sev.c 42.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * AMD SVM-SEV support
 *
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 */

#include <linux/kvm_types.h>
#include <linux/kvm_host.h>
#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/psp-sev.h>
15
#include <linux/pagemap.h>
16
#include <linux/swap.h>
17
#include <linux/processor.h>
18
#include <linux/trace_events.h>
19 20 21

#include "x86.h"
#include "svm.h"
22
#include "cpuid.h"
23
#include "trace.h"
24

25
static u8 sev_enc_bit;
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static int sev_flush_asids(void);
static DECLARE_RWSEM(sev_deactivate_lock);
static DEFINE_MUTEX(sev_bitmap_lock);
unsigned int max_sev_asid;
static unsigned int min_sev_asid;
static unsigned long *sev_asid_bitmap;
static unsigned long *sev_reclaim_asid_bitmap;

struct enc_region {
	struct list_head list;
	unsigned long npages;
	struct page **pages;
	unsigned long uaddr;
	unsigned long size;
};

static int sev_flush_asids(void)
{
	int ret, error = 0;

	/*
	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
	 * so it must be guarded.
	 */
	down_write(&sev_deactivate_lock);

	wbinvd_on_all_cpus();
	ret = sev_guest_df_flush(&error);

	up_write(&sev_deactivate_lock);

	if (ret)
		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);

	return ret;
}

/* Must be called with the sev_bitmap_lock held */
static bool __sev_recycle_asids(void)
{
	int pos;

	/* Check if there are any ASIDs to reclaim before performing a flush */
	pos = find_next_bit(sev_reclaim_asid_bitmap,
			    max_sev_asid, min_sev_asid - 1);
	if (pos >= max_sev_asid)
		return false;

	if (sev_flush_asids())
		return false;

	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
		   max_sev_asid);
	bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);

	return true;
}

static int sev_asid_new(void)
{
	bool retry = true;
	int pos;

	mutex_lock(&sev_bitmap_lock);

	/*
	 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
	 */
again:
	pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
	if (pos >= max_sev_asid) {
		if (retry && __sev_recycle_asids()) {
			retry = false;
			goto again;
		}
		mutex_unlock(&sev_bitmap_lock);
		return -EBUSY;
	}

	__set_bit(pos, sev_asid_bitmap);

	mutex_unlock(&sev_bitmap_lock);

	return pos + 1;
}

static int sev_get_asid(struct kvm *kvm)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;

	return sev->asid;
}

static void sev_asid_free(int asid)
{
	struct svm_cpu_data *sd;
	int cpu, pos;

	mutex_lock(&sev_bitmap_lock);

	pos = asid - 1;
	__set_bit(pos, sev_reclaim_asid_bitmap);

	for_each_possible_cpu(cpu) {
		sd = per_cpu(svm_data, cpu);
		sd->sev_vmcbs[pos] = NULL;
	}

	mutex_unlock(&sev_bitmap_lock);
}

static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
{
	struct sev_data_decommission *decommission;
	struct sev_data_deactivate *data;

	if (!handle)
		return;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return;

	/* deactivate handle */
	data->handle = handle;

	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
	down_read(&sev_deactivate_lock);
	sev_guest_deactivate(data, NULL);
	up_read(&sev_deactivate_lock);

	kfree(data);

	decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
	if (!decommission)
		return;

	/* decommission handle */
	decommission->handle = handle;
	sev_guest_decommission(decommission, NULL);

	kfree(decommission);
}

static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	int asid, ret;

	ret = -EBUSY;
	if (unlikely(sev->active))
		return ret;

	asid = sev_asid_new();
	if (asid < 0)
		return ret;

	ret = sev_platform_init(&argp->error);
	if (ret)
		goto e_free;

	sev->active = true;
	sev->asid = asid;
	INIT_LIST_HEAD(&sev->regions_list);

	return 0;

e_free:
	sev_asid_free(asid);
	return ret;
}

static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
{
	struct sev_data_activate *data;
	int asid = sev_get_asid(kvm);
	int ret;

	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
	if (!data)
		return -ENOMEM;

	/* activate ASID on the given handle */
	data->handle = handle;
	data->asid   = asid;
	ret = sev_guest_activate(data, error);
	kfree(data);

	return ret;
}

static int __sev_issue_cmd(int fd, int id, void *data, int *error)
{
	struct fd f;
	int ret;

	f = fdget(fd);
	if (!f.file)
		return -EBADF;

	ret = sev_issue_cmd_external_user(f.file, id, data, error);

	fdput(f);
	return ret;
}

static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;

	return __sev_issue_cmd(sev->fd, id, data, error);
}

static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_launch_start *start;
	struct kvm_sev_launch_start params;
	void *dh_blob, *session_blob;
	int *error = &argp->error;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
		return -EFAULT;

	start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
	if (!start)
		return -ENOMEM;

	dh_blob = NULL;
	if (params.dh_uaddr) {
		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
		if (IS_ERR(dh_blob)) {
			ret = PTR_ERR(dh_blob);
			goto e_free;
		}

		start->dh_cert_address = __sme_set(__pa(dh_blob));
		start->dh_cert_len = params.dh_len;
	}

	session_blob = NULL;
	if (params.session_uaddr) {
		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
		if (IS_ERR(session_blob)) {
			ret = PTR_ERR(session_blob);
			goto e_free_dh;
		}

		start->session_address = __sme_set(__pa(session_blob));
		start->session_len = params.session_len;
	}

	start->handle = params.handle;
	start->policy = params.policy;

	/* create memory encryption context */
	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
	if (ret)
		goto e_free_session;

	/* Bind ASID to this guest */
	ret = sev_bind_asid(kvm, start->handle, error);
	if (ret)
		goto e_free_session;

	/* return handle to userspace */
	params.handle = start->handle;
	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
		sev_unbind_asid(kvm, start->handle);
		ret = -EFAULT;
		goto e_free_session;
	}

	sev->handle = start->handle;
	sev->fd = argp->sev_fd;

e_free_session:
	kfree(session_blob);
e_free_dh:
	kfree(dh_blob);
e_free:
	kfree(start);
	return ret;
}

static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
				    unsigned long ulen, unsigned long *n,
				    int write)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
320 321
	unsigned long npages, size;
	int npinned;
322 323 324
	unsigned long locked, lock_limit;
	struct page **pages;
	unsigned long first, last;
325
	int ret;
326 327

	if (ulen == 0 || uaddr + ulen < uaddr)
328
		return ERR_PTR(-EINVAL);
329 330 331 332 333 334 335 336 337 338

	/* Calculate number of pages. */
	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
	npages = (last - first + 1);

	locked = sev->pages_locked + npages;
	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
339
		return ERR_PTR(-ENOMEM);
340 341
	}

342
	if (WARN_ON_ONCE(npages > INT_MAX))
343
		return ERR_PTR(-EINVAL);
344

345 346 347
	/* Avoid using vmalloc for smaller buffers. */
	size = npages * sizeof(struct page *);
	if (size > PAGE_SIZE)
348
		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
349 350 351 352
	else
		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);

	if (!pages)
353
		return ERR_PTR(-ENOMEM);
354 355

	/* Pin the user virtual address. */
356
	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
357 358
	if (npinned != npages) {
		pr_err("SEV: Failure locking %lu pages.\n", npages);
359
		ret = -ENOMEM;
360 361 362 363 364 365 366 367 368
		goto err;
	}

	*n = npages;
	sev->pages_locked = locked;

	return pages;

err:
369
	if (npinned > 0)
370
		unpin_user_pages(pages, npinned);
371 372

	kvfree(pages);
373
	return ERR_PTR(ret);
374 375 376 377 378 379 380
}

static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
			     unsigned long npages)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;

381
	unpin_user_pages(pages, npages);
382 383 384 385 386 387 388 389 390
	kvfree(pages);
	sev->pages_locked -= npages;
}

static void sev_clflush_pages(struct page *pages[], unsigned long npages)
{
	uint8_t *page_virtual;
	unsigned long i;

391 392
	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
	    pages == NULL)
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
		return;

	for (i = 0; i < npages; i++) {
		page_virtual = kmap_atomic(pages[i]);
		clflush_cache_range(page_virtual, PAGE_SIZE);
		kunmap_atomic(page_virtual);
	}
}

static unsigned long get_num_contig_pages(unsigned long idx,
				struct page **inpages, unsigned long npages)
{
	unsigned long paddr, next_paddr;
	unsigned long i = idx + 1, pages = 1;

	/* find the number of contiguous pages starting from idx */
	paddr = __sme_page_pa(inpages[idx]);
	while (i < npages) {
		next_paddr = __sme_page_pa(inpages[i++]);
		if ((paddr + PAGE_SIZE) == next_paddr) {
			pages++;
			paddr = next_paddr;
			continue;
		}
		break;
	}

	return pages;
}

static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct kvm_sev_launch_update_data params;
	struct sev_data_launch_update_data *data;
	struct page **inpages;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
		return -EFAULT;

	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
	if (!data)
		return -ENOMEM;

	vaddr = params.uaddr;
	size = params.len;
	vaddr_end = vaddr + size;

	/* Lock the user memory. */
	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
448 449
	if (IS_ERR(inpages)) {
		ret = PTR_ERR(inpages);
450 451 452 453
		goto e_free;
	}

	/*
454 455
	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
	 * place; the cache may contain the data that was written unencrypted.
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	 */
	sev_clflush_pages(inpages, npages);

	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
		int offset, len;

		/*
		 * If the user buffer is not page-aligned, calculate the offset
		 * within the page.
		 */
		offset = vaddr & (PAGE_SIZE - 1);

		/* Calculate the number of pages that can be encrypted in one go. */
		pages = get_num_contig_pages(i, inpages, npages);

		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);

		data->handle = sev->handle;
		data->len = len;
		data->address = __sme_page_pa(inpages[i]) + offset;
		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
		if (ret)
			goto e_unpin;

		size -= len;
		next_vaddr = vaddr + len;
	}

e_unpin:
	/* content of memory is updated, mark pages dirty */
	for (i = 0; i < npages; i++) {
		set_page_dirty_lock(inpages[i]);
		mark_page_accessed(inpages[i]);
	}
	/* unlock the user pages */
	sev_unpin_memory(kvm, inpages, npages);
e_free:
	kfree(data);
	return ret;
}

static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	void __user *measure = (void __user *)(uintptr_t)argp->data;
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_launch_measure *data;
	struct kvm_sev_launch_measure params;
	void __user *p = NULL;
	void *blob = NULL;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&params, measure, sizeof(params)))
		return -EFAULT;

	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
	if (!data)
		return -ENOMEM;

	/* User wants to query the blob length */
	if (!params.len)
		goto cmd;

	p = (void __user *)(uintptr_t)params.uaddr;
	if (p) {
		if (params.len > SEV_FW_BLOB_MAX_SIZE) {
			ret = -EINVAL;
			goto e_free;
		}

		ret = -ENOMEM;
		blob = kmalloc(params.len, GFP_KERNEL);
		if (!blob)
			goto e_free;

		data->address = __psp_pa(blob);
		data->len = params.len;
	}

cmd:
	data->handle = sev->handle;
	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);

	/*
	 * If we query the session length, FW responded with expected data.
	 */
	if (!params.len)
		goto done;

	if (ret)
		goto e_free_blob;

	if (blob) {
		if (copy_to_user(p, blob, params.len))
			ret = -EFAULT;
	}

done:
	params.len = data->len;
	if (copy_to_user(measure, &params, sizeof(params)))
		ret = -EFAULT;
e_free_blob:
	kfree(blob);
e_free:
	kfree(data);
	return ret;
}

static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_launch_finish *data;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
	if (!data)
		return -ENOMEM;

	data->handle = sev->handle;
	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);

	kfree(data);
	return ret;
}

static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct kvm_sev_guest_status params;
	struct sev_data_guest_status *data;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
	if (!data)
		return -ENOMEM;

	data->handle = sev->handle;
	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
	if (ret)
		goto e_free;

	params.policy = data->policy;
	params.state = data->state;
	params.handle = data->handle;

	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
		ret = -EFAULT;
e_free:
	kfree(data);
	return ret;
}

static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
			       unsigned long dst, int size,
			       int *error, bool enc)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_dbg *data;
	int ret;

	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
	if (!data)
		return -ENOMEM;

	data->handle = sev->handle;
	data->dst_addr = dst;
	data->src_addr = src;
	data->len = size;

	ret = sev_issue_cmd(kvm,
			    enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
			    data, error);
	kfree(data);
	return ret;
}

static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
			     unsigned long dst_paddr, int sz, int *err)
{
	int offset;

	/*
	 * Its safe to read more than we are asked, caller should ensure that
	 * destination has enough space.
	 */
	src_paddr = round_down(src_paddr, 16);
	offset = src_paddr & 15;
	sz = round_up(sz + offset, 16);

	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
}

static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
				  unsigned long __user dst_uaddr,
				  unsigned long dst_paddr,
				  int size, int *err)
{
	struct page *tpage = NULL;
	int ret, offset;

	/* if inputs are not 16-byte then use intermediate buffer */
	if (!IS_ALIGNED(dst_paddr, 16) ||
	    !IS_ALIGNED(paddr,     16) ||
	    !IS_ALIGNED(size,      16)) {
		tpage = (void *)alloc_page(GFP_KERNEL);
		if (!tpage)
			return -ENOMEM;

		dst_paddr = __sme_page_pa(tpage);
	}

	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
	if (ret)
		goto e_free;

	if (tpage) {
		offset = paddr & 15;
		if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
				 page_address(tpage) + offset, size))
			ret = -EFAULT;
	}

e_free:
	if (tpage)
		__free_page(tpage);

	return ret;
}

static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
				  unsigned long __user vaddr,
				  unsigned long dst_paddr,
				  unsigned long __user dst_vaddr,
				  int size, int *error)
{
	struct page *src_tpage = NULL;
	struct page *dst_tpage = NULL;
	int ret, len = size;

	/* If source buffer is not aligned then use an intermediate buffer */
	if (!IS_ALIGNED(vaddr, 16)) {
		src_tpage = alloc_page(GFP_KERNEL);
		if (!src_tpage)
			return -ENOMEM;

		if (copy_from_user(page_address(src_tpage),
				(void __user *)(uintptr_t)vaddr, size)) {
			__free_page(src_tpage);
			return -EFAULT;
		}

		paddr = __sme_page_pa(src_tpage);
	}

	/*
	 *  If destination buffer or length is not aligned then do read-modify-write:
	 *   - decrypt destination in an intermediate buffer
	 *   - copy the source buffer in an intermediate buffer
	 *   - use the intermediate buffer as source buffer
	 */
	if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
		int dst_offset;

		dst_tpage = alloc_page(GFP_KERNEL);
		if (!dst_tpage) {
			ret = -ENOMEM;
			goto e_free;
		}

		ret = __sev_dbg_decrypt(kvm, dst_paddr,
					__sme_page_pa(dst_tpage), size, error);
		if (ret)
			goto e_free;

		/*
		 *  If source is kernel buffer then use memcpy() otherwise
		 *  copy_from_user().
		 */
		dst_offset = dst_paddr & 15;

		if (src_tpage)
			memcpy(page_address(dst_tpage) + dst_offset,
			       page_address(src_tpage), size);
		else {
			if (copy_from_user(page_address(dst_tpage) + dst_offset,
					   (void __user *)(uintptr_t)vaddr, size)) {
				ret = -EFAULT;
				goto e_free;
			}
		}

		paddr = __sme_page_pa(dst_tpage);
		dst_paddr = round_down(dst_paddr, 16);
		len = round_up(size, 16);
	}

	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);

e_free:
	if (src_tpage)
		__free_page(src_tpage);
	if (dst_tpage)
		__free_page(dst_tpage);
	return ret;
}

static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
{
	unsigned long vaddr, vaddr_end, next_vaddr;
	unsigned long dst_vaddr;
	struct page **src_p, **dst_p;
	struct kvm_sev_dbg debug;
	unsigned long n;
	unsigned int size;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
		return -EFAULT;

	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
		return -EINVAL;
	if (!debug.dst_uaddr)
		return -EINVAL;

	vaddr = debug.src_uaddr;
	size = debug.len;
	vaddr_end = vaddr + size;
	dst_vaddr = debug.dst_uaddr;

	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
		int len, s_off, d_off;

		/* lock userspace source and destination page */
		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
801 802
		if (IS_ERR(src_p))
			return PTR_ERR(src_p);
803 804

		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
805
		if (IS_ERR(dst_p)) {
806
			sev_unpin_memory(kvm, src_p, n);
807
			return PTR_ERR(dst_p);
808 809 810
		}

		/*
811 812 813
		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
		 * the pages; flush the destination too so that future accesses do not
		 * see stale data.
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
		 */
		sev_clflush_pages(src_p, 1);
		sev_clflush_pages(dst_p, 1);

		/*
		 * Since user buffer may not be page aligned, calculate the
		 * offset within the page.
		 */
		s_off = vaddr & ~PAGE_MASK;
		d_off = dst_vaddr & ~PAGE_MASK;
		len = min_t(size_t, (PAGE_SIZE - s_off), size);

		if (dec)
			ret = __sev_dbg_decrypt_user(kvm,
						     __sme_page_pa(src_p[0]) + s_off,
						     dst_vaddr,
						     __sme_page_pa(dst_p[0]) + d_off,
						     len, &argp->error);
		else
			ret = __sev_dbg_encrypt_user(kvm,
						     __sme_page_pa(src_p[0]) + s_off,
						     vaddr,
						     __sme_page_pa(dst_p[0]) + d_off,
						     dst_vaddr,
						     len, &argp->error);

		sev_unpin_memory(kvm, src_p, n);
		sev_unpin_memory(kvm, dst_p, n);

		if (ret)
			goto err;

		next_vaddr = vaddr + len;
		dst_vaddr = dst_vaddr + len;
		size -= len;
	}
err:
	return ret;
}

static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_launch_secret *data;
	struct kvm_sev_launch_secret params;
	struct page **pages;
	void *blob, *hdr;
861
	unsigned long n, i;
862 863 864 865 866 867 868 869 870
	int ret, offset;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
		return -EFAULT;

	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
871 872
	if (IS_ERR(pages))
		return PTR_ERR(pages);
873

874
	/*
875 876
	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
	 * place; the cache may contain the data that was written unencrypted.
877 878 879
	 */
	sev_clflush_pages(pages, n);

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	/*
	 * The secret must be copied into contiguous memory region, lets verify
	 * that userspace memory pages are contiguous before we issue command.
	 */
	if (get_num_contig_pages(0, pages, n) != n) {
		ret = -EINVAL;
		goto e_unpin_memory;
	}

	ret = -ENOMEM;
	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
	if (!data)
		goto e_unpin_memory;

	offset = params.guest_uaddr & (PAGE_SIZE - 1);
	data->guest_address = __sme_page_pa(pages[0]) + offset;
	data->guest_len = params.guest_len;

	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
	if (IS_ERR(blob)) {
		ret = PTR_ERR(blob);
		goto e_free;
	}

	data->trans_address = __psp_pa(blob);
	data->trans_len = params.trans_len;

	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
	if (IS_ERR(hdr)) {
		ret = PTR_ERR(hdr);
		goto e_free_blob;
	}
	data->hdr_address = __psp_pa(hdr);
	data->hdr_len = params.hdr_len;

	data->handle = sev->handle;
	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);

	kfree(hdr);

e_free_blob:
	kfree(blob);
e_free:
	kfree(data);
e_unpin_memory:
925 926 927 928 929
	/* content of memory is updated, mark pages dirty */
	for (i = 0; i < n; i++) {
		set_page_dirty_lock(pages[i]);
		mark_page_accessed(pages[i]);
	}
930 931 932 933 934 935 936 937 938
	sev_unpin_memory(kvm, pages, n);
	return ret;
}

int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
{
	struct kvm_sev_cmd sev_cmd;
	int r;

939
	if (!svm_sev_enabled() || !sev)
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
		return -ENOTTY;

	if (!argp)
		return 0;

	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
		return -EFAULT;

	mutex_lock(&kvm->lock);

	switch (sev_cmd.id) {
	case KVM_SEV_INIT:
		r = sev_guest_init(kvm, &sev_cmd);
		break;
	case KVM_SEV_LAUNCH_START:
		r = sev_launch_start(kvm, &sev_cmd);
		break;
	case KVM_SEV_LAUNCH_UPDATE_DATA:
		r = sev_launch_update_data(kvm, &sev_cmd);
		break;
	case KVM_SEV_LAUNCH_MEASURE:
		r = sev_launch_measure(kvm, &sev_cmd);
		break;
	case KVM_SEV_LAUNCH_FINISH:
		r = sev_launch_finish(kvm, &sev_cmd);
		break;
	case KVM_SEV_GUEST_STATUS:
		r = sev_guest_status(kvm, &sev_cmd);
		break;
	case KVM_SEV_DBG_DECRYPT:
		r = sev_dbg_crypt(kvm, &sev_cmd, true);
		break;
	case KVM_SEV_DBG_ENCRYPT:
		r = sev_dbg_crypt(kvm, &sev_cmd, false);
		break;
	case KVM_SEV_LAUNCH_SECRET:
		r = sev_launch_secret(kvm, &sev_cmd);
		break;
	default:
		r = -EINVAL;
		goto out;
	}

	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
		r = -EFAULT;

out:
	mutex_unlock(&kvm->lock);
	return r;
}

int svm_register_enc_region(struct kvm *kvm,
			    struct kvm_enc_region *range)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct enc_region *region;
	int ret = 0;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
		return -EINVAL;

	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
	if (!region)
		return -ENOMEM;

	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1009 1010
	if (IS_ERR(region->pages)) {
		ret = PTR_ERR(region->pages);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		goto e_free;
	}

	/*
	 * The guest may change the memory encryption attribute from C=0 -> C=1
	 * or vice versa for this memory range. Lets make sure caches are
	 * flushed to ensure that guest data gets written into memory with
	 * correct C-bit.
	 */
	sev_clflush_pages(region->pages, region->npages);

	region->uaddr = range->addr;
	region->size = range->size;

	mutex_lock(&kvm->lock);
	list_add_tail(&region->list, &sev->regions_list);
	mutex_unlock(&kvm->lock);

	return ret;

e_free:
	kfree(region);
	return ret;
}

static struct enc_region *
find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct list_head *head = &sev->regions_list;
	struct enc_region *i;

	list_for_each_entry(i, head, list) {
		if (i->uaddr == range->addr &&
		    i->size == range->size)
			return i;
	}

	return NULL;
}

static void __unregister_enc_region_locked(struct kvm *kvm,
					   struct enc_region *region)
{
	sev_unpin_memory(kvm, region->pages, region->npages);
	list_del(&region->list);
	kfree(region);
}

int svm_unregister_enc_region(struct kvm *kvm,
			      struct kvm_enc_region *range)
{
	struct enc_region *region;
	int ret;

	mutex_lock(&kvm->lock);

	if (!sev_guest(kvm)) {
		ret = -ENOTTY;
		goto failed;
	}

	region = find_enc_region(kvm, range);
	if (!region) {
		ret = -EINVAL;
		goto failed;
	}

	/*
	 * Ensure that all guest tagged cache entries are flushed before
	 * releasing the pages back to the system for use. CLFLUSH will
	 * not do this, so issue a WBINVD.
	 */
	wbinvd_on_all_cpus();

	__unregister_enc_region_locked(kvm, region);

	mutex_unlock(&kvm->lock);
	return 0;

failed:
	mutex_unlock(&kvm->lock);
	return ret;
}

void sev_vm_destroy(struct kvm *kvm)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct list_head *head = &sev->regions_list;
	struct list_head *pos, *q;

	if (!sev_guest(kvm))
		return;

	mutex_lock(&kvm->lock);

	/*
	 * Ensure that all guest tagged cache entries are flushed before
	 * releasing the pages back to the system for use. CLFLUSH will
	 * not do this, so issue a WBINVD.
	 */
	wbinvd_on_all_cpus();

	/*
	 * if userspace was terminated before unregistering the memory regions
	 * then lets unpin all the registered memory.
	 */
	if (!list_empty(head)) {
		list_for_each_safe(pos, q, head) {
			__unregister_enc_region_locked(kvm,
				list_entry(pos, struct enc_region, list));
1122
			cond_resched();
1123 1124 1125 1126 1127 1128 1129 1130 1131
		}
	}

	mutex_unlock(&kvm->lock);

	sev_unbind_asid(kvm, sev->handle);
	sev_asid_free(sev->asid);
}

1132
void __init sev_hardware_setup(void)
1133
{
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	unsigned int eax, ebx, ecx, edx;
	bool sev_es_supported = false;
	bool sev_supported = false;

	/* Does the CPU support SEV? */
	if (!boot_cpu_has(X86_FEATURE_SEV))
		goto out;

	/* Retrieve SEV CPUID information */
	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);

1145 1146 1147
	/* Set encryption bit location for SEV-ES guests */
	sev_enc_bit = ebx & 0x3f;

1148
	/* Maximum number of encrypted guests supported simultaneously */
1149
	max_sev_asid = ecx;
1150

1151
	if (!svm_sev_enabled())
1152
		goto out;
1153 1154

	/* Minimum ASID value that should be used for SEV guest */
1155
	min_sev_asid = edx;
1156 1157 1158 1159

	/* Initialize SEV ASID bitmaps */
	sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
	if (!sev_asid_bitmap)
1160
		goto out;
1161 1162 1163

	sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
	if (!sev_reclaim_asid_bitmap)
1164
		goto out;
1165

1166 1167
	pr_info("SEV supported: %u ASIDs\n", max_sev_asid - min_sev_asid + 1);
	sev_supported = true;
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	/* SEV-ES support requested? */
	if (!sev_es)
		goto out;

	/* Does the CPU support SEV-ES? */
	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
		goto out;

	/* Has the system been allocated ASIDs for SEV-ES? */
	if (min_sev_asid == 1)
		goto out;

	pr_info("SEV-ES supported: %u ASIDs\n", min_sev_asid - 1);
	sev_es_supported = true;

out:
	sev = sev_supported;
	sev_es = sev_es_supported;
1187 1188 1189 1190
}

void sev_hardware_teardown(void)
{
1191 1192 1193
	if (!svm_sev_enabled())
		return;

1194 1195 1196 1197 1198 1199
	bitmap_free(sev_asid_bitmap);
	bitmap_free(sev_reclaim_asid_bitmap);

	sev_flush_asids();
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
/*
 * Pages used by hardware to hold guest encrypted state must be flushed before
 * returning them to the system.
 */
static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
				   unsigned long len)
{
	/*
	 * If hardware enforced cache coherency for encrypted mappings of the
	 * same physical page is supported, nothing to do.
	 */
	if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
		return;

	/*
	 * If the VM Page Flush MSR is supported, use it to flush the page
	 * (using the page virtual address and the guest ASID).
	 */
	if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
		struct kvm_sev_info *sev;
		unsigned long va_start;
		u64 start, stop;

		/* Align start and stop to page boundaries. */
		va_start = (unsigned long)va;
		start = (u64)va_start & PAGE_MASK;
		stop = PAGE_ALIGN((u64)va_start + len);

		if (start < stop) {
			sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;

			while (start < stop) {
				wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
				       start | sev->asid);

				start += PAGE_SIZE;
			}

			return;
		}

		WARN(1, "Address overflow, using WBINVD\n");
	}

	/*
	 * Hardware should always have one of the above features,
	 * but if not, use WBINVD and issue a warning.
	 */
	WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
	wbinvd_on_all_cpus();
}

void sev_free_vcpu(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm;

	if (!sev_es_guest(vcpu->kvm))
		return;

	svm = to_svm(vcpu);

	if (vcpu->arch.guest_state_protected)
		sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
	__free_page(virt_to_page(svm->vmsa));
1264 1265 1266

	if (svm->ghcb_sa_free)
		kfree(svm->ghcb_sa);
1267 1268
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static void dump_ghcb(struct vcpu_svm *svm)
{
	struct ghcb *ghcb = svm->ghcb;
	unsigned int nbits;

	/* Re-use the dump_invalid_vmcb module parameter */
	if (!dump_invalid_vmcb) {
		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
		return;
	}

	nbits = sizeof(ghcb->save.valid_bitmap) * 8;

	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
}

static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
{
	struct kvm_vcpu *vcpu = &svm->vcpu;
	struct ghcb *ghcb = svm->ghcb;

	/*
	 * The GHCB protocol so far allows for the following data
	 * to be returned:
	 *   GPRs RAX, RBX, RCX, RDX
	 *
	 * Copy their values to the GHCB if they are dirty.
	 */
	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RAX))
		ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RBX))
		ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RCX))
		ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RDX))
		ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
}

static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
{
	struct vmcb_control_area *control = &svm->vmcb->control;
	struct kvm_vcpu *vcpu = &svm->vcpu;
	struct ghcb *ghcb = svm->ghcb;
	u64 exit_code;

	/*
	 * The GHCB protocol so far allows for the following data
	 * to be supplied:
	 *   GPRs RAX, RBX, RCX, RDX
	 *   XCR0
	 *   CPL
	 *
	 * VMMCALL allows the guest to provide extra registers. KVM also
	 * expects RSI for hypercalls, so include that, too.
	 *
	 * Copy their values to the appropriate location if supplied.
	 */
	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));

	vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
	vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
	vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
	vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
	vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);

	svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);

	if (ghcb_xcr0_is_valid(ghcb)) {
		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
		kvm_update_cpuid_runtime(vcpu);
	}

	/* Copy the GHCB exit information into the VMCB fields */
	exit_code = ghcb_get_sw_exit_code(ghcb);
	control->exit_code = lower_32_bits(exit_code);
	control->exit_code_hi = upper_32_bits(exit_code);
	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);

	/* Clear the valid entries fields */
	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
}

static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
{
	struct kvm_vcpu *vcpu;
	struct ghcb *ghcb;
	u64 exit_code = 0;

	ghcb = svm->ghcb;

	/* Only GHCB Usage code 0 is supported */
	if (ghcb->ghcb_usage)
		goto vmgexit_err;

	/*
	 * Retrieve the exit code now even though is may not be marked valid
	 * as it could help with debugging.
	 */
	exit_code = ghcb_get_sw_exit_code(ghcb);

	if (!ghcb_sw_exit_code_is_valid(ghcb) ||
	    !ghcb_sw_exit_info_1_is_valid(ghcb) ||
	    !ghcb_sw_exit_info_2_is_valid(ghcb))
		goto vmgexit_err;

	switch (ghcb_get_sw_exit_code(ghcb)) {
	case SVM_EXIT_READ_DR7:
		break;
	case SVM_EXIT_WRITE_DR7:
		if (!ghcb_rax_is_valid(ghcb))
			goto vmgexit_err;
		break;
	case SVM_EXIT_RDTSC:
		break;
	case SVM_EXIT_RDPMC:
		if (!ghcb_rcx_is_valid(ghcb))
			goto vmgexit_err;
		break;
	case SVM_EXIT_CPUID:
		if (!ghcb_rax_is_valid(ghcb) ||
		    !ghcb_rcx_is_valid(ghcb))
			goto vmgexit_err;
		if (ghcb_get_rax(ghcb) == 0xd)
			if (!ghcb_xcr0_is_valid(ghcb))
				goto vmgexit_err;
		break;
	case SVM_EXIT_INVD:
		break;
	case SVM_EXIT_IOIO:
1408 1409
		if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
			if (!ghcb_sw_scratch_is_valid(ghcb))
1410
				goto vmgexit_err;
1411 1412 1413 1414 1415
		} else {
			if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
				if (!ghcb_rax_is_valid(ghcb))
					goto vmgexit_err;
		}
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
		break;
	case SVM_EXIT_MSR:
		if (!ghcb_rcx_is_valid(ghcb))
			goto vmgexit_err;
		if (ghcb_get_sw_exit_info_1(ghcb)) {
			if (!ghcb_rax_is_valid(ghcb) ||
			    !ghcb_rdx_is_valid(ghcb))
				goto vmgexit_err;
		}
		break;
	case SVM_EXIT_VMMCALL:
		if (!ghcb_rax_is_valid(ghcb) ||
		    !ghcb_cpl_is_valid(ghcb))
			goto vmgexit_err;
		break;
	case SVM_EXIT_RDTSCP:
		break;
	case SVM_EXIT_WBINVD:
		break;
	case SVM_EXIT_MONITOR:
		if (!ghcb_rax_is_valid(ghcb) ||
		    !ghcb_rcx_is_valid(ghcb) ||
		    !ghcb_rdx_is_valid(ghcb))
			goto vmgexit_err;
		break;
	case SVM_EXIT_MWAIT:
		if (!ghcb_rax_is_valid(ghcb) ||
		    !ghcb_rcx_is_valid(ghcb))
			goto vmgexit_err;
		break;
1446 1447 1448 1449 1450
	case SVM_VMGEXIT_MMIO_READ:
	case SVM_VMGEXIT_MMIO_WRITE:
		if (!ghcb_sw_scratch_is_valid(ghcb))
			goto vmgexit_err;
		break;
1451
	case SVM_VMGEXIT_NMI_COMPLETE:
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
		break;
	default:
		goto vmgexit_err;
	}

	return 0;

vmgexit_err:
	vcpu = &svm->vcpu;

	if (ghcb->ghcb_usage) {
		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
			    ghcb->ghcb_usage);
	} else {
		vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
			    exit_code);
		dump_ghcb(svm);
	}

	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
	vcpu->run->internal.ndata = 2;
	vcpu->run->internal.data[0] = exit_code;
	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;

	return -EINVAL;
}

static void pre_sev_es_run(struct vcpu_svm *svm)
{
	if (!svm->ghcb)
		return;

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	if (svm->ghcb_sa_free) {
		/*
		 * The scratch area lives outside the GHCB, so there is a
		 * buffer that, depending on the operation performed, may
		 * need to be synced, then freed.
		 */
		if (svm->ghcb_sa_sync) {
			kvm_write_guest(svm->vcpu.kvm,
					ghcb_get_sw_scratch(svm->ghcb),
					svm->ghcb_sa, svm->ghcb_sa_len);
			svm->ghcb_sa_sync = false;
		}

		kfree(svm->ghcb_sa);
		svm->ghcb_sa = NULL;
		svm->ghcb_sa_free = false;
	}

1504 1505
	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);

1506 1507 1508 1509 1510 1511
	sev_es_sync_to_ghcb(svm);

	kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
	svm->ghcb = NULL;
}

1512 1513 1514 1515 1516
void pre_sev_run(struct vcpu_svm *svm, int cpu)
{
	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
	int asid = sev_get_asid(svm->vcpu.kvm);

1517 1518 1519
	/* Perform any SEV-ES pre-run actions */
	pre_sev_es_run(svm);

1520
	/* Assign the asid allocated with this SEV guest */
1521
	svm->asid = asid;
1522 1523 1524 1525 1526 1527 1528 1529

	/*
	 * Flush guest TLB:
	 *
	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
	 */
	if (sd->sev_vmcbs[asid] == svm->vmcb &&
1530
	    svm->vcpu.arch.last_vmentry_cpu == cpu)
1531 1532 1533 1534
		return;

	sd->sev_vmcbs[asid] = svm->vmcb;
	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
1535
	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1536
}
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
#define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
{
	struct vmcb_control_area *control = &svm->vmcb->control;
	struct ghcb *ghcb = svm->ghcb;
	u64 ghcb_scratch_beg, ghcb_scratch_end;
	u64 scratch_gpa_beg, scratch_gpa_end;
	void *scratch_va;

	scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
	if (!scratch_gpa_beg) {
		pr_err("vmgexit: scratch gpa not provided\n");
		return false;
	}

	scratch_gpa_end = scratch_gpa_beg + len;
	if (scratch_gpa_end < scratch_gpa_beg) {
		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
		       len, scratch_gpa_beg);
		return false;
	}

	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
		/* Scratch area begins within GHCB */
		ghcb_scratch_beg = control->ghcb_gpa +
				   offsetof(struct ghcb, shared_buffer);
		ghcb_scratch_end = control->ghcb_gpa +
				   offsetof(struct ghcb, reserved_1);

		/*
		 * If the scratch area begins within the GHCB, it must be
		 * completely contained in the GHCB shared buffer area.
		 */
		if (scratch_gpa_beg < ghcb_scratch_beg ||
		    scratch_gpa_end > ghcb_scratch_end) {
			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
			       scratch_gpa_beg, scratch_gpa_end);
			return false;
		}

		scratch_va = (void *)svm->ghcb;
		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
	} else {
		/*
		 * The guest memory must be read into a kernel buffer, so
		 * limit the size
		 */
		if (len > GHCB_SCRATCH_AREA_LIMIT) {
			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
			       len, GHCB_SCRATCH_AREA_LIMIT);
			return false;
		}
		scratch_va = kzalloc(len, GFP_KERNEL);
		if (!scratch_va)
			return false;

		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
			/* Unable to copy scratch area from guest */
			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");

			kfree(scratch_va);
			return false;
		}

		/*
		 * The scratch area is outside the GHCB. The operation will
		 * dictate whether the buffer needs to be synced before running
		 * the vCPU next time (i.e. a read was requested so the data
		 * must be written back to the guest memory).
		 */
		svm->ghcb_sa_sync = sync;
		svm->ghcb_sa_free = true;
	}

	svm->ghcb_sa = scratch_va;
	svm->ghcb_sa_len = len;

	return true;
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
			      unsigned int pos)
{
	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
}

static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
{
	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
}

1630 1631 1632 1633 1634
static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
{
	svm->vmcb->control.ghcb_gpa = value;
}

1635 1636
static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
{
1637
	struct vmcb_control_area *control = &svm->vmcb->control;
1638
	struct kvm_vcpu *vcpu = &svm->vcpu;
1639
	u64 ghcb_info;
1640
	int ret = 1;
1641 1642 1643

	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;

1644 1645 1646
	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
					     control->ghcb_gpa);

1647 1648 1649 1650 1651 1652
	switch (ghcb_info) {
	case GHCB_MSR_SEV_INFO_REQ:
		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
						    GHCB_VERSION_MIN,
						    sev_enc_bit));
		break;
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	case GHCB_MSR_CPUID_REQ: {
		u64 cpuid_fn, cpuid_reg, cpuid_value;

		cpuid_fn = get_ghcb_msr_bits(svm,
					     GHCB_MSR_CPUID_FUNC_MASK,
					     GHCB_MSR_CPUID_FUNC_POS);

		/* Initialize the registers needed by the CPUID intercept */
		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
		vcpu->arch.regs[VCPU_REGS_RCX] = 0;

		ret = svm_invoke_exit_handler(svm, SVM_EXIT_CPUID);
		if (!ret) {
			ret = -EINVAL;
			break;
		}

		cpuid_reg = get_ghcb_msr_bits(svm,
					      GHCB_MSR_CPUID_REG_MASK,
					      GHCB_MSR_CPUID_REG_POS);
		if (cpuid_reg == 0)
			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
		else if (cpuid_reg == 1)
			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
		else if (cpuid_reg == 2)
			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
		else
			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];

		set_ghcb_msr_bits(svm, cpuid_value,
				  GHCB_MSR_CPUID_VALUE_MASK,
				  GHCB_MSR_CPUID_VALUE_POS);

		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
				  GHCB_MSR_INFO_MASK,
				  GHCB_MSR_INFO_POS);
		break;
	}
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	case GHCB_MSR_TERM_REQ: {
		u64 reason_set, reason_code;

		reason_set = get_ghcb_msr_bits(svm,
					       GHCB_MSR_TERM_REASON_SET_MASK,
					       GHCB_MSR_TERM_REASON_SET_POS);
		reason_code = get_ghcb_msr_bits(svm,
						GHCB_MSR_TERM_REASON_MASK,
						GHCB_MSR_TERM_REASON_POS);
		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
			reason_set, reason_code);
		fallthrough;
	}
1704
	default:
1705
		ret = -EINVAL;
1706 1707
	}

1708 1709 1710
	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
					    control->ghcb_gpa, ret);

1711
	return ret;
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
}

int sev_handle_vmgexit(struct vcpu_svm *svm)
{
	struct vmcb_control_area *control = &svm->vmcb->control;
	u64 ghcb_gpa, exit_code;
	struct ghcb *ghcb;
	int ret;

	/* Validate the GHCB */
	ghcb_gpa = control->ghcb_gpa;
	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
		return sev_handle_vmgexit_msr_protocol(svm);

	if (!ghcb_gpa) {
		vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB gpa is not set\n");
		return -EINVAL;
	}

	if (kvm_vcpu_map(&svm->vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
		/* Unable to map GHCB from guest */
		vcpu_unimpl(&svm->vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
			    ghcb_gpa);
		return -EINVAL;
	}

	svm->ghcb = svm->ghcb_map.hva;
	ghcb = svm->ghcb_map.hva;

1741 1742
	trace_kvm_vmgexit_enter(svm->vcpu.vcpu_id, ghcb);

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	exit_code = ghcb_get_sw_exit_code(ghcb);

	ret = sev_es_validate_vmgexit(svm);
	if (ret)
		return ret;

	sev_es_sync_from_ghcb(svm);
	ghcb_set_sw_exit_info_1(ghcb, 0);
	ghcb_set_sw_exit_info_2(ghcb, 0);

	ret = -EINVAL;
	switch (exit_code) {
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	case SVM_VMGEXIT_MMIO_READ:
		if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
			break;

		ret = kvm_sev_es_mmio_read(&svm->vcpu,
					   control->exit_info_1,
					   control->exit_info_2,
					   svm->ghcb_sa);
		break;
	case SVM_VMGEXIT_MMIO_WRITE:
		if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
			break;

		ret = kvm_sev_es_mmio_write(&svm->vcpu,
					    control->exit_info_1,
					    control->exit_info_2,
					    svm->ghcb_sa);
		break;
1773 1774 1775
	case SVM_VMGEXIT_NMI_COMPLETE:
		ret = svm_invoke_exit_handler(svm, SVM_EXIT_IRET);
		break;
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
		vcpu_unimpl(&svm->vcpu,
			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
			    control->exit_info_1, control->exit_info_2);
		break;
	default:
		ret = svm_invoke_exit_handler(svm, exit_code);
	}

	return ret;
}
1787 1788 1789 1790 1791 1792 1793 1794 1795

int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
{
	if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
		return -EINVAL;

	return kvm_sev_es_string_io(&svm->vcpu, size, port,
				    svm->ghcb_sa, svm->ghcb_sa_len, in);
}