ste_dma40.c 96.4 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8
 * License terms: GNU General Public License (GPL) version 2
 */

9
#include <linux/dma-mapping.h>
10 11
#include <linux/kernel.h>
#include <linux/slab.h>
12
#include <linux/export.h>
13 14 15 16
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
17
#include <linux/log2.h>
18 19
#include <linux/pm.h>
#include <linux/pm_runtime.h>
20
#include <linux/err.h>
21
#include <linux/of.h>
22
#include <linux/of_dma.h>
23
#include <linux/amba/bus.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/platform_data/dma-ste-dma40.h>
26

27
#include "dmaengine.h"
28 29 30 31 32 33 34 35 36 37 38 39 40
#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

41 42 43
/* Milliseconds */
#define DMA40_AUTOSUSPEND_DELAY	100

44 45
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
46 47 48 49 50

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

51 52 53
/* Max number of logical channels per physical channel */
#define D40_MAX_LOG_CHAN_PER_PHY 32

54 55 56 57
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
58 59
#define D40_ALLOC_FREE		BIT(31)
#define D40_ALLOC_PHY		BIT(30)
60 61
#define D40_ALLOC_LOG_FREE	0

62 63
#define D40_MEMCPY_MAX_CHANS	8

64
/* Reserved event lines for memcpy only. */
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define DB8500_DMA_MEMCPY_EV_0	51
#define DB8500_DMA_MEMCPY_EV_1	56
#define DB8500_DMA_MEMCPY_EV_2	57
#define DB8500_DMA_MEMCPY_EV_3	58
#define DB8500_DMA_MEMCPY_EV_4	59
#define DB8500_DMA_MEMCPY_EV_5	60

static int dma40_memcpy_channels[] = {
	DB8500_DMA_MEMCPY_EV_0,
	DB8500_DMA_MEMCPY_EV_1,
	DB8500_DMA_MEMCPY_EV_2,
	DB8500_DMA_MEMCPY_EV_3,
	DB8500_DMA_MEMCPY_EV_4,
	DB8500_DMA_MEMCPY_EV_5,
};
80

81
/* Default configuration for physcial memcpy */
82
static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83
	.mode = STEDMA40_MODE_PHYSICAL,
84
	.dir = DMA_MEM_TO_MEM,
85

86
	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 88 89
	.src_info.psize = STEDMA40_PSIZE_PHY_1,
	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,

90
	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 92 93 94 95
	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};

/* Default configuration for logical memcpy */
96
static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97
	.mode = STEDMA40_MODE_LOGICAL,
98
	.dir = DMA_MEM_TO_MEM,
99

100
	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 102 103
	.src_info.psize = STEDMA40_PSIZE_LOG_1,
	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,

104
	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 106 107 108
	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
};

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
/*
 * enum d40_events - The different Event Enables for the event lines.
 *
 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 * @D40_ROUND_EVENTLINE: Status check for event line.
 */

enum d40_events {
	D40_DEACTIVATE_EVENTLINE	= 0,
	D40_ACTIVATE_EVENTLINE		= 1,
	D40_SUSPEND_REQ_EVENTLINE	= 2,
	D40_ROUND_EVENTLINE		= 3
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
 * These are the registers that has to be saved and later restored
 * when the DMA hw is powered off.
 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 */
static u32 d40_backup_regs[] = {
	D40_DREG_LCPA,
	D40_DREG_LCLA,
	D40_DREG_PRMSE,
	D40_DREG_PRMSO,
	D40_DREG_PRMOE,
	D40_DREG_PRMOO,
};

#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)

156 157 158 159 160 161 162 163 164 165 166 167 168
/*
 * since 9540 and 8540 has the same HW revision
 * use v4a for 9540 or ealier
 * use v4b for 8540 or later
 * HW revision:
 * DB8500ed has revision 0
 * DB8500v1 has revision 2
 * DB8500v2 has revision 3
 * AP9540v1 has revision 4
 * DB8540v1 has revision 4
 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 */
static u32 d40_backup_regs_v4a[] = {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	D40_DREG_PSEG1,
	D40_DREG_PSEG2,
	D40_DREG_PSEG3,
	D40_DREG_PSEG4,
	D40_DREG_PCEG1,
	D40_DREG_PCEG2,
	D40_DREG_PCEG3,
	D40_DREG_PCEG4,
	D40_DREG_RSEG1,
	D40_DREG_RSEG2,
	D40_DREG_RSEG3,
	D40_DREG_RSEG4,
	D40_DREG_RCEG1,
	D40_DREG_RCEG2,
	D40_DREG_RCEG3,
	D40_DREG_RCEG4,
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)

static u32 d40_backup_regs_v4b[] = {
	D40_DREG_CPSEG1,
	D40_DREG_CPSEG2,
	D40_DREG_CPSEG3,
	D40_DREG_CPSEG4,
	D40_DREG_CPSEG5,
	D40_DREG_CPCEG1,
	D40_DREG_CPCEG2,
	D40_DREG_CPCEG3,
	D40_DREG_CPCEG4,
	D40_DREG_CPCEG5,
	D40_DREG_CRSEG1,
	D40_DREG_CRSEG2,
	D40_DREG_CRSEG3,
	D40_DREG_CRSEG4,
	D40_DREG_CRSEG5,
	D40_DREG_CRCEG1,
	D40_DREG_CRCEG2,
	D40_DREG_CRCEG3,
	D40_DREG_CRCEG4,
	D40_DREG_CRCEG5,
};

#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213 214 215 216 217 218 219 220 221 222 223 224

static u32 d40_backup_regs_chan[] = {
	D40_CHAN_REG_SSCFG,
	D40_CHAN_REG_SSELT,
	D40_CHAN_REG_SSPTR,
	D40_CHAN_REG_SSLNK,
	D40_CHAN_REG_SDCFG,
	D40_CHAN_REG_SDELT,
	D40_CHAN_REG_SDPTR,
	D40_CHAN_REG_SDLNK,
};

225 226 227
#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};


static struct d40_interrupt_lookup il_v4a[] = {
	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
};

static struct d40_interrupt_lookup il_v4b[] = {
	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
};
static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
	/* Clock every part of the DMA block from start */
	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},

	/* Interrupts on all logical channels */
	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
};

324 325 326 327 328 329
/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
330
 * @dma_addr: DMA address, if mapped
331 332 333 334 335 336
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
337
	int	 size;
338
	dma_addr_t	dma_addr;
339
	/* Space for dst and src, plus an extra for padding */
340
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 342 343 344 345 346 347 348 349 350
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
351
 * @lli_len: Number of llis of current descriptor.
L
Lucas De Marchi 已提交
352
 * @lli_current: Number of transferred llis.
353
 * @lcla_alloc: Number of LCLA entries allocated.
354 355 356 357
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
358
 * @cyclic: true if this is a cyclic job
359 360 361 362 363 364 365 366 367 368
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
369
	int				 lli_len;
370 371
	int				 lli_current;
	int				 lcla_alloc;
372 373 374 375 376

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
R
Rabin Vincent 已提交
377
	bool				 cyclic;
378 379 380 381 382
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
383 384 385 386 387
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
388
 * @lock: Lock to protect the content in this struct.
389
 * @alloc_map: big map over which LCLA entry is own by which job.
390 391 392
 */
struct d40_lcla_pool {
	void		*base;
393
	dma_addr_t	dma_addr;
394 395
	void		*base_unaligned;
	int		 pages;
396
	spinlock_t	 lock;
397
	struct d40_desc	**alloc_map;
398 399 400 401 402 403 404
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
405
 * @reserved: True if used by secure world or otherwise.
406 407 408 409 410
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411
 * event line number.
412
 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413 414 415
 */
struct d40_phy_res {
	spinlock_t lock;
416
	bool	   reserved;
417 418 419
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
420
	bool	   use_soft_lli;
421 422 423 424 425 426 427 428 429 430 431 432
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
433 434
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
435 436 437 438
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
439
 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440
 * @active: Active descriptor.
441
 * @done: Completed jobs
442
 * @queue: Queued jobs.
443
 * @prepare_queue: Prepared jobs.
444
 * @dma_cfg: The client configuration of this dma channel.
445
 * @configured: whether the dma_cfg configuration is valid
446 447 448 449 450
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcpa: Pointer to dst and src lcpa settings.
451 452
 * @runtime_addr: runtime configured address.
 * @runtime_direction: runtime configured direction.
453 454 455 456 457 458 459 460 461 462 463 464
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
465
	struct list_head		 pending_queue;
466
	struct list_head		 active;
467
	struct list_head		 done;
468
	struct list_head		 queue;
469
	struct list_head		 prepare_queue;
470
	struct stedma40_chan_cfg	 dma_cfg;
471
	bool				 configured;
472 473 474 475 476 477
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
478 479
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
480
	enum dma_transfer_direction	runtime_direction;
481 482
};

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/**
 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 * controller
 *
 * @backup: the pointer to the registers address array for backup
 * @backup_size: the size of the registers address array for backup
 * @realtime_en: the realtime enable register
 * @realtime_clear: the realtime clear register
 * @high_prio_en: the high priority enable register
 * @high_prio_clear: the high priority clear register
 * @interrupt_en: the interrupt enable register
 * @interrupt_clear: the interrupt clear register
 * @il: the pointer to struct d40_interrupt_lookup
 * @il_size: the size of d40_interrupt_lookup array
 * @init_reg: the pointer to the struct d40_reg_val
 * @init_reg_size: the size of d40_reg_val array
 */
struct d40_gen_dmac {
	u32				*backup;
	u32				 backup_size;
	u32				 realtime_en;
	u32				 realtime_clear;
	u32				 high_prio_en;
	u32				 high_prio_clear;
	u32				 interrupt_en;
	u32				 interrupt_clear;
	struct d40_interrupt_lookup	*il;
	u32				 il_size;
	struct d40_reg_val		*init_reg;
	u32				 init_reg_size;
};

515 516 517 518 519 520 521 522
/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
523
 * @rev: silicon revision detected.
524 525 526 527
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
528 529
 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 * transfers).
530 531 532 533 534 535 536 537
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538
 * @phy_chans: Room for all possible physical channels in system.
539 540 541 542 543 544 545
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
546
 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 548 549 550 551
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
552
 * @desc_slab: cache for descriptors.
553 554
 * @reg_val_backup: Here the values of some hardware registers are stored
 * before the DMA is powered off. They are restored when the power is back on.
555 556
 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 * later
557 558
 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559 560
 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 * DMA controller
561 562 563 564 565 566
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
567
	u8				  rev:4;
568 569 570 571
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
572
	int				  num_memcpy_chans;
573 574
	int				  num_phy_chans;
	int				  num_log_chans;
575
	struct device_dma_parameters	  dma_parms;
576 577 578 579 580 581 582 583
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
584
	struct regulator		 *lcpa_regulator;
585 586 587 588 589 590
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
591
	struct kmem_cache		 *desc_slab;
592
	u32				  reg_val_backup[BACKUP_REGS_SZ];
593
	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
594 595
	u32				 *reg_val_backup_chan;
	u16				  gcc_pwr_off_mask;
596
	struct d40_gen_dmac		  gen_dmac;
597 598
};

599 600 601 602 603
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

604 605 606 607 608 609 610 611 612 613
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

614 615 616 617 618 619
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

620 621 622 623 624 625
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

626
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
627
			      int lli_len)
628
{
629
	bool is_log = chan_is_logical(d40c);
630 631 632 633 634 635 636 637 638 639 640 641 642
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
643
		d40d->lli_pool.size = lli_len * 2 * align;
644 645 646 647 648 649 650 651 652

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
R
Rabin Vincent 已提交
653
		d40d->lli_log.src = PTR_ALIGN(base, align);
654
		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
655 656

		d40d->lli_pool.dma_addr = 0;
657
	} else {
R
Rabin Vincent 已提交
658
		d40d->lli_phy.src = PTR_ALIGN(base, align);
659
		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
660 661 662 663 664 665 666 667 668 669 670 671 672

		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
							 d40d->lli_phy.src,
							 d40d->lli_pool.size,
							 DMA_TO_DEVICE);

		if (dma_mapping_error(d40c->base->dev,
				      d40d->lli_pool.dma_addr)) {
			kfree(d40d->lli_pool.base);
			d40d->lli_pool.base = NULL;
			d40d->lli_pool.dma_addr = 0;
			return -ENOMEM;
		}
673 674 675 676 677
	}

	return 0;
}

678
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
679
{
680 681 682 683
	if (d40d->lli_pool.dma_addr)
		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
				 d40d->lli_pool.size, DMA_TO_DEVICE);

684 685 686 687 688 689 690 691 692
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
707 708 709 710
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (!d40c->base->lcla_pool.alloc_map[idx]) {
			d40c->base->lcla_pool.alloc_map[idx] = d40d;
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

729
	if (chan_is_physical(d40c))
730 731 732 733 734
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
735 736 737 738
		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;

		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
			d40c->base->lcla_pool.alloc_map[idx] = NULL;
739 740 741 742 743 744 745 746 747 748 749 750 751 752
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

753 754 755 756 757 758 759
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
760
	struct d40_desc *desc = NULL;
761 762

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
763 764 765
		struct d40_desc *d;
		struct d40_desc *_d;

766
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
767 768
			if (async_tx_test_ack(&d->txd)) {
				d40_desc_remove(d);
R
Rabin Vincent 已提交
769 770
				desc = d;
				memset(desc, 0, sizeof(*desc));
771
				break;
772
			}
773
		}
774
	}
R
Rabin Vincent 已提交
775 776 777 778 779 780 781 782

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
783 784 785 786
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
787

788
	d40_pool_lli_free(d40c, d40d);
789
	d40_lcla_free_all(d40c, d40d);
790
	kmem_cache_free(d40c->base->desc_slab, d40d);
791 792 793 794 795 796 797
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
{
	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
	struct d40_phy_lli *lli_src = desc->lli_phy.src;
	void __iomem *base = chan_base(chan);

	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);

	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
}

815 816 817 818 819
static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->done);
}

820
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
821
{
822 823 824 825
	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
	struct d40_log_lli_bidir *lli = &desc->lli_log;
	int lli_current = desc->lli_current;
	int lli_len = desc->lli_len;
R
Rabin Vincent 已提交
826
	bool cyclic = desc->cyclic;
827
	int curr_lcla = -EINVAL;
R
Rabin Vincent 已提交
828
	int first_lcla = 0;
829
	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
R
Rabin Vincent 已提交
830
	bool linkback;
831

R
Rabin Vincent 已提交
832 833 834 835 836 837 838 839 840 841 842
	/*
	 * We may have partially running cyclic transfers, in case we did't get
	 * enough LCLA entries.
	 */
	linkback = cyclic && lli_current == 0;

	/*
	 * For linkback, we need one LCLA even with only one link, because we
	 * can't link back to the one in LCPA space
	 */
	if (linkback || (lli_len - lli_current > 1)) {
843 844 845 846 847 848 849
		/*
		 * If the channel is expected to use only soft_lli don't
		 * allocate a lcla. This is to avoid a HW issue that exists
		 * in some controller during a peripheral to memory transfer
		 * that uses linked lists.
		 */
		if (!(chan->phy_chan->use_soft_lli &&
850
			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
851 852
			curr_lcla = d40_lcla_alloc_one(chan, desc);

R
Rabin Vincent 已提交
853 854 855 856 857 858 859 860 861 862 863
		first_lcla = curr_lcla;
	}

	/*
	 * For linkback, we normally load the LCPA in the loop since we need to
	 * link it to the second LCLA and not the first.  However, if we
	 * couldn't even get a first LCLA, then we have to run in LCPA and
	 * reload manually.
	 */
	if (!linkback || curr_lcla == -EINVAL) {
		unsigned int flags = 0;
864

R
Rabin Vincent 已提交
865 866
		if (curr_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
867

R
Rabin Vincent 已提交
868 869 870 871 872 873 874
		d40_log_lli_lcpa_write(chan->lcpa,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
				       curr_lcla,
				       flags);
		lli_current++;
	}
875 876 877 878

	if (curr_lcla < 0)
		goto out;

879 880 881 882
	for (; lli_current < lli_len; lli_current++) {
		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
					   8 * curr_lcla * 2;
		struct d40_log_lli *lcla = pool->base + lcla_offset;
R
Rabin Vincent 已提交
883
		unsigned int flags = 0;
884 885 886 887 888
		int next_lcla;

		if (lli_current + 1 < lli_len)
			next_lcla = d40_lcla_alloc_one(chan, desc);
		else
R
Rabin Vincent 已提交
889 890 891 892
			next_lcla = linkback ? first_lcla : -EINVAL;

		if (cyclic || next_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
893

R
Rabin Vincent 已提交
894 895 896 897 898 899 900 901 902 903 904 905
		if (linkback && curr_lcla == first_lcla) {
			/* First link goes in both LCPA and LCLA */
			d40_log_lli_lcpa_write(chan->lcpa,
					       &lli->dst[lli_current],
					       &lli->src[lli_current],
					       next_lcla, flags);
		}

		/*
		 * One unused LCLA in the cyclic case if the very first
		 * next_lcla fails...
		 */
906 907 908
		d40_log_lli_lcla_write(lcla,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
R
Rabin Vincent 已提交
909
				       next_lcla, flags);
910

911 912 913 914 915 916 917 918 919 920
		/*
		 * Cache maintenance is not needed if lcla is
		 * mapped in esram
		 */
		if (!use_esram_lcla) {
			dma_sync_single_range_for_device(chan->base->dev,
						pool->dma_addr, lcla_offset,
						2 * sizeof(struct d40_log_lli),
						DMA_TO_DEVICE);
		}
921 922
		curr_lcla = next_lcla;

R
Rabin Vincent 已提交
923
		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
924 925 926 927 928
			lli_current++;
			break;
		}
	}

929
out:
930 931
	desc->lli_current = lli_current;
}
932

933 934
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
935
	if (chan_is_physical(d40c)) {
936
		d40_phy_lli_load(d40c, d40d);
937
		d40d->lli_current = d40d->lli_len;
938 939
	} else
		d40_log_lli_to_lcxa(d40c, d40d);
940 941
}

942 943 944 945 946 947 948 949 950 951 952 953 954
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

955
/* remove desc from current queue and add it to the pending_queue */
956 957
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
958 959
	d40_desc_remove(desc);
	desc->is_in_client_list = false;
960 961 962 963 964 965 966 967 968 969 970 971 972 973
	list_add_tail(&desc->node, &d40c->pending_queue);
}

static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->pending_queue))
		return NULL;

	d = list_first_entry(&d40c->pending_queue,
			     struct d40_desc,
			     node);
	return d;
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

989 990 991 992 993 994 995 996
static struct d40_desc *d40_first_done(struct d40_chan *d40c)
{
	if (list_empty(&d40c->done))
		return NULL;

	return list_first_entry(&d40c->done, struct d40_desc, node);
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
1012 1013 1014
 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
 *
 * Calculate the total number of dma elements required to send the entire sg list.
1015 1016 1017 1018 1019 1020
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
1021
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1022 1023

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1024
		seg_max -= max_w;
1025

1026
	if (!IS_ALIGNED(size, max_w))
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
1056

1057 1058
static int __d40_execute_command_phy(struct d40_chan *d40c,
				     enum d40_command command)
1059
{
1060 1061
	u32 status;
	int i;
1062 1063 1064
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
1065
	u32 wmask;
1066

1067 1068 1069 1070 1071 1072
	if (command == D40_DMA_STOP) {
		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
		if (ret)
			return ret;
	}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

1089 1090 1091
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
1113 1114 1115
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
1130
	struct d40_desc *_d;
1131

1132 1133 1134 1135 1136 1137
	/* Release completed descriptors */
	while ((d40d = d40_first_done(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

1150 1151 1152 1153 1154
	/* Release pending descriptors */
	while ((d40d = d40_first_pending(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}
1155

1156 1157 1158 1159 1160 1161 1162
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}

1163 1164 1165 1166 1167 1168 1169
	/* Release descriptors in prepare queue */
	if (!list_empty(&d40c->prepare_queue))
		list_for_each_entry_safe(d40d, _d,
					 &d40c->prepare_queue, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}
1170

1171 1172 1173
	d40c->pending_tx = 0;
}

1174 1175 1176
static void __d40_config_set_event(struct d40_chan *d40c,
				   enum d40_events event_type, u32 event,
				   int reg)
1177
{
1178
	void __iomem *addr = chan_base(d40c) + reg;
1179
	int tries;
1180 1181 1182 1183 1184
	u32 status;

	switch (event_type) {

	case D40_DEACTIVATE_EVENTLINE:
1185 1186 1187

		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
1188 1189 1190 1191 1192 1193 1194 1195 1196
		break;

	case D40_SUSPEND_REQ_EVENTLINE:
		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
			  D40_EVENTLINE_POS(event);

		if (status == D40_DEACTIVATE_EVENTLINE ||
		    status == D40_SUSPEND_REQ_EVENTLINE)
			break;
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {

			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
				  D40_EVENTLINE_POS(event);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DEACTIVATE_EVENTLINE)
				break;
		}

		if (tries == D40_SUSPEND_MAX_IT) {
			chan_err(d40c,
				"unable to stop the event_line chl %d (log: %d)"
				"status %x\n", d40c->phy_chan->num,
				 d40c->log_num, status);
		}
		break;

	case D40_ACTIVATE_EVENTLINE:
1226 1227 1228 1229 1230
	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
1231 1232 1233 1234 1235
		tries = 100;
		while (--tries) {
			writel((D40_ACTIVATE_EVENTLINE <<
				D40_EVENTLINE_POS(event)) |
				~D40_EVENTLINE_MASK(event), addr);
1236

1237 1238 1239
			if (readl(addr) & D40_EVENTLINE_MASK(event))
				break;
		}
1240

1241 1242 1243 1244 1245
		if (tries != 99)
			dev_dbg(chan2dev(d40c),
				"[%s] workaround enable S%cLNK (%d tries)\n",
				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
				100 - tries);
1246

1247 1248
		WARN_ON(!tries);
		break;
1249

1250 1251 1252
	case D40_ROUND_EVENTLINE:
		BUG();
		break;
1253

1254 1255
	}
}
1256

1257 1258 1259
static void d40_config_set_event(struct d40_chan *d40c,
				 enum d40_events event_type)
{
1260 1261
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);

1262
	/* Enable event line connected to device (or memcpy) */
1263 1264
	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1265
		__d40_config_set_event(d40c, event_type, event,
1266
				       D40_CHAN_REG_SSLNK);
1267

1268
	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1269
		__d40_config_set_event(d40c, event_type, event,
1270
				       D40_CHAN_REG_SDLNK);
1271 1272
}

1273
static u32 d40_chan_has_events(struct d40_chan *d40c)
1274
{
1275
	void __iomem *chanbase = chan_base(d40c);
1276
	u32 val;
1277

1278 1279
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1280

1281
	return val;
1282 1283
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
static int
__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
{
	unsigned long flags;
	int ret = 0;
	u32 active_status;
	void __iomem *active_reg;

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;


	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	switch (command) {
	case D40_DMA_STOP:
	case D40_DMA_SUSPEND_REQ:

		active_status = (readl(active_reg) &
				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				 D40_CHAN_POS(d40c->phy_chan->num);

		if (active_status == D40_DMA_RUN)
			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
		else
			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);

		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
			ret = __d40_execute_command_phy(d40c, command);

		break;

	case D40_DMA_RUN:

		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
		ret = __d40_execute_command_phy(d40c, command);
		break;

	case D40_DMA_SUSPENDED:
		BUG();
		break;
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
	return ret;
}

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
	if (chan_is_logical(d40c))
		return __d40_execute_command_log(d40c, command);
	else
		return __d40_execute_command_phy(d40c, command);
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

1361
	if (chan_is_physical(d40c))
1362 1363 1364 1365 1366
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

1367
static void d40_config_write(struct d40_chan *d40c)
1368 1369 1370 1371 1372 1373 1374
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
1375
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1376 1377 1378 1379
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
1380
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1381 1382 1383

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

1384
	if (chan_is_logical(d40c)) {
1385 1386 1387 1388
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

1389
		/* Set default config for CFG reg */
1390 1391
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1392

1393
		/* Set LIDX for lcla */
1394 1395
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1396 1397 1398 1399

		/* Clear LNK which will be used by d40_chan_has_events() */
		writel(0, chanbase + D40_CHAN_REG_SSLNK);
		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1400 1401 1402
	}
}

1403 1404 1405 1406
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

1407
	if (chan_is_logical(d40c))
1408 1409
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
1410 1411 1412 1413 1414 1415
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

1416
	return num_elt * d40c->dma_cfg.dst_info.data_width;
1417 1418 1419 1420 1421 1422
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

1423
	if (chan_is_logical(d40c))
1424 1425
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
1426 1427 1428
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

1429 1430 1431
	return is_link;
}

1432
static int d40_pause(struct dma_chan *chan)
1433
{
1434
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1435 1436 1437
	int res = 0;
	unsigned long flags;

1438 1439 1440 1441 1442
	if (d40c->phy_chan == NULL) {
		chan_err(d40c, "Channel is not allocated!\n");
		return -EINVAL;
	}

1443 1444 1445
	if (!d40c->busy)
		return 0;

1446
	spin_lock_irqsave(&d40c->lock, flags);
1447
	pm_runtime_get_sync(d40c->base->dev);
1448 1449

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1450

1451 1452
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1453 1454 1455 1456
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1457
static int d40_resume(struct dma_chan *chan)
1458
{
1459
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1460 1461 1462
	int res = 0;
	unsigned long flags;

1463 1464 1465 1466 1467
	if (d40c->phy_chan == NULL) {
		chan_err(d40c, "Channel is not allocated!\n");
		return -EINVAL;
	}

1468 1469 1470
	if (!d40c->busy)
		return 0;

1471
	spin_lock_irqsave(&d40c->lock, flags);
1472
	pm_runtime_get_sync(d40c->base->dev);
1473 1474

	/* If bytes left to transfer or linked tx resume job */
1475
	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1476 1477
		res = d40_channel_execute_command(d40c, D40_DMA_RUN);

1478 1479
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1480 1481 1482 1483
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1484 1485 1486 1487 1488 1489 1490
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;
1491
	dma_cookie_t cookie;
1492 1493

	spin_lock_irqsave(&d40c->lock, flags);
1494
	cookie = dma_cookie_assign(tx);
1495 1496 1497
	d40_desc_queue(d40c, d40d);
	spin_unlock_irqrestore(&d40c->lock, flags);

1498
	return cookie;
1499 1500 1501 1502
}

static int d40_start(struct d40_chan *d40c)
{
1503
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
1515
		if (!d40c->busy) {
1516
			d40c->busy = true;
1517 1518
			pm_runtime_get_sync(d40c->base->dev);
		}
1519 1520 1521 1522 1523 1524 1525

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1526 1527
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
1528

1529 1530
		/* Start dma job */
		err = d40_start(d40c);
1531

1532 1533
		if (err)
			return NULL;
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

R
Rabin Vincent 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	if (d40d->cyclic) {
		/*
		 * If this was a paritially loaded list, we need to reloaded
		 * it, and only when the list is completed.  We need to check
		 * for done because the interrupt will hit for every link, and
		 * not just the last one.
		 */
		if (d40d->lli_current < d40d->lli_len
		    && !d40_tx_is_linked(d40c)
		    && !d40_residue(d40c)) {
			d40_lcla_free_all(d40c, d40d);
			d40_desc_load(d40c, d40d);
			(void) d40_start(d40c);
1563

R
Rabin Vincent 已提交
1564 1565 1566 1567 1568
			if (d40d->lli_current == d40d->lli_len)
				d40d->lli_current = 0;
		}
	} else {
		d40_lcla_free_all(d40c, d40d);
1569

R
Rabin Vincent 已提交
1570 1571 1572 1573 1574 1575 1576
		if (d40d->lli_current < d40d->lli_len) {
			d40_desc_load(d40c, d40d);
			/* Start dma job */
			(void) d40_start(d40c);
			return;
		}

1577
		if (d40_queue_start(d40c) == NULL) {
R
Rabin Vincent 已提交
1578
			d40c->busy = false;
1579 1580 1581 1582

			pm_runtime_mark_last_busy(d40c->base->dev);
			pm_runtime_put_autosuspend(d40c->base->dev);
		}
1583

1584 1585 1586
		d40_desc_remove(d40d);
		d40_desc_done(d40c, d40d);
	}
1587

1588 1589 1590 1591 1592 1593 1594 1595
	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1596
	struct d40_desc *d40d;
1597
	unsigned long flags;
1598
	bool callback_active;
1599 1600 1601 1602 1603
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

1604 1605 1606 1607 1608 1609 1610 1611
	/* Get first entry from the done list */
	d40d = d40_first_done(d40c);
	if (d40d == NULL) {
		/* Check if we have reached here for cyclic job */
		d40d = d40_first_active_get(d40c);
		if (d40d == NULL || !d40d->cyclic)
			goto err;
	}
1612

R
Rabin Vincent 已提交
1613
	if (!d40d->cyclic)
1614
		dma_cookie_complete(&d40d->txd);
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1626
	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1627 1628 1629
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

R
Rabin Vincent 已提交
1630 1631
	if (!d40d->cyclic) {
		if (async_tx_test_ack(&d40d->txd)) {
1632
			d40_desc_remove(d40d);
R
Rabin Vincent 已提交
1633
			d40_desc_free(d40c, d40d);
1634 1635 1636 1637 1638
		} else if (!d40d->is_in_client_list) {
			d40_desc_remove(d40d);
			d40_lcla_free_all(d40c, d40d);
			list_add_tail(&d40d->node, &d40c->client);
			d40d->is_in_client_list = true;
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1649
	if (callback_active && callback)
1650 1651 1652 1653
		callback(callback_param);

	return;

1654 1655
err:
	/* Rescue manouver if receiving double interrupts */
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	int i;
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;
1670 1671 1672
	u32 regs[base->gen_dmac.il_size];
	struct d40_interrupt_lookup *il = base->gen_dmac.il;
	u32 il_size = base->gen_dmac.il_size;
1673 1674 1675 1676

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
1677
	for (i = 0; i < il_size; i++)
1678 1679 1680 1681 1682
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
1683
				     BITS_PER_LONG * il_size, chan + 1);
1684 1685

		/* No more set bits found? */
1686
		if (chan == BITS_PER_LONG * il_size)
1687 1688 1689 1690 1691 1692 1693 1694 1695
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

		if (!d40c) {
			/*
			 * No error because this can happen if something else
			 * in the system is using the channel.
			 */
			continue;
		}

		/* ACK interrupt */
1706
		writel(BIT(idx), base->virtbase + il[row].clr);
1707

1708 1709 1710 1711 1712
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1713 1714
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
1728
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1729

1730
	if (!conf->dir) {
1731
		chan_err(d40c, "Invalid direction.\n");
1732 1733 1734
		res = -EINVAL;
	}

1735 1736 1737 1738
	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
	    (conf->dev_type < 0)) {
		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1739 1740 1741
		res = -EINVAL;
	}

1742
	if (conf->dir == DMA_DEV_TO_DEV) {
1743 1744 1745 1746
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1747
		chan_err(d40c, "periph to periph not supported\n");
1748 1749 1750
		res = -EINVAL;
	}

1751
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1752
	    conf->src_info.data_width !=
1753
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1754
	    conf->dst_info.data_width) {
1755 1756 1757 1758 1759
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1760
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1761 1762 1763
		res = -EINVAL;
	}

1764 1765 1766
	return res;
}

1767 1768 1769
static bool d40_alloc_mask_set(struct d40_phy_res *phy,
			       bool is_src, int log_event_line, bool is_log,
			       bool *first_user)
1770 1771 1772
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1773 1774 1775 1776

	*first_user = ((phy->allocated_src | phy->allocated_dst)
			== D40_ALLOC_FREE);

1777
	if (!is_log) {
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

1796 1797
		if (!(phy->allocated_src & BIT(log_event_line))) {
			phy->allocated_src |= BIT(log_event_line);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

1808 1809
		if (!(phy->allocated_dst & BIT(log_event_line))) {
			phy->allocated_dst |= BIT(log_event_line);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
1839
		phy->allocated_src &= ~BIT(log_event_line);
1840 1841 1842
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
1843
		phy->allocated_dst &= ~BIT(log_event_line);
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

1857
static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1858
{
1859
	int dev_type = d40c->dma_cfg.dev_type;
1860 1861 1862 1863 1864 1865
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
1866
	int num_phy_chans;
1867
	bool is_src;
1868
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1869 1870

	phys = d40c->base->phy_res;
1871
	num_phy_chans = d40c->base->num_phy_chans;
1872

1873
	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1874 1875
		log_num = 2 * dev_type;
		is_src = true;
1876 1877
	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		/* dst event lines are used for logical memcpy */
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
1888
		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1889
			/* Find physical half channel */
1890 1891
			if (d40c->dma_cfg.use_fixed_channel) {
				i = d40c->dma_cfg.phy_channel;
1892
				if (d40_alloc_mask_set(&phys[i], is_src,
1893 1894
						       0, is_log,
						       first_phy_user))
1895
					goto found_phy;
1896 1897 1898 1899 1900 1901 1902
			} else {
				for (i = 0; i < num_phy_chans; i++) {
					if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log,
						       first_phy_user))
						goto found_phy;
				}
1903 1904 1905 1906 1907
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1908 1909 1910
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
1911 1912
							       is_log,
							       first_phy_user))
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

		if (d40c->dma_cfg.use_fixed_channel) {
			i = d40c->dma_cfg.phy_channel;

			if ((i != phy_num) && (i != phy_num + 1)) {
				dev_err(chan2dev(d40c),
					"invalid fixed phy channel %d\n", i);
				return -EINVAL;
			}

			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
					       is_log, first_phy_user))
				goto found_log;

			dev_err(chan2dev(d40c),
				"could not allocate fixed phy channel %d\n", i);
			return -EINVAL;
		}

1947 1948 1949 1950 1951 1952 1953 1954
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1955 1956
						       event_line, is_log,
						       first_phy_user))
1957 1958 1959 1960 1961
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1962 1963
						       event_line, is_log,
						       first_phy_user))
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1989
		d40c->dma_cfg = dma40_memcpy_conf_log;
1990
		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1991

1992 1993 1994
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

1995 1996
	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
1997
		d40c->dma_cfg = dma40_memcpy_conf_phy;
1998 1999 2000 2001 2002 2003 2004 2005

		/* Generate interrrupt at end of transfer or relink. */
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);

		/* Generate interrupt on error. */
		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);

2006
	} else {
2007
		chan_err(d40c, "No memcpy\n");
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		return -EINVAL;
	}

	return 0;
}

static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
2018
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2019 2020 2021 2022 2023 2024 2025
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

	if (phy == NULL) {
2026
		chan_err(d40c, "phy == null\n");
2027 2028 2029 2030 2031
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
2032
		chan_err(d40c, "channel already free\n");
2033 2034 2035
		return -EINVAL;
	}

2036 2037
	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2038
		is_src = false;
2039
	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2040
		is_src = true;
2041
	else {
2042
		chan_err(d40c, "Unknown direction\n");
2043 2044 2045
		return -EINVAL;
	}

2046
	pm_runtime_get_sync(d40c->base->dev);
2047
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2048
	if (res) {
2049
		chan_err(d40c, "stop failed\n");
2050
		goto out;
2051 2052
	}

2053
	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2054

2055
	if (chan_is_logical(d40c))
2056
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2057 2058
	else
		d40c->base->lookup_phy_chans[phy->num] = NULL;
2059 2060 2061 2062 2063 2064 2065

	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}

	d40c->busy = false;
2066
	d40c->phy_chan = NULL;
2067
	d40c->configured = false;
2068
out:
2069

2070 2071 2072
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	return res;
2073 2074
}

2075 2076
static bool d40_is_paused(struct d40_chan *d40c)
{
2077
	void __iomem *chanbase = chan_base(d40c);
2078 2079 2080 2081
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
2082
	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2083 2084 2085

	spin_lock_irqsave(&d40c->lock, flags);

2086
	if (chan_is_physical(d40c)) {
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

2101 2102
	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2103
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2104
	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2105
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2106
	} else {
2107
		chan_err(d40c, "Unknown direction\n");
2108 2109
		goto _exit;
	}
2110

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

2136 2137 2138
static int
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2139 2140
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2141 2142 2143 2144
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2145
	int ret;
2146

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	ret = d40_log_sg_to_lli(sg_src, sg_len,
				src_dev_addr,
				desc->lli_log.src,
				chan->log_def.lcsp1,
				src_info->data_width,
				dst_info->data_width);

	ret = d40_log_sg_to_lli(sg_dst, sg_len,
				dst_dev_addr,
				desc->lli_log.dst,
				chan->log_def.lcsp3,
				dst_info->data_width,
				src_info->data_width);

	return ret < 0 ? ret : 0;
2162 2163 2164 2165 2166
}

static int
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
2167 2168
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
2169 2170 2171 2172
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
R
Rabin Vincent 已提交
2173
	unsigned long flags = 0;
2174 2175
	int ret;

R
Rabin Vincent 已提交
2176 2177 2178
	if (desc->cyclic)
		flags |= LLI_CYCLIC | LLI_TERM_INT;

2179 2180 2181 2182
	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
				desc->lli_phy.src,
				virt_to_phys(desc->lli_phy.src),
				chan->src_def_cfg,
R
Rabin Vincent 已提交
2183
				src_info, dst_info, flags);
2184 2185 2186 2187 2188

	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
				desc->lli_phy.dst,
				virt_to_phys(desc->lli_phy.dst),
				chan->dst_def_cfg,
R
Rabin Vincent 已提交
2189
				dst_info, src_info, flags);
2190 2191 2192 2193 2194 2195 2196

	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
				   desc->lli_pool.size, DMA_TO_DEVICE);

	return ret < 0 ? ret : 0;
}

2197 2198 2199 2200
static struct d40_desc *
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
	      unsigned int sg_len, unsigned long dma_flags)
{
2201
	struct stedma40_chan_cfg *cfg;
2202
	struct d40_desc *desc;
2203
	int ret;
2204 2205 2206 2207 2208

	desc = d40_desc_get(chan);
	if (!desc)
		return NULL;

2209
	cfg = &chan->dma_cfg;
2210 2211 2212 2213
	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
					cfg->dst_info.data_width);
	if (desc->lli_len < 0) {
		chan_err(chan, "Unaligned size\n");
2214
		goto free_desc;
2215
	}
2216

2217 2218 2219
	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
	if (ret < 0) {
		chan_err(chan, "Could not allocate lli\n");
2220
		goto free_desc;
2221 2222 2223 2224 2225 2226 2227 2228 2229
	}

	desc->lli_current = 0;
	desc->txd.flags = dma_flags;
	desc->txd.tx_submit = d40_tx_submit;

	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);

	return desc;
2230
 free_desc:
2231 2232
	d40_desc_free(chan, desc);
	return NULL;
2233 2234
}

2235 2236 2237
static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
	    struct scatterlist *sg_dst, unsigned int sg_len,
2238
	    enum dma_transfer_direction direction, unsigned long dma_flags)
2239 2240
{
	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2241 2242
	dma_addr_t src_dev_addr;
	dma_addr_t dst_dev_addr;
2243
	struct d40_desc *desc;
2244
	unsigned long flags;
2245
	int ret;
2246

2247 2248 2249
	if (!chan->phy_chan) {
		chan_err(chan, "Cannot prepare unallocated channel\n");
		return NULL;
2250 2251
	}

2252
	spin_lock_irqsave(&chan->lock, flags);
2253

2254 2255
	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
	if (desc == NULL)
2256
		goto unlock;
2257

R
Rabin Vincent 已提交
2258 2259 2260
	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
		desc->cyclic = true;

2261 2262
	src_dev_addr = 0;
	dst_dev_addr = 0;
2263 2264 2265 2266
	if (direction == DMA_DEV_TO_MEM)
		src_dev_addr = chan->runtime_addr;
	else if (direction == DMA_MEM_TO_DEV)
		dst_dev_addr = chan->runtime_addr;
2267 2268 2269

	if (chan_is_logical(chan))
		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2270
				      sg_len, src_dev_addr, dst_dev_addr);
2271 2272
	else
		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2273
				      sg_len, src_dev_addr, dst_dev_addr);
2274 2275 2276 2277

	if (ret) {
		chan_err(chan, "Failed to prepare %s sg job: %d\n",
			 chan_is_logical(chan) ? "log" : "phy", ret);
2278
		goto free_desc;
2279 2280
	}

2281 2282 2283 2284 2285 2286
	/*
	 * add descriptor to the prepare queue in order to be able
	 * to free them later in terminate_all
	 */
	list_add_tail(&desc->node, &chan->prepare_queue);

2287 2288 2289
	spin_unlock_irqrestore(&chan->lock, flags);

	return &desc->txd;
2290 2291 2292
 free_desc:
	d40_desc_free(chan, desc);
 unlock:
2293
	spin_unlock_irqrestore(&chan->lock, flags);
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	return NULL;
}

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

2311 2312 2313
	if (!err)
		d40c->configured = true;

2314 2315 2316 2317
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

2318 2319 2320 2321
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
2322
	u32 rtreg;
2323 2324
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
2325
	u32 bit = BIT(event);
2326
	u32 prioreg;
2327
	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2328

2329
	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	/*
	 * Due to a hardware bug, in some cases a logical channel triggered by
	 * a high priority destination event line can generate extra packet
	 * transactions.
	 *
	 * The workaround is to not set the high priority level for the
	 * destination event lines that trigger logical channels.
	 */
	if (!src && chan_is_logical(d40c))
		highprio = false;

2341
	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

2356 2357
	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2358
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2359

2360 2361
	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2362
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2363 2364
}

2365 2366 2367 2368
#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2369
#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
				  struct of_dma *ofdma)
{
	struct stedma40_chan_cfg cfg;
	dma_cap_mask_t cap;
	u32 flags;

	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));

	dma_cap_zero(cap);
	dma_cap_set(DMA_SLAVE, cap);

	cfg.dev_type = dma_spec->args[0];
	flags = dma_spec->args[2];

	switch (D40_DT_FLAGS_MODE(flags)) {
	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
	}

	switch (D40_DT_FLAGS_DIR(flags)) {
	case 0:
2393
		cfg.dir = DMA_MEM_TO_DEV;
2394 2395 2396
		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
		break;
	case 1:
2397
		cfg.dir = DMA_DEV_TO_MEM;
2398 2399 2400 2401 2402 2403 2404 2405 2406
		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
		break;
	}

	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
		cfg.phy_channel = dma_spec->args[1];
		cfg.use_fixed_channel = true;
	}

2407 2408 2409
	if (D40_DT_FLAGS_HIGH_PRIO(flags))
		cfg.high_priority = true;

2410 2411 2412
	return dma_request_channel(cap, stedma40_filter, &cfg);
}

2413 2414 2415 2416 2417 2418 2419
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
2420
	bool is_free_phy;
2421 2422
	spin_lock_irqsave(&d40c->lock, flags);

2423
	dma_cookie_init(chan);
2424

2425 2426
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
2427
		err = d40_config_memcpy(d40c);
2428
		if (err) {
2429
			chan_err(d40c, "Failed to configure memcpy channel\n");
2430
			goto mark_last_busy;
2431
		}
2432 2433
	}

2434
	err = d40_allocate_channel(d40c, &is_free_phy);
2435
	if (err) {
2436
		chan_err(d40c, "Failed to allocate channel\n");
2437
		d40c->configured = false;
2438
		goto mark_last_busy;
2439 2440
	}

2441
	pm_runtime_get_sync(d40c->base->dev);
2442

2443 2444
	d40_set_prio_realtime(d40c);

2445
	if (chan_is_logical(d40c)) {
2446
		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2447
			d40c->lcpa = d40c->base->lcpa_base +
2448
				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2449 2450
		else
			d40c->lcpa = d40c->base->lcpa_base +
2451
				d40c->dma_cfg.dev_type *
2452
				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2453 2454 2455 2456

		/* Unmask the Global Interrupt Mask. */
		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2457 2458
	}

2459 2460 2461 2462 2463 2464
	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
		 chan_is_logical(d40c) ? "logical" : "physical",
		 d40c->phy_chan->num,
		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");


2465 2466 2467 2468 2469
	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
2470 2471
	if (is_free_phy)
		d40_config_write(d40c);
2472
 mark_last_busy:
2473 2474
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
2475
	spin_unlock_irqrestore(&d40c->lock, flags);
2476
	return err;
2477 2478 2479 2480 2481 2482 2483 2484 2485
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

2486
	if (d40c->phy_chan == NULL) {
2487
		chan_err(d40c, "Cannot free unallocated channel\n");
2488 2489 2490
		return;
	}

2491 2492 2493 2494 2495
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
2496
		chan_err(d40c, "Failed to free channel\n");
2497 2498 2499 2500 2501 2502 2503
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
2504
						       unsigned long dma_flags)
2505
{
2506 2507
	struct scatterlist dst_sg;
	struct scatterlist src_sg;
2508

2509 2510
	sg_init_table(&dst_sg, 1);
	sg_init_table(&src_sg, 1);
2511

2512 2513
	sg_dma_address(&dst_sg) = dst;
	sg_dma_address(&src_sg) = src;
2514

2515 2516
	sg_dma_len(&dst_sg) = size;
	sg_dma_len(&src_sg) = size;
2517

2518 2519
	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
			   DMA_MEM_TO_MEM, dma_flags);
2520 2521
}

2522
static struct dma_async_tx_descriptor *
2523 2524 2525 2526
d40_prep_memcpy_sg(struct dma_chan *chan,
		   struct scatterlist *dst_sg, unsigned int dst_nents,
		   struct scatterlist *src_sg, unsigned int src_nents,
		   unsigned long dma_flags)
2527 2528 2529 2530
{
	if (dst_nents != src_nents)
		return NULL;

2531 2532
	return d40_prep_sg(chan, src_sg, dst_sg, src_nents,
			   DMA_MEM_TO_MEM, dma_flags);
2533 2534
}

2535 2536 2537 2538
static struct dma_async_tx_descriptor *
d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
		  unsigned int sg_len, enum dma_transfer_direction direction,
		  unsigned long dma_flags, void *context)
2539
{
2540
	if (!is_slave_direction(direction))
2541 2542
		return NULL;

2543
	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2544 2545
}

R
Rabin Vincent 已提交
2546 2547 2548
static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
		     size_t buf_len, size_t period_len,
2549
		     enum dma_transfer_direction direction, unsigned long flags)
R
Rabin Vincent 已提交
2550 2551 2552 2553 2554 2555
{
	unsigned int periods = buf_len / period_len;
	struct dma_async_tx_descriptor *txd;
	struct scatterlist *sg;
	int i;

2556
	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2557 2558 2559
	if (!sg)
		return NULL;

R
Rabin Vincent 已提交
2560 2561 2562 2563 2564 2565 2566
	for (i = 0; i < periods; i++) {
		sg_dma_address(&sg[i]) = dma_addr;
		sg_dma_len(&sg[i]) = period_len;
		dma_addr += period_len;
	}

	sg[periods].offset = 0;
2567
	sg_dma_len(&sg[periods]) = 0;
R
Rabin Vincent 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	sg[periods].page_link =
		((unsigned long)sg | 0x01) & ~0x02;

	txd = d40_prep_sg(chan, sg, sg, periods, direction,
			  DMA_PREP_INTERRUPT);

	kfree(sg);

	return txd;
}

2579 2580 2581 2582 2583
static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2584
	enum dma_status ret;
2585

2586
	if (d40c->phy_chan == NULL) {
2587
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2588 2589 2590
		return -EINVAL;
	}

2591
	ret = dma_cookie_status(chan, cookie, txstate);
2592
	if (ret != DMA_COMPLETE && txstate)
2593
		dma_set_residue(txstate, stedma40_residue(chan));
2594

2595 2596
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
2597 2598 2599 2600 2601 2602 2603 2604 2605

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2606
	if (d40c->phy_chan == NULL) {
2607
		chan_err(d40c, "Channel is not allocated!\n");
2608 2609 2610
		return;
	}

2611 2612
	spin_lock_irqsave(&d40c->lock, flags);

2613 2614 2615
	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);

	/* Busy means that queued jobs are already being processed */
2616 2617 2618 2619 2620 2621
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2622
static int d40_terminate_all(struct dma_chan *chan)
2623 2624 2625 2626 2627
{
	unsigned long flags;
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	int ret;

2628 2629 2630 2631 2632
	if (d40c->phy_chan == NULL) {
		chan_err(d40c, "Channel is not allocated!\n");
		return -EINVAL;
	}

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	spin_lock_irqsave(&d40c->lock, flags);

	pm_runtime_get_sync(d40c->base->dev);
	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (ret)
		chan_err(d40c, "Failed to stop channel\n");

	d40_term_all(d40c);
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}
	d40c->busy = false;

	spin_unlock_irqrestore(&d40c->lock, flags);
2650
	return 0;
2651 2652
}

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
static int
dma40_config_to_halfchannel(struct d40_chan *d40c,
			    struct stedma40_half_channel_info *info,
			    u32 maxburst)
{
	int psize;

	if (chan_is_logical(d40c)) {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}

	info->psize = psize;
	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;

	return 0;
}

2686
/* Runtime reconfiguration extension */
2687 2688
static int d40_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
2689 2690 2691
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2692
	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2693
	dma_addr_t config_addr;
2694 2695 2696
	u32 src_maxburst, dst_maxburst;
	int ret;

2697 2698 2699 2700 2701
	if (d40c->phy_chan == NULL) {
		chan_err(d40c, "Channel is not allocated!\n");
		return -EINVAL;
	}

2702 2703 2704 2705
	src_addr_width = config->src_addr_width;
	src_maxburst = config->src_maxburst;
	dst_addr_width = config->dst_addr_width;
	dst_maxburst = config->dst_maxburst;
2706

2707
	if (config->direction == DMA_DEV_TO_MEM) {
2708
		config_addr = config->src_addr;
2709

2710
		if (cfg->dir != DMA_DEV_TO_MEM)
2711 2712 2713 2714
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
2715
		cfg->dir = DMA_DEV_TO_MEM;
2716

2717 2718 2719 2720 2721
		/* Configure the memory side */
		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			dst_addr_width = src_addr_width;
		if (dst_maxburst == 0)
			dst_maxburst = src_maxburst;
2722

2723
	} else if (config->direction == DMA_MEM_TO_DEV) {
2724
		config_addr = config->dst_addr;
2725

2726
		if (cfg->dir != DMA_MEM_TO_DEV)
2727 2728 2729 2730
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
2731
		cfg->dir = DMA_MEM_TO_DEV;
2732

2733 2734 2735 2736 2737
		/* Configure the memory side */
		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			src_addr_width = dst_addr_width;
		if (src_maxburst == 0)
			src_maxburst = dst_maxburst;
2738 2739 2740 2741
	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
2742
		return -EINVAL;
2743 2744
	}

2745 2746 2747 2748 2749
	if (config_addr <= 0) {
		dev_err(d40c->base->dev, "no address supplied\n");
		return -EINVAL;
	}

2750
	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2751
		dev_err(d40c->base->dev,
2752 2753 2754 2755 2756 2757
			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
			src_maxburst,
			src_addr_width,
			dst_maxburst,
			dst_addr_width);
		return -EINVAL;
2758 2759
	}

2760 2761 2762 2763 2764 2765 2766 2767
	if (src_maxburst > 16) {
		src_maxburst = 16;
		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
	} else if (dst_maxburst > 16) {
		dst_maxburst = 16;
		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
	}

2768 2769 2770 2771 2772
	/* Only valid widths are; 1, 2, 4 and 8. */
	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2773 2774
	    !is_power_of_2(src_addr_width) ||
	    !is_power_of_2(dst_addr_width))
2775 2776 2777 2778 2779
		return -EINVAL;

	cfg->src_info.data_width = src_addr_width;
	cfg->dst_info.data_width = dst_addr_width;

2780 2781 2782 2783
	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
					  src_maxburst);
	if (ret)
		return ret;
2784

2785 2786 2787 2788
	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
					  dst_maxburst);
	if (ret)
		return ret;
2789

2790
	/* Fill in register values */
2791
	if (chan_is_logical(d40c))
2792 2793
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
2794
		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2795

2796 2797 2798 2799
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
2800 2801
		"configured channel %s for %s, data width %d/%d, "
		"maxburst %d/%d elements, LE, no flow control\n",
2802
		dma_chan_name(chan),
2803
		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2804 2805 2806 2807
		src_addr_width, dst_addr_width,
		src_maxburst, dst_maxburst);

	return 0;
2808 2809
}

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

2830
		INIT_LIST_HEAD(&d40c->done);
2831 2832
		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
2833
		INIT_LIST_HEAD(&d40c->pending_queue);
2834
		INIT_LIST_HEAD(&d40c->client);
2835
		INIT_LIST_HEAD(&d40c->prepare_queue);
2836 2837 2838 2839 2840 2841 2842 2843 2844

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
{
	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
		dev->device_prep_slave_sg = d40_prep_slave_sg;

	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
		dev->device_prep_dma_memcpy = d40_prep_memcpy;

		/*
		 * This controller can only access address at even
		 * 32bit boundaries, i.e. 2^2
		 */
2857
		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2858 2859 2860 2861 2862
	}

	if (dma_has_cap(DMA_SG, dev->cap_mask))
		dev->device_prep_dma_sg = d40_prep_memcpy_sg;

R
Rabin Vincent 已提交
2863 2864 2865
	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;

2866 2867 2868 2869
	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
	dev->device_free_chan_resources = d40_free_chan_resources;
	dev->device_issue_pending = d40_issue_pending;
	dev->device_tx_status = d40_tx_status;
2870 2871 2872 2873
	dev->device_config = d40_set_runtime_config;
	dev->device_pause = d40_pause;
	dev->device_resume = d40_resume;
	dev->device_terminate_all = d40_terminate_all;
2874 2875 2876
	dev->dev = base->dev;
}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
R
Rabin Vincent 已提交
2887
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2888

2889
	d40_ops_init(base, &base->dma_slave);
2890 2891 2892 2893

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2894
		d40_err(base->dev, "Failed to register slave channels\n");
2895
		goto exit;
2896 2897 2898
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2899
		      base->num_log_chans, base->num_memcpy_chans);
2900 2901 2902

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2903 2904 2905
	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);

	d40_ops_init(base, &base->dma_memcpy);
2906 2907 2908 2909

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2910
		d40_err(base->dev,
2911
			"Failed to register memcpy only channels\n");
2912
		goto unregister_slave;
2913 2914 2915 2916 2917 2918 2919 2920
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2921
	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
R
Rabin Vincent 已提交
2922
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2923 2924

	d40_ops_init(base, &base->dma_both);
2925 2926 2927
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2928 2929
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2930
		goto unregister_memcpy;
2931 2932
	}
	return 0;
2933
 unregister_memcpy:
2934
	dma_async_device_unregister(&base->dma_memcpy);
2935
 unregister_slave:
2936
	dma_async_device_unregister(&base->dma_slave);
2937
 exit:
2938 2939 2940
	return err;
}

2941
/* Suspend resume functionality */
2942 2943
#ifdef CONFIG_PM_SLEEP
static int dma40_suspend(struct device *dev)
2944
{
2945 2946
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
2947 2948 2949 2950 2951
	int ret;

	ret = pm_runtime_force_suspend(dev);
	if (ret)
		return ret;
2952

2953 2954 2955
	if (base->lcpa_regulator)
		ret = regulator_disable(base->lcpa_regulator);
	return ret;
2956 2957
}

2958 2959 2960 2961 2962 2963
static int dma40_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;

2964
	if (base->lcpa_regulator) {
2965
		ret = regulator_enable(base->lcpa_regulator);
2966 2967 2968
		if (ret)
			return ret;
	}
2969

2970
	return pm_runtime_force_resume(dev);
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
}
#endif

#ifdef CONFIG_PM
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
			 u32 *regaddr, int num, bool save)
{
	int i;

	for (i = 0; i < num; i++) {
		void __iomem *addr = baseaddr + regaddr[i];

		if (save)
			backup[i] = readl_relaxed(addr);
		else
			writel_relaxed(backup[i], addr);
	}
}

static void d40_save_restore_registers(struct d40_base *base, bool save)
{
	int i;

	/* Save/Restore channel specific registers */
	for (i = 0; i < base->num_phy_chans; i++) {
		void __iomem *addr;
		int idx;

		if (base->phy_res[i].reserved)
			continue;

		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
		idx = i * ARRAY_SIZE(d40_backup_regs_chan);

		dma40_backup(addr, &base->reg_val_backup_chan[idx],
			     d40_backup_regs_chan,
			     ARRAY_SIZE(d40_backup_regs_chan),
			     save);
	}

	/* Save/Restore global registers */
	dma40_backup(base->virtbase, base->reg_val_backup,
		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
		     save);

	/* Save/Restore registers only existing on dma40 v3 and later */
	if (base->gen_dmac.backup)
		dma40_backup(base->virtbase, base->reg_val_backup_v4,
			     base->gen_dmac.backup,
			base->gen_dmac.backup_size,
			save);
}

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
static int dma40_runtime_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	d40_save_restore_registers(base, true);

	/* Don't disable/enable clocks for v1 due to HW bugs */
	if (base->rev != 1)
		writel_relaxed(base->gcc_pwr_off_mask,
			       base->virtbase + D40_DREG_GCC);

	return 0;
}

static int dma40_runtime_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

3044
	d40_save_restore_registers(base, false);
3045 3046 3047 3048 3049

	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
		       base->virtbase + D40_DREG_GCC);
	return 0;
}
3050
#endif
3051 3052

static const struct dev_pm_ops dma40_pm_ops = {
3053
	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3054
	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3055 3056
				dma40_runtime_resume,
				NULL)
3057 3058
};

3059 3060 3061 3062 3063 3064 3065 3066
/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;
3067
	int gcc = D40_DREG_GCC_ENA;
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3079 3080 3081 3082 3083 3084 3085
			base->phy_res[i].reserved = true;
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_SRC);
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_DST);


3086 3087 3088
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3089
			base->phy_res[i].reserved = false;
3090 3091 3092 3093
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
3094 3095 3096

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3097 3098 3099 3100
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3101 3102 3103 3104 3105
		base->phy_res[chan].reserved = true;
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_SRC);
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_DST);
3106
		num_phy_chans_avail--;
3107 3108
	}

3109 3110 3111 3112 3113 3114 3115
	/* Mark soft_lli channels */
	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
		int chan = base->plat_data->soft_lli_chans[i];

		base->phy_res[chan].use_soft_lli = true;
	}

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

3133 3134 3135 3136 3137 3138 3139 3140 3141
	/*
	 * To keep things simple, Enable all clocks initially.
	 * The clocks will get managed later post channel allocation.
	 * The clocks for the event lines on which reserved channels exists
	 * are not managed here.
	 */
	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
	base->gcc_pwr_off_mask = gcc;

3142 3143 3144 3145 3146
	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
J
Jingoo Han 已提交
3147
	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3148 3149 3150 3151 3152
	struct clk *clk;
	void __iomem *virtbase;
	struct resource *res;
	struct d40_base *base;
	int num_log_chans;
3153
	int num_phy_chans;
3154
	int num_memcpy_chans;
3155
	int clk_ret = -EINVAL;
3156
	int i;
3157 3158 3159
	u32 pid;
	u32 cid;
	u8 rev;
3160 3161 3162

	clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk)) {
3163
		d40_err(&pdev->dev, "No matching clock found\n");
3164
		goto check_prepare_enabled;
3165 3166
	}

3167 3168 3169
	clk_ret = clk_prepare_enable(clk);
	if (clk_ret) {
		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3170
		goto disable_unprepare;
3171
	}
3172 3173 3174 3175

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
3176
		goto disable_unprepare;
3177 3178 3179

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
3180
		goto release_region;
3181 3182 3183

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
3184
		goto release_region;
3185

3186 3187 3188 3189 3190 3191 3192
	/* This is just a regular AMBA PrimeCell ID actually */
	for (pid = 0, i = 0; i < 4; i++)
		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
			& 255) << (i * 8);
	for (cid = 0, i = 0; i < 4; i++)
		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
			& 255) << (i * 8);
3193

3194 3195
	if (cid != AMBA_CID) {
		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3196
		goto unmap_io;
3197 3198
	}
	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3199
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3200 3201
			AMBA_MANF_BITS(pid),
			AMBA_VENDOR_ST);
3202
		goto unmap_io;
3203
	}
3204 3205 3206 3207 3208 3209
	/*
	 * HW revision:
	 * DB8500ed has revision 0
	 * ? has revision 1
	 * DB8500v1 has revision 2
	 * DB8500v2 has revision 3
3210 3211
	 * AP9540v1 has revision 4
	 * DB8540v1 has revision 4
3212 3213
	 */
	rev = AMBA_REV_BITS(pid);
3214 3215
	if (rev < 2) {
		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3216
		goto unmap_io;
3217
	}
3218

3219
	/* The number of physical channels on this HW */
3220 3221 3222 3223
	if (plat_data->num_of_phy_chans)
		num_phy_chans = plat_data->num_of_phy_chans;
	else
		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3224

3225 3226 3227 3228 3229 3230
	/* The number of channels used for memcpy */
	if (plat_data->num_of_memcpy_chans)
		num_memcpy_chans = plat_data->num_of_memcpy_chans;
	else
		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);

3231 3232
	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;

3233
	dev_info(&pdev->dev,
3234 3235
		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
		 rev, &res->start, num_phy_chans, num_log_chans);
3236 3237

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3238
		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3239 3240
		       sizeof(struct d40_chan), GFP_KERNEL);

3241
	if (base == NULL)
3242
		goto unmap_io;
3243

3244
	base->rev = rev;
3245
	base->clk = clk;
3246
	base->num_memcpy_chans = num_memcpy_chans;
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	if (base->plat_data->num_of_phy_chans == 14) {
		base->gen_dmac.backup = d40_backup_regs_v4b;
		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
		base->gen_dmac.il = il_v4b;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
		base->gen_dmac.init_reg = dma_init_reg_v4b;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
	} else {
		if (base->rev >= 3) {
			base->gen_dmac.backup = d40_backup_regs_v4a;
			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
		}
		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
		base->gen_dmac.il = il_v4a;
		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
		base->gen_dmac.init_reg = dma_init_reg_v4a;
		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
	}

3287 3288
	base->phy_res = kcalloc(num_phy_chans,
				sizeof(*base->phy_res),
3289 3290
				GFP_KERNEL);
	if (!base->phy_res)
3291
		goto free_base;
3292

3293 3294
	base->lookup_phy_chans = kcalloc(num_phy_chans,
					 sizeof(*base->lookup_phy_chans),
3295 3296
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
3297
		goto free_phy_res;
3298

3299 3300
	base->lookup_log_chans = kcalloc(num_log_chans,
					 sizeof(*base->lookup_log_chans),
3301 3302
					 GFP_KERNEL);
	if (!base->lookup_log_chans)
3303
		goto free_phy_chans;
3304

3305 3306 3307
	base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
						  sizeof(d40_backup_regs_chan),
						  GFP_KERNEL);
3308
	if (!base->reg_val_backup_chan)
3309
		goto free_log_chans;
3310

3311 3312 3313 3314
	base->lcla_pool.alloc_map = kcalloc(num_phy_chans
					    * D40_LCLA_LINK_PER_EVENT_GRP,
					    sizeof(*base->lcla_pool.alloc_map),
					    GFP_KERNEL);
3315
	if (!base->lcla_pool.alloc_map)
3316
		goto free_backup_chan;
3317

3318 3319 3320 3321
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
3322
		goto free_map;
3323

3324
	return base;
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
 free_map:
	kfree(base->lcla_pool.alloc_map);
 free_backup_chan:
	kfree(base->reg_val_backup_chan);
 free_log_chans:
	kfree(base->lookup_log_chans);
 free_phy_chans:
	kfree(base->lookup_phy_chans);
 free_phy_res:
	kfree(base->phy_res);
 free_base:
	kfree(base);
 unmap_io:
	iounmap(virtbase);
 release_region:
	release_mem_region(res->start, resource_size(res));
 check_prepare_enabled:
3342
	if (!clk_ret)
3343
 disable_unprepare:
3344 3345
		clk_disable_unprepare(clk);
	if (!IS_ERR(clk))
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
		clk_put(clk);
	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;
3358 3359
	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
	u32 reg_size = base->gen_dmac.init_reg_size;
3360

3361
	for (i = 0; i < reg_size; i++)
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
3394
	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3395 3396

	/* Write which interrupt to clear */
3397
	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3398

3399 3400 3401
	/* These are __initdata and cannot be accessed after init */
	base->gen_dmac.init_reg = NULL;
	base->gen_dmac.init_reg_size = 0;
3402 3403
}

3404 3405
static int __init d40_lcla_allocate(struct d40_base *base)
{
3406
	struct d40_lcla_pool *pool = &base->lcla_pool;
3407 3408
	unsigned long *page_list;
	int i, j;
3409
	int ret;
3410 3411 3412 3413 3414 3415

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
3416 3417 3418
	page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
				  sizeof(*page_list),
				  GFP_KERNEL);
3419 3420
	if (!page_list)
		return -ENOMEM;
3421 3422 3423 3424 3425 3426 3427 3428 3429

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

3430 3431
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
3432
			ret = -ENOMEM;
3433 3434 3435

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
3436
			goto free_page_list;
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
3450 3451 3452 3453
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
3454 3455 3456 3457 3458 3459 3460 3461 3462
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
3463
			goto free_page_list;
3464 3465 3466 3467 3468 3469
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

3470 3471 3472 3473 3474 3475
	pool->dma_addr = dma_map_single(base->dev, pool->base,
					SZ_1K * base->num_phy_chans,
					DMA_TO_DEVICE);
	if (dma_mapping_error(base->dev, pool->dma_addr)) {
		pool->dma_addr = 0;
		ret = -ENOMEM;
3476
		goto free_page_list;
3477 3478
	}

3479 3480
	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
3481
	ret = 0;
3482
 free_page_list:
3483 3484 3485 3486
	kfree(page_list);
	return ret;
}

3487 3488 3489 3490
static int __init d40_of_probe(struct platform_device *pdev,
			       struct device_node *np)
{
	struct stedma40_platform_data *pdata;
3491
	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3492
	const __be32 *list;
3493

3494
	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3495 3496 3497
	if (!pdata)
		return -ENOMEM;

3498 3499 3500 3501 3502
	/* If absent this value will be obtained from h/w. */
	of_property_read_u32(np, "dma-channels", &num_phy);
	if (num_phy > 0)
		pdata->num_of_phy_chans = num_phy;

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	list = of_get_property(np, "memcpy-channels", &num_memcpy);
	num_memcpy /= sizeof(*list);

	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
		d40_err(&pdev->dev,
			"Invalid number of memcpy channels specified (%d)\n",
			num_memcpy);
		return -EINVAL;
	}
	pdata->num_of_memcpy_chans = num_memcpy;

	of_property_read_u32_array(np, "memcpy-channels",
				   dma40_memcpy_channels,
				   num_memcpy);

3518 3519 3520
	list = of_get_property(np, "disabled-channels", &num_disabled);
	num_disabled /= sizeof(*list);

3521
	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
		d40_err(&pdev->dev,
			"Invalid number of disabled channels specified (%d)\n",
			num_disabled);
		return -EINVAL;
	}

	of_property_read_u32_array(np, "disabled-channels",
				   pdata->disabled_channels,
				   num_disabled);
	pdata->disabled_channels[num_disabled] = -1;

3533 3534 3535 3536 3537
	pdev->dev.platform_data = pdata;

	return 0;
}

3538 3539
static int __init d40_probe(struct platform_device *pdev)
{
J
Jingoo Han 已提交
3540
	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3541
	struct device_node *np = pdev->dev.of_node;
3542
	int ret = -ENOENT;
3543
	struct d40_base *base;
3544
	struct resource *res;
3545 3546 3547
	int num_reserved_chans;
	u32 val;

3548 3549
	if (!plat_data) {
		if (np) {
3550
			if (d40_of_probe(pdev, np)) {
3551
				ret = -ENOMEM;
3552
				goto report_failure;
3553 3554 3555
			}
		} else {
			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3556
			goto report_failure;
3557 3558
		}
	}
3559

3560
	base = d40_hw_detect_init(pdev);
3561
	if (!base)
3562
		goto report_failure;
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
3575
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3576
		goto destroy_cache;
3577 3578 3579 3580 3581 3582 3583
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
3584
		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3585
		goto destroy_cache;
3586 3587 3588 3589 3590 3591
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
3592 3593
			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
			 __func__, val, &res->start);
3594 3595 3596 3597 3598 3599
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
3600
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3601
		goto destroy_cache;
3602
	}
3603 3604 3605 3606 3607 3608 3609 3610
	/* If lcla has to be located in ESRAM we don't need to allocate */
	if (base->plat_data->use_esram_lcla) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
							"lcla_esram");
		if (!res) {
			ret = -ENOENT;
			d40_err(&pdev->dev,
				"No \"lcla_esram\" memory resource\n");
3611
			goto destroy_cache;
3612 3613 3614 3615 3616 3617
		}
		base->lcla_pool.base = ioremap(res->start,
						resource_size(res));
		if (!base->lcla_pool.base) {
			ret = -ENOMEM;
			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3618
			goto destroy_cache;
3619 3620
		}
		writel(res->start, base->virtbase + D40_DREG_LCLA);
3621

3622 3623 3624 3625
	} else {
		ret = d40_lcla_allocate(base);
		if (ret) {
			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3626
			goto destroy_cache;
3627
		}
3628 3629 3630 3631 3632 3633 3634 3635
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
3636
		d40_err(&pdev->dev, "No IRQ defined\n");
3637
		goto destroy_cache;
3638 3639
	}

3640 3641 3642 3643 3644
	if (base->plat_data->use_esram_lcla) {

		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
		if (IS_ERR(base->lcpa_regulator)) {
			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3645
			ret = PTR_ERR(base->lcpa_regulator);
3646
			base->lcpa_regulator = NULL;
3647
			goto destroy_cache;
3648 3649 3650 3651 3652 3653 3654 3655
		}

		ret = regulator_enable(base->lcpa_regulator);
		if (ret) {
			d40_err(&pdev->dev,
				"Failed to enable lcpa_regulator\n");
			regulator_put(base->lcpa_regulator);
			base->lcpa_regulator = NULL;
3656
			goto destroy_cache;
3657 3658 3659
		}
	}

3660 3661 3662 3663 3664 3665 3666 3667 3668
	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);

	pm_runtime_irq_safe(base->dev);
	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
	pm_runtime_use_autosuspend(base->dev);
	pm_runtime_mark_last_busy(base->dev);
	pm_runtime_set_active(base->dev);
	pm_runtime_enable(base->dev);

3669 3670
	ret = d40_dmaengine_init(base, num_reserved_chans);
	if (ret)
3671
		goto destroy_cache;
3672

3673
	base->dev->dma_parms = &base->dma_parms;
3674 3675
	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
	if (ret) {
3676
		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3677
		goto destroy_cache;
3678 3679
	}

3680 3681
	d40_hw_init(base);

3682
	if (np) {
3683 3684
		ret = of_dma_controller_register(np, d40_xlate, NULL);
		if (ret)
3685 3686 3687 3688
			dev_err(&pdev->dev,
				"could not register of_dma_controller\n");
	}

3689 3690
	dev_info(base->dev, "initialized\n");
	return 0;
3691
 destroy_cache:
3692 3693 3694
	kmem_cache_destroy(base->desc_slab);
	if (base->virtbase)
		iounmap(base->virtbase);
3695

3696 3697 3698 3699
	if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
		iounmap(base->lcla_pool.base);
		base->lcla_pool.base = NULL;
	}
3700

3701 3702 3703 3704
	if (base->lcla_pool.dma_addr)
		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
				 SZ_1K * base->num_phy_chans,
				 DMA_TO_DEVICE);
3705

3706 3707 3708
	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
		free_pages((unsigned long)base->lcla_pool.base,
			   base->lcla_pool.pages);
3709

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
	kfree(base->lcla_pool.base_unaligned);

	if (base->phy_lcpa)
		release_mem_region(base->phy_lcpa,
				   base->lcpa_size);
	if (base->phy_start)
		release_mem_region(base->phy_start,
				   base->phy_size);
	if (base->clk) {
		clk_disable_unprepare(base->clk);
		clk_put(base->clk);
	}

	if (base->lcpa_regulator) {
		regulator_disable(base->lcpa_regulator);
		regulator_put(base->lcpa_regulator);
3726 3727
	}

3728 3729 3730 3731 3732
	kfree(base->lcla_pool.alloc_map);
	kfree(base->lookup_log_chans);
	kfree(base->lookup_phy_chans);
	kfree(base->phy_res);
	kfree(base);
3733
 report_failure:
3734
	d40_err(&pdev->dev, "probe failed\n");
3735 3736 3737
	return ret;
}

3738 3739 3740 3741 3742
static const struct of_device_id d40_match[] = {
        { .compatible = "stericsson,dma40", },
        {}
};

3743 3744 3745
static struct platform_driver d40_driver = {
	.driver = {
		.name  = D40_NAME,
3746
		.pm = &dma40_pm_ops,
3747
		.of_match_table = d40_match,
3748 3749 3750
	},
};

R
Rabin Vincent 已提交
3751
static int __init stedma40_init(void)
3752 3753 3754
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
L
Linus Walleij 已提交
3755
subsys_initcall(stedma40_init);