hugetlbpage.c 13.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/mm.h>
11
#include <linux/io.h>
12
#include <linux/slab.h>
L
Linus Torvalds 已提交
13
#include <linux/hugetlb.h>
14
#include <asm/pgtable.h>
L
Linus Torvalds 已提交
15 16 17
#include <asm/pgalloc.h>
#include <asm/tlb.h>

18 19 20
#define PAGE_SHIFT_64K	16
#define PAGE_SHIFT_16M	24
#define PAGE_SHIFT_16G	34
21

22 23 24 25 26 27
#define MAX_NUMBER_GPAGES	1024

/* Tracks the 16G pages after the device tree is scanned and before the
 * huge_boot_pages list is ready.  */
static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
static unsigned nr_gpages;
28

29 30 31 32
/* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
 * will choke on pointers to hugepte tables, which is handy for
 * catching screwups early. */

33 34
static inline int shift_to_mmu_psize(unsigned int shift)
{
35 36 37 38 39
	int psize;

	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
		if (mmu_psize_defs[psize].shift == shift)
			return psize;
40 41 42 43 44 45 46 47 48 49
	return -1;
}

static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
{
	if (mmu_psize_defs[mmu_psize].shift)
		return mmu_psize_defs[mmu_psize].shift;
	BUG();
}

50 51
#define hugepd_none(hpd)	((hpd).pd == 0)

52 53
static inline pte_t *hugepd_page(hugepd_t hpd)
{
54 55 56 57 58 59 60
	BUG_ON(!hugepd_ok(hpd));
	return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
}

static inline unsigned int hugepd_shift(hugepd_t hpd)
{
	return hpd.pd & HUGEPD_SHIFT_MASK;
61 62
}

63
static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
64
{
65
	unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
66 67 68 69 70
	pte_t *dir = hugepd_page(*hpdp);

	return dir + idx;
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
{
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pdshift = PGDIR_SHIFT;

	if (shift)
		*shift = 0;

	pg = pgdir + pgd_index(ea);
	if (is_hugepd(pg)) {
		hpdp = (hugepd_t *)pg;
	} else if (!pgd_none(*pg)) {
		pdshift = PUD_SHIFT;
		pu = pud_offset(pg, ea);
		if (is_hugepd(pu))
			hpdp = (hugepd_t *)pu;
		else if (!pud_none(*pu)) {
			pdshift = PMD_SHIFT;
			pm = pmd_offset(pu, ea);
			if (is_hugepd(pm))
				hpdp = (hugepd_t *)pm;
			else if (!pmd_none(*pm)) {
				return pte_offset_map(pm, ea);
			}
		}
	}

	if (!hpdp)
		return NULL;

	if (shift)
		*shift = hugepd_shift(*hpdp);
	return hugepte_offset(hpdp, ea, pdshift);
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
}

114
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
115
			   unsigned long address, unsigned pdshift, unsigned pshift)
116
{
117
	pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
118
				       GFP_KERNEL|__GFP_REPEAT);
119

120 121 122
	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);

123 124 125 126 127
	if (! new)
		return -ENOMEM;

	spin_lock(&mm->page_table_lock);
	if (!hugepd_none(*hpdp))
128
		kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
129
	else
130
		hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
131 132 133 134
	spin_unlock(&mm->page_table_lock);
	return 0;
}

135
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
136
{
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);

	pg = pgd_offset(mm, addr);
	if (pshift >= PUD_SHIFT) {
		hpdp = (hugepd_t *)pg;
	} else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
		if (pshift >= PMD_SHIFT) {
			hpdp = (hugepd_t *)pu;
		} else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			hpdp = (hugepd_t *)pm;
		}
	}

	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

	return hugepte_offset(hpdp, addr, pdshift);
170 171
}

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/* Build list of addresses of gigantic pages.  This function is used in early
 * boot before the buddy or bootmem allocator is setup.
 */
void add_gpage(unsigned long addr, unsigned long page_size,
	unsigned long number_of_pages)
{
	if (!addr)
		return;
	while (number_of_pages > 0) {
		gpage_freearray[nr_gpages] = addr;
		nr_gpages++;
		number_of_pages--;
		addr += page_size;
	}
}

188
/* Moves the gigantic page addresses from the temporary list to the
189 190 191
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
192 193 194 195 196 197 198
{
	struct huge_bootmem_page *m;
	if (nr_gpages == 0)
		return 0;
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
	gpage_freearray[nr_gpages] = 0;
	list_add(&m->list, &huge_boot_pages);
199
	m->hstate = hstate;
200 201 202
	return 1;
}

203 204 205 206 207
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}

208 209 210
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
			      unsigned long start, unsigned long end,
			      unsigned long floor, unsigned long ceiling)
211 212
{
	pte_t *hugepte = hugepd_page(*hpdp);
213 214 215 216 217 218 219 220 221 222 223 224 225
	unsigned shift = hugepd_shift(*hpdp);
	unsigned long pdmask = ~((1UL << pdshift) - 1);

	start &= pdmask;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= pdmask;
		if (! ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;
226 227 228

	hpdp->pd = 0;
	tlb->need_flush = 1;
229
	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
230 231 232 233
}

static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				   unsigned long addr, unsigned long end,
234
				   unsigned long floor, unsigned long ceiling)
235 236 237 238 239 240 241 242 243 244 245
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none(*pmd))
			continue;
246 247
		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
				  addr, next, floor, ceiling);
248 249 250 251 252 253 254 255 256
	} while (pmd++, addr = next, addr != end);

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
257
	}
258 259
	if (end - 1 > ceiling - 1)
		return;
L
Linus Torvalds 已提交
260

261 262
	pmd = pmd_offset(pud, start);
	pud_clear(pud);
263
	pmd_free_tlb(tlb, pmd, start);
264 265 266 267 268 269 270 271 272 273 274 275 276 277
}

static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
278
		if (!is_hugepd(pud)) {
279 280
			if (pud_none_or_clear_bad(pud))
				continue;
281
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
282
					       ceiling);
283
		} else {
284 285
			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
					  addr, next, floor, ceiling);
286
		}
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	} while (pud++, addr = next, addr != end);

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
302
	pud_free_tlb(tlb, pud, start);
303 304 305 306 307 308 309
}

/*
 * This function frees user-level page tables of a process.
 *
 * Must be called with pagetable lock held.
 */
310
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
311 312 313 314 315 316 317
			    unsigned long addr, unsigned long end,
			    unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;

	/*
318 319 320 321 322 323 324 325 326 327
	 * Because there are a number of different possible pagetable
	 * layouts for hugepage ranges, we limit knowledge of how
	 * things should be laid out to the allocation path
	 * (huge_pte_alloc(), above).  Everything else works out the
	 * structure as it goes from information in the hugepd
	 * pointers.  That means that we can't here use the
	 * optimization used in the normal page free_pgd_range(), of
	 * checking whether we're actually covering a large enough
	 * range to have to do anything at the top level of the walk
	 * instead of at the bottom.
328
	 *
329 330 331
	 * To make sense of this, you should probably go read the big
	 * block comment at the top of the normal free_pgd_range(),
	 * too.
332 333
	 */

334
	pgd = pgd_offset(tlb->mm, addr);
335 336
	do {
		next = pgd_addr_end(addr, end);
337
		if (!is_hugepd(pgd)) {
338 339 340 341
			if (pgd_none_or_clear_bad(pgd))
				continue;
			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
		} else {
342 343
			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
					  addr, next, floor, ceiling);
344
		}
345
	} while (pgd++, addr = next, addr != end);
L
Linus Torvalds 已提交
346 347 348 349 350 351 352
}

struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
	pte_t *ptep;
	struct page *page;
353 354 355 356
	unsigned shift;
	unsigned long mask;

	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
L
Linus Torvalds 已提交
357

358
	/* Verify it is a huge page else bail. */
359
	if (!ptep || !shift)
L
Linus Torvalds 已提交
360 361
		return ERR_PTR(-EINVAL);

362
	mask = (1UL << shift) - 1;
L
Linus Torvalds 已提交
363
	page = pte_page(*ptep);
364 365
	if (page)
		page += (address & mask) / PAGE_SIZE;
L
Linus Torvalds 已提交
366 367 368 369 370 371 372 373 374

	return page;
}

int pmd_huge(pmd_t pmd)
{
	return 0;
}

A
Andi Kleen 已提交
375 376 377 378 379
int pud_huge(pud_t pud)
{
	return 0;
}

L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387
struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	BUG();
	return NULL;
}

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
		       unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask;
	unsigned long pte_end;
	struct page *head, *page;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

	pte = *ptep;
	mask = _PAGE_PRESENT | _PAGE_USER;
	if (write)
		mask |= _PAGE_RW;

	if ((pte_val(pte) & mask) != mask)
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);

	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
		/* Could be optimized better */
431 432
		*nr -= refs;
		while (refs--)
433
			put_page(head);
434 435 436 437 438
	}

	return 1;
}

D
David Gibson 已提交
439 440 441 442 443 444 445
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

446 447 448 449 450 451
int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
	       unsigned long addr, unsigned long end,
	       int write, struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(*hugepd);
D
David Gibson 已提交
452
	unsigned long next;
453 454 455

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
D
David Gibson 已提交
456
		next = hugepte_addr_end(addr, end, sz);
457 458
		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
			return 0;
D
David Gibson 已提交
459
	} while (ptep++, addr = next, addr != end);
460 461 462

	return 1;
}
L
Linus Torvalds 已提交
463 464 465 466 467

unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
468 469
	struct hstate *hstate = hstate_file(file);
	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
470

471
	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
L
Linus Torvalds 已提交
472 473
}

474 475 476 477 478 479 480
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);

	return 1UL << mmu_psize_to_shift(psize);
}

481
static int __init add_huge_page_size(unsigned long long size)
482
{
483 484
	int shift = __ffs(size);
	int mmu_psize;
485

486
	/* Check that it is a page size supported by the hardware and
487 488 489 490
	 * that it fits within pagetable and slice limits. */
	if (!is_power_of_2(size)
	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
		return -EINVAL;
491

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
		return -EINVAL;

#ifdef CONFIG_SPU_FS_64K_LS
	/* Disable support for 64K huge pages when 64K SPU local store
	 * support is enabled as the current implementation conflicts.
	 */
	if (shift == PAGE_SHIFT_64K)
		return -EINVAL;
#endif /* CONFIG_SPU_FS_64K_LS */

	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);

	/* Return if huge page size has already been setup */
	if (size_to_hstate(size))
		return 0;

	hugetlb_add_hstate(shift - PAGE_SHIFT);

	return 0;
512 513 514 515 516 517 518 519
}

static int __init hugepage_setup_sz(char *str)
{
	unsigned long long size;

	size = memparse(str, &str);

520
	if (add_huge_page_size(size) != 0)
521 522 523 524 525 526
		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);

	return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);

527 528
static int __init hugetlbpage_init(void)
{
529
	int psize;
530

531
	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
532
		return -ENODEV;
533

534 535 536
	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;
		unsigned pdshift;
537

538 539
		if (!mmu_psize_defs[psize].shift)
			continue;
540

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		shift = mmu_psize_to_shift(psize);

		if (add_huge_page_size(1ULL << shift) < 0)
			continue;

		if (shift < PMD_SHIFT)
			pdshift = PMD_SHIFT;
		else if (shift < PUD_SHIFT)
			pdshift = PUD_SHIFT;
		else
			pdshift = PGDIR_SHIFT;

		pgtable_cache_add(pdshift - shift, NULL);
		if (!PGT_CACHE(pdshift - shift))
			panic("hugetlbpage_init(): could not create "
			      "pgtable cache for %d bit pagesize\n", shift);
557
	}
558

559 560 561 562 563 564 565 566
	/* Set default large page size. Currently, we pick 16M or 1M
	 * depending on what is available
	 */
	if (mmu_psize_defs[MMU_PAGE_16M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;

567 568 569 570
	return 0;
}

module_init(hugetlbpage_init);
571 572 573 574 575 576 577 578 579 580

void flush_dcache_icache_hugepage(struct page *page)
{
	int i;

	BUG_ON(!PageCompound(page));

	for (i = 0; i < (1UL << compound_order(page)); i++)
		__flush_dcache_icache(page_address(page+i));
}