BUGCHECK_DECL

	m = (volatile __u32 *) addr + (nr >> 5);
	mask = ~(1 << (nr & 31));
	do {
		CMPXCHG_BUGCHECK(m);
		old = *m;
		new = old & mask;
	} while (cmpxchg_acq(m, old, new) != old);
	return (old & ~mask) != 0;
}

/**
 * __test_and_clear_bit - Clear a bit and return its old value
277
 * @nr: Bit to clear
L
Linus Torvalds 已提交
278 279 280 281 282 283 284 285 286 287 288
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.  
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
static __inline__ int
__test_and_clear_bit(int nr, volatile void * addr)
{
	__u32 *p = (__u32 *) addr + (nr >> 5);
	__u32 m = 1 << (nr & 31);
289
	int oldbitset = (*p & m) != 0;
L
Linus Torvalds 已提交
290 291 292 293 294 295 296

	*p &= ~m;
	return oldbitset;
}

/**
 * test_and_change_bit - Change a bit and return its old value
297
 * @nr: Bit to change
L
Linus Torvalds 已提交
298 299 300
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.  
301
 * It also implies the acquisition side of the memory barrier.
L
Linus Torvalds 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
 */
static __inline__ int
test_and_change_bit (int nr, volatile void *addr)
{
	__u32 bit, old, new;
	volatile __u32 *m;
	CMPXCHG_BUGCHECK_DECL

	m = (volatile __u32 *) addr + (nr >> 5);
	bit = (1 << (nr & 31));
	do {
		CMPXCHG_BUGCHECK(m);
		old = *m;
		new = old ^ bit;
	} while (cmpxchg_acq(m, old, new) != old);
	return (old & bit) != 0;
}

320 321 322 323 324 325
/**
 * __test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to change
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
L
Linus Torvalds 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
 */
static __inline__ int
__test_and_change_bit (int nr, void *addr)
{
	__u32 old, bit = (1 << (nr & 31));
	__u32 *m = (__u32 *) addr + (nr >> 5);

	old = *m;
	*m = old ^ bit;
	return (old & bit) != 0;
}

static __inline__ int
test_bit (int nr, const volatile void *addr)
{
	return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
}

/**
 * ffz - find the first zero bit in a long word
 * @x: The long word to find the bit in
 *
348 349
 * Returns the bit-number (0..63) of the first (least significant) zero bit.
 * Undefined if no zero exists, so code should check against ~0UL first...
L
Linus Torvalds 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
 */
static inline unsigned long
ffz (unsigned long x)
{
	unsigned long result;

	result = ia64_popcnt(x & (~x - 1));
	return result;
}

/**
 * __ffs - find first bit in word.
 * @x: The word to search
 *
 * Undefined if no bit exists, so code should check against 0 first.
 */
static __inline__ unsigned long
__ffs (unsigned long x)
{
	unsigned long result;

	result = ia64_popcnt((x-1) & ~x);
	return result;
}

#ifdef __KERNEL__

/*
D
David Mosberger-Tang 已提交
378 379
 * Return bit number of last (most-significant) bit set.  Undefined
 * for x==0.  Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387 388 389 390
 */
static inline unsigned long
ia64_fls (unsigned long x)
{
	long double d = x;
	long exp;

	exp = ia64_getf_exp(d);
	return exp - 0xffff;
}

D
David Mosberger-Tang 已提交
391 392 393 394
/*
 * Find the last (most significant) bit set.  Returns 0 for x==0 and
 * bits are numbered from 1..32 (e.g., fls(9) == 4).
 */
L
Linus Torvalds 已提交
395
static inline int
D
David Mosberger-Tang 已提交
396
fls (int t)
L
Linus Torvalds 已提交
397
{
D
David Mosberger-Tang 已提交
398 399 400 401 402 403 404 405 406 407
	unsigned long x = t & 0xffffffffu;

	if (!x)
		return 0;
	x |= x >> 1;
	x |= x >> 2;
	x |= x >> 4;
	x |= x >> 8;
	x |= x >> 16;
	return ia64_popcnt(x);
L
Linus Torvalds 已提交
408
}
409

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/*
 * Find the last (most significant) bit set.  Undefined for x==0.
 * Bits are numbered from 0..63 (e.g., __fls(9) == 3).
 */
static inline unsigned long
__fls (unsigned long x)
{
	x |= x >> 1;
	x |= x >> 2;
	x |= x >> 4;
	x |= x >> 8;
	x |= x >> 16;
	x |= x >> 32;
	return ia64_popcnt(x) - 1;
}

426
#include <asm-generic/bitops/fls64.h>
L
Linus Torvalds 已提交
427 428

/*
429 430 431 432
 * ffs: find first bit set. This is defined the same way as the libc and
 * compiler builtin ffs routines, therefore differs in spirit from the above
 * ffz (man ffs): it operates on "int" values only and the result value is the
 * bit number + 1.  ffs(0) is defined to return zero.
L
Linus Torvalds 已提交
433 434 435 436 437 438 439
 */
#define ffs(x)	__builtin_ffs(x)

/*
 * hweightN: returns the hamming weight (i.e. the number
 * of bits set) of a N-bit word
 */
440
static __inline__ unsigned long __arch_hweight64(unsigned long x)
L
Linus Torvalds 已提交
441 442 443 444 445 446
{
	unsigned long result;
	result = ia64_popcnt(x);
	return result;
}

447 448 449 450 451
#define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
#define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
#define __arch_hweight8(x)  ((unsigned int) __arch_hweight64((x) & 0xfful))

#include <asm-generic/bitops/const_hweight.h>
L
Linus Torvalds 已提交
452 453 454

#endif /* __KERNEL__ */

455
#include <asm-generic/bitops/find.h>
L
Linus Torvalds 已提交
456 457 458

#ifdef __KERNEL__

459
#include <asm-generic/bitops/le.h>
460
#include <asm-generic/bitops/ext2-non-atomic.h>
L
Linus Torvalds 已提交
461 462 463 464

#define ext2_set_bit_atomic(l,n,a)	test_and_set_bit(n,a)
#define ext2_clear_bit_atomic(l,n,a)	test_and_clear_bit(n,a)

465 466
#include <asm-generic/bitops/minix.h>
#include <asm-generic/bitops/sched.h>
L
Linus Torvalds 已提交
467 468 469 470

#endif /* __KERNEL__ */

#endif /* _ASM_IA64_BITOPS_H */