xfs_sync.c 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_inode.h"
#include "xfs_dinode.h"
#include "xfs_error.h"
#include "xfs_mru_cache.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_utils.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_rw.h"
C
Christoph Hellwig 已提交
46
#include "xfs_quota.h"
47

48 49 50
#include <linux/kthread.h>
#include <linux/freezer.h>

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

STATIC int
xfs_sync_inode_data(
	struct xfs_inode	*ip,
	int			flags)
{
	struct inode		*inode = VFS_I(ip);
	struct address_space *mapping = inode->i_mapping;
	int			error = 0;

	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		goto out_wait;

	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
		if (flags & SYNC_TRYLOCK)
			goto out_wait;
		xfs_ilock(ip, XFS_IOLOCK_SHARED);
	}

	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
				0 : XFS_B_ASYNC, FI_NONE);
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

 out_wait:
	if (flags & SYNC_IOWAIT)
		xfs_ioend_wait(ip);
	return error;
}

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
STATIC int
xfs_sync_inode_attr(
	struct xfs_inode	*ip,
	int			flags)
{
	int			error = 0;

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_inode_clean(ip))
		goto out_unlock;
	if (!xfs_iflock_nowait(ip)) {
		if (!(flags & SYNC_WAIT))
			goto out_unlock;
		xfs_iflock(ip);
	}

	if (xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
		goto out_unlock;
	}

	error = xfs_iflush(ip, (flags & SYNC_WAIT) ?
			   XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI);

 out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
	return error;
}

109
/*
110 111
 * Sync all the inodes in the given AG according to the
 * direction given by the flags.
112
 */
113 114
STATIC int
xfs_sync_inodes_ag(
115
	xfs_mount_t	*mp,
116
	int		ag,
117
	int		flags)
118
{
119 120
	xfs_perag_t	*pag = &mp->m_perag[ag];
	int		nr_found;
121
	uint32_t	first_index = 0;
122 123
	int		error = 0;
	int		last_error = 0;
124 125

	do {
126 127 128
		struct inode	*inode;
		xfs_inode_t	*ip = NULL;

129
		/*
130 131 132
		 * use a gang lookup to find the next inode in the tree
		 * as the tree is sparse and a gang lookup walks to find
		 * the number of objects requested.
133
		 */
134 135 136
		read_lock(&pag->pag_ici_lock);
		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
				(void**)&ip, first_index, 1);
137

138 139 140
		if (!nr_found) {
			read_unlock(&pag->pag_ici_lock);
			break;
141 142
		}

143 144 145 146 147 148
		/*
		 * Update the index for the next lookup. Catch overflows
		 * into the next AG range which can occur if we have inodes
		 * in the last block of the AG and we are currently
		 * pointing to the last inode.
		 */
149
		first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
150 151 152 153
		if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
			read_unlock(&pag->pag_ici_lock);
			break;
		}
154

155
		/* nothing to sync during shutdown */
D
David Chinner 已提交
156
		if (XFS_FORCED_SHUTDOWN(mp)) {
157
			read_unlock(&pag->pag_ici_lock);
158 159 160 161
			return 0;
		}

		/*
162 163
		 * If we can't get a reference on the inode, it must be
		 * in reclaim. Leave it for the reclaim code to flush.
164
		 */
165 166
		inode = VFS_I(ip);
		if (!igrab(inode)) {
167
			read_unlock(&pag->pag_ici_lock);
168 169 170 171
			continue;
		}
		read_unlock(&pag->pag_ici_lock);

172 173 174
		/* avoid new or bad inodes */
		if (is_bad_inode(inode) ||
		    xfs_iflags_test(ip, XFS_INEW)) {
175 176
			IRELE(ip);
			continue;
177
		}
178

179 180
		/*
		 * If we have to flush data or wait for I/O completion
181
		 * we need to hold the iolock.
182
		 */
183 184
		if (flags & SYNC_DELWRI)
			error = xfs_sync_inode_data(ip, flags);
185

186 187 188 189
		if (flags & SYNC_ATTR)
			error = xfs_sync_inode_attr(ip, flags);

		IRELE(ip);
190

191
		if (error)
192 193 194 195
			last_error = error;
		/*
		 * bail out if the filesystem is corrupted.
		 */
196
		if (error == EFSCORRUPTED)
197 198
			return XFS_ERROR(error);

199
	} while (nr_found);
200

201 202
	return last_error;
}
203

204 205 206
int
xfs_sync_inodes(
	xfs_mount_t	*mp,
207
	int		flags)
208 209 210 211
{
	int		error;
	int		last_error;
	int		i;
212
	int		lflags = XFS_LOG_FORCE;
213

214 215 216 217
	if (mp->m_flags & XFS_MOUNT_RDONLY)
		return 0;
	error = 0;
	last_error = 0;
218

219 220 221
	if (flags & SYNC_WAIT)
		lflags |= XFS_LOG_SYNC;

222 223 224
	for (i = 0; i < mp->m_sb.sb_agcount; i++) {
		if (!mp->m_perag[i].pag_ici_init)
			continue;
225
		error = xfs_sync_inodes_ag(mp, i, flags);
226 227 228 229 230
		if (error)
			last_error = error;
		if (error == EFSCORRUPTED)
			break;
	}
231 232 233
	if (flags & SYNC_DELWRI)
		xfs_log_force(mp, 0, lflags);

234 235 236
	return XFS_ERROR(last_error);
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
STATIC int
xfs_commit_dummy_trans(
	struct xfs_mount	*mp,
	uint			log_flags)
{
	struct xfs_inode	*ip = mp->m_rootip;
	struct xfs_trans	*tp;
	int			error;

	/*
	 * Put a dummy transaction in the log to tell recovery
	 * that all others are OK.
	 */
	tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
	error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
	if (error) {
		xfs_trans_cancel(tp, 0);
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);

	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_ihold(tp, ip);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	/* XXX(hch): ignoring the error here.. */
	error = xfs_trans_commit(tp, 0);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	xfs_log_force(mp, 0, log_flags);
	return 0;
}

271
int
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
xfs_sync_fsdata(
	struct xfs_mount	*mp,
	int			flags)
{
	struct xfs_buf		*bp;
	struct xfs_buf_log_item	*bip;
	int			error = 0;

	/*
	 * If this is xfssyncd() then only sync the superblock if we can
	 * lock it without sleeping and it is not pinned.
	 */
	if (flags & SYNC_BDFLUSH) {
		ASSERT(!(flags & SYNC_WAIT));

		bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
		if (!bp)
			goto out;

		bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
		if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
			goto out_brelse;
	} else {
		bp = xfs_getsb(mp, 0);

		/*
		 * If the buffer is pinned then push on the log so we won't
		 * get stuck waiting in the write for someone, maybe
		 * ourselves, to flush the log.
		 *
		 * Even though we just pushed the log above, we did not have
		 * the superblock buffer locked at that point so it can
		 * become pinned in between there and here.
		 */
		if (XFS_BUF_ISPINNED(bp))
			xfs_log_force(mp, 0, XFS_LOG_FORCE);
	}


	if (flags & SYNC_WAIT)
		XFS_BUF_UNASYNC(bp);
	else
		XFS_BUF_ASYNC(bp);

	return xfs_bwrite(mp, bp);

 out_brelse:
	xfs_buf_relse(bp);
 out:
	return error;
322 323 324
}

/*
D
David Chinner 已提交
325 326 327 328 329 330 331 332 333 334 335
 * When remounting a filesystem read-only or freezing the filesystem, we have
 * two phases to execute. This first phase is syncing the data before we
 * quiesce the filesystem, and the second is flushing all the inodes out after
 * we've waited for all the transactions created by the first phase to
 * complete. The second phase ensures that the inodes are written to their
 * location on disk rather than just existing in transactions in the log. This
 * means after a quiesce there is no log replay required to write the inodes to
 * disk (this is the main difference between a sync and a quiesce).
 */
/*
 * First stage of freeze - no writers will make progress now we are here,
336 337
 * so we flush delwri and delalloc buffers here, then wait for all I/O to
 * complete.  Data is frozen at that point. Metadata is not frozen,
D
David Chinner 已提交
338 339
 * transactions can still occur here so don't bother flushing the buftarg
 * because it'll just get dirty again.
340 341 342 343 344 345 346 347 348
 */
int
xfs_quiesce_data(
	struct xfs_mount	*mp)
{
	int error;

	/* push non-blocking */
	xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH);
C
Christoph Hellwig 已提交
349
	xfs_qm_sync(mp, SYNC_BDFLUSH);
350 351 352 353
	xfs_filestream_flush(mp);

	/* push and block */
	xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT);
C
Christoph Hellwig 已提交
354
	xfs_qm_sync(mp, SYNC_WAIT);
355

D
David Chinner 已提交
356
	/* write superblock and hoover up shutdown errors */
357 358
	error = xfs_sync_fsdata(mp, 0);

D
David Chinner 已提交
359
	/* flush data-only devices */
360 361 362 363
	if (mp->m_rtdev_targp)
		XFS_bflush(mp->m_rtdev_targp);

	return error;
364 365
}

D
David Chinner 已提交
366 367 368 369 370 371 372
STATIC void
xfs_quiesce_fs(
	struct xfs_mount	*mp)
{
	int	count = 0, pincount;

	xfs_flush_buftarg(mp->m_ddev_targp, 0);
373
	xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
D
David Chinner 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

	/*
	 * This loop must run at least twice.  The first instance of the loop
	 * will flush most meta data but that will generate more meta data
	 * (typically directory updates).  Which then must be flushed and
	 * logged before we can write the unmount record.
	 */
	do {
		xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT);
		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
		if (!pincount) {
			delay(50);
			count++;
		}
	} while (count < 2);
}

/*
 * Second stage of a quiesce. The data is already synced, now we have to take
 * care of the metadata. New transactions are already blocked, so we need to
 * wait for any remaining transactions to drain out before proceding.
 */
void
xfs_quiesce_attr(
	struct xfs_mount	*mp)
{
	int	error = 0;

	/* wait for all modifications to complete */
	while (atomic_read(&mp->m_active_trans) > 0)
		delay(100);

	/* flush inodes and push all remaining buffers out to disk */
	xfs_quiesce_fs(mp);

409 410 411 412 413
	/*
	 * Just warn here till VFS can correctly support
	 * read-only remount without racing.
	 */
	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
D
David Chinner 已提交
414 415 416 417 418 419 420 421 422 423 424

	/* Push the superblock and write an unmount record */
	error = xfs_log_sbcount(mp, 1);
	if (error)
		xfs_fs_cmn_err(CE_WARN, mp,
				"xfs_attr_quiesce: failed to log sb changes. "
				"Frozen image may not be consistent.");
	xfs_log_unmount_write(mp);
	xfs_unmountfs_writesb(mp);
}

425 426 427 428 429 430 431 432 433 434 435
/*
 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
 * Doing this has two advantages:
 * - It saves on stack space, which is tight in certain situations
 * - It can be used (with care) as a mechanism to avoid deadlocks.
 * Flushing while allocating in a full filesystem requires both.
 */
STATIC void
xfs_syncd_queue_work(
	struct xfs_mount *mp,
	void		*data,
436 437
	void		(*syncer)(struct xfs_mount *, void *),
	struct completion *completion)
438
{
439
	struct xfs_sync_work *work;
440

441
	work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
442 443 444 445
	INIT_LIST_HEAD(&work->w_list);
	work->w_syncer = syncer;
	work->w_data = data;
	work->w_mount = mp;
446
	work->w_completion = completion;
447 448 449 450 451 452 453 454 455 456 457 458 459
	spin_lock(&mp->m_sync_lock);
	list_add_tail(&work->w_list, &mp->m_sync_list);
	spin_unlock(&mp->m_sync_lock);
	wake_up_process(mp->m_sync_task);
}

/*
 * Flush delayed allocate data, attempting to free up reserved space
 * from existing allocations.  At this point a new allocation attempt
 * has failed with ENOSPC and we are in the process of scratching our
 * heads, looking about for more room...
 */
STATIC void
460
xfs_flush_inodes_work(
461 462 463 464
	struct xfs_mount *mp,
	void		*arg)
{
	struct inode	*inode = arg;
465 466
	xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK);
	xfs_sync_inodes(mp, SYNC_DELWRI | SYNC_TRYLOCK | SYNC_IOWAIT);
467 468 469 470
	iput(inode);
}

void
471
xfs_flush_inodes(
472 473 474
	xfs_inode_t	*ip)
{
	struct inode	*inode = VFS_I(ip);
475
	DECLARE_COMPLETION_ONSTACK(completion);
476 477

	igrab(inode);
478 479
	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
	wait_for_completion(&completion);
480 481 482
	xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
}

483 484 485 486 487
/*
 * Every sync period we need to unpin all items, reclaim inodes, sync
 * quota and write out the superblock. We might need to cover the log
 * to indicate it is idle.
 */
488 489 490 491 492 493 494
STATIC void
xfs_sync_worker(
	struct xfs_mount *mp,
	void		*unused)
{
	int		error;

495 496
	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
497
		xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
498
		/* dgc: errors ignored here */
C
Christoph Hellwig 已提交
499
		error = xfs_qm_sync(mp, SYNC_BDFLUSH);
500 501 502 503
		error = xfs_sync_fsdata(mp, SYNC_BDFLUSH);
		if (xfs_log_need_covered(mp))
			error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE);
	}
504 505 506 507 508 509 510 511 512 513
	mp->m_sync_seq++;
	wake_up(&mp->m_wait_single_sync_task);
}

STATIC int
xfssyncd(
	void			*arg)
{
	struct xfs_mount	*mp = arg;
	long			timeleft;
514
	xfs_sync_work_t		*work, *n;
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	LIST_HEAD		(tmp);

	set_freezable();
	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
	for (;;) {
		timeleft = schedule_timeout_interruptible(timeleft);
		/* swsusp */
		try_to_freeze();
		if (kthread_should_stop() && list_empty(&mp->m_sync_list))
			break;

		spin_lock(&mp->m_sync_lock);
		/*
		 * We can get woken by laptop mode, to do a sync -
		 * that's the (only!) case where the list would be
		 * empty with time remaining.
		 */
		if (!timeleft || list_empty(&mp->m_sync_list)) {
			if (!timeleft)
				timeleft = xfs_syncd_centisecs *
							msecs_to_jiffies(10);
			INIT_LIST_HEAD(&mp->m_sync_work.w_list);
			list_add_tail(&mp->m_sync_work.w_list,
					&mp->m_sync_list);
		}
		list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
			list_move(&work->w_list, &tmp);
		spin_unlock(&mp->m_sync_lock);

		list_for_each_entry_safe(work, n, &tmp, w_list) {
			(*work->w_syncer)(mp, work->w_data);
			list_del(&work->w_list);
			if (work == &mp->m_sync_work)
				continue;
549 550
			if (work->w_completion)
				complete(work->w_completion);
551 552 553 554 555 556 557 558 559 560 561 562 563
			kmem_free(work);
		}
	}

	return 0;
}

int
xfs_syncd_init(
	struct xfs_mount	*mp)
{
	mp->m_sync_work.w_syncer = xfs_sync_worker;
	mp->m_sync_work.w_mount = mp;
564
	mp->m_sync_work.w_completion = NULL;
565 566 567 568 569 570 571 572 573 574 575 576 577
	mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
	if (IS_ERR(mp->m_sync_task))
		return -PTR_ERR(mp->m_sync_task);
	return 0;
}

void
xfs_syncd_stop(
	struct xfs_mount	*mp)
{
	kthread_stop(mp->m_sync_task);
}

578
int
579
xfs_reclaim_inode(
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	xfs_inode_t	*ip,
	int		locked,
	int		sync_mode)
{
	xfs_perag_t	*pag = xfs_get_perag(ip->i_mount, ip->i_ino);

	/* The hash lock here protects a thread in xfs_iget_core from
	 * racing with us on linking the inode back with a vnode.
	 * Once we have the XFS_IRECLAIM flag set it will not touch
	 * us.
	 */
	write_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
	if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
	    !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
		spin_unlock(&ip->i_flags_lock);
		write_unlock(&pag->pag_ici_lock);
		if (locked) {
			xfs_ifunlock(ip);
			xfs_iunlock(ip, XFS_ILOCK_EXCL);
		}
		return 1;
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	write_unlock(&pag->pag_ici_lock);
	xfs_put_perag(ip->i_mount, pag);

	/*
	 * If the inode is still dirty, then flush it out.  If the inode
	 * is not in the AIL, then it will be OK to flush it delwri as
	 * long as xfs_iflush() does not keep any references to the inode.
	 * We leave that decision up to xfs_iflush() since it has the
	 * knowledge of whether it's OK to simply do a delwri flush of
	 * the inode or whether we need to wait until the inode is
	 * pulled from the AIL.
	 * We get the flush lock regardless, though, just to make sure
	 * we don't free it while it is being flushed.
	 */
	if (!locked) {
		xfs_ilock(ip, XFS_ILOCK_EXCL);
		xfs_iflock(ip);
	}

	/*
	 * In the case of a forced shutdown we rely on xfs_iflush() to
	 * wait for the inode to be unpinned before returning an error.
	 */
	if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
		/* synchronize with xfs_iflush_done */
		xfs_iflock(ip);
		xfs_ifunlock(ip);
	}

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	xfs_ireclaim(ip);
	return 0;
}

D
David Chinner 已提交
639 640 641 642 643
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
644 645 646 647 648 649 650 651 652 653 654
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino);

	read_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
	radix_tree_tag_set(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
D
David Chinner 已提交
655
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	spin_unlock(&ip->i_flags_lock);
	read_unlock(&pag->pag_ici_lock);
	xfs_put_perag(mp, pag);
}

void
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
}

void
xfs_inode_clear_reclaim_tag(
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino);

	read_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
	__xfs_inode_clear_reclaim_tag(mp, pag, ip);
	spin_unlock(&ip->i_flags_lock);
	read_unlock(&pag->pag_ici_lock);
	xfs_put_perag(mp, pag);
}

686 687 688

STATIC void
xfs_reclaim_inodes_ag(
689
	xfs_mount_t	*mp,
690 691
	int		ag,
	int		noblock,
692 693
	int		mode)
{
694 695 696
	xfs_inode_t	*ip = NULL;
	xfs_perag_t	*pag = &mp->m_perag[ag];
	int		nr_found;
697
	uint32_t	first_index;
698
	int		skipped;
699 700

restart:
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	first_index = 0;
	skipped = 0;
	do {
		/*
		 * use a gang lookup to find the next inode in the tree
		 * as the tree is sparse and a gang lookup walks to find
		 * the number of objects requested.
		 */
		read_lock(&pag->pag_ici_lock);
		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
					(void**)&ip, first_index, 1,
					XFS_ICI_RECLAIM_TAG);

		if (!nr_found) {
			read_unlock(&pag->pag_ici_lock);
			break;
		}

719 720 721 722 723 724
		/*
		 * Update the index for the next lookup. Catch overflows
		 * into the next AG range which can occur if we have inodes
		 * in the last block of the AG and we are currently
		 * pointing to the last inode.
		 */
725
		first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
726 727 728 729
		if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
			read_unlock(&pag->pag_ici_lock);
			break;
		}
730 731 732 733 734 735 736

		/* ignore if already under reclaim */
		if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
			read_unlock(&pag->pag_ici_lock);
			continue;
		}

737
		if (noblock) {
738 739
			if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
				read_unlock(&pag->pag_ici_lock);
740
				continue;
741
			}
742 743 744
			if (xfs_ipincount(ip) ||
			    !xfs_iflock_nowait(ip)) {
				xfs_iunlock(ip, XFS_ILOCK_EXCL);
745
				read_unlock(&pag->pag_ici_lock);
746 747 748
				continue;
			}
		}
749 750 751 752 753 754
		read_unlock(&pag->pag_ici_lock);

		/*
		 * hmmm - this is an inode already in reclaim. Do
		 * we even bother catching it here?
		 */
755
		if (xfs_reclaim_inode(ip, noblock, mode))
756 757 758 759 760
			skipped++;
	} while (nr_found);

	if (skipped) {
		delay(1);
761 762
		goto restart;
	}
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	return;

}

int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		 noblock,
	int		mode)
{
	int		i;

	for (i = 0; i < mp->m_sb.sb_agcount; i++) {
		if (!mp->m_perag[i].pag_ici_init)
			continue;
		xfs_reclaim_inodes_ag(mp, i, noblock, mode);
	}
780 781 782 783
	return 0;
}