mcp251xfd-core.c 72.8 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0
//
3
// mcp251xfd - Microchip MCP251xFD Family CAN controller driver
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
//
// Copyright (c) 2019, 2020 Pengutronix,
//                          Marc Kleine-Budde <kernel@pengutronix.de>
//
// Based on:
//
// CAN bus driver for Microchip 25XXFD CAN Controller with SPI Interface
//
// Copyright (c) 2019 Martin Sperl <kernel@martin.sperl.org>
//

#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>

#include <asm/unaligned.h>

26
#include "mcp251xfd.h"
27

28
#define DEVICE_NAME "mcp251xfd"
29

30 31 32 33 34
static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp2517fd = {
	.quirks = MCP251XFD_QUIRK_MAB_NO_WARN | MCP251XFD_QUIRK_CRC_REG |
		MCP251XFD_QUIRK_CRC_RX | MCP251XFD_QUIRK_CRC_TX |
		MCP251XFD_QUIRK_ECC,
	.model = MCP251XFD_MODEL_MCP2517FD,
35 36
};

37 38 39 40
static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp2518fd = {
	.quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
		MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
	.model = MCP251XFD_MODEL_MCP2518FD,
41 42 43
};

/* Autodetect model, start with CRC enabled. */
44 45 46 47
static const struct mcp251xfd_devtype_data mcp251xfd_devtype_data_mcp251xfd = {
	.quirks = MCP251XFD_QUIRK_CRC_REG | MCP251XFD_QUIRK_CRC_RX |
		MCP251XFD_QUIRK_CRC_TX | MCP251XFD_QUIRK_ECC,
	.model = MCP251XFD_MODEL_MCP251XFD,
48 49
};

50
static const struct can_bittiming_const mcp251xfd_bittiming_const = {
51 52 53 54 55 56 57 58 59 60 61
	.name = DEVICE_NAME,
	.tseg1_min = 2,
	.tseg1_max = 256,
	.tseg2_min = 1,
	.tseg2_max = 128,
	.sjw_max = 128,
	.brp_min = 1,
	.brp_max = 256,
	.brp_inc = 1,
};

62
static const struct can_bittiming_const mcp251xfd_data_bittiming_const = {
63 64 65 66 67 68 69 70 71 72 73
	.name = DEVICE_NAME,
	.tseg1_min = 1,
	.tseg1_max = 32,
	.tseg2_min = 1,
	.tseg2_max = 16,
	.sjw_max = 16,
	.brp_min = 1,
	.brp_max = 256,
	.brp_inc = 1,
};

74
static const char *__mcp251xfd_get_model_str(enum mcp251xfd_model model)
75 76
{
	switch (model) {
77
	case MCP251XFD_MODEL_MCP2517FD:
78
		return "MCP2517FD"; break;
79
	case MCP251XFD_MODEL_MCP2518FD:
80
		return "MCP2518FD"; break;
81
	case MCP251XFD_MODEL_MCP251XFD:
82
		return "MCP251xFD"; break;
83 84 85 86 87 88
	}

	return "<unknown>";
}

static inline const char *
89
mcp251xfd_get_model_str(const struct mcp251xfd_priv *priv)
90
{
91
	return __mcp251xfd_get_model_str(priv->devtype_data.model);
92 93
}

94
static const char *mcp251xfd_get_mode_str(const u8 mode)
95 96
{
	switch (mode) {
97
	case MCP251XFD_REG_CON_MODE_MIXED:
98
		return "Mixed (CAN FD/CAN 2.0)"; break;
99
	case MCP251XFD_REG_CON_MODE_SLEEP:
100
		return "Sleep"; break;
101
	case MCP251XFD_REG_CON_MODE_INT_LOOPBACK:
102
		return "Internal Loopback"; break;
103
	case MCP251XFD_REG_CON_MODE_LISTENONLY:
104
		return "Listen Only"; break;
105
	case MCP251XFD_REG_CON_MODE_CONFIG:
106
		return "Configuration"; break;
107
	case MCP251XFD_REG_CON_MODE_EXT_LOOPBACK:
108
		return "External Loopback"; break;
109
	case MCP251XFD_REG_CON_MODE_CAN2_0:
110
		return "CAN 2.0"; break;
111
	case MCP251XFD_REG_CON_MODE_RESTRICTED:
112 113 114 115 116 117
		return "Restricted Operation"; break;
	}

	return "<unknown>";
}

118
static inline int mcp251xfd_vdd_enable(const struct mcp251xfd_priv *priv)
119 120 121 122 123 124 125
{
	if (!priv->reg_vdd)
		return 0;

	return regulator_enable(priv->reg_vdd);
}

126
static inline int mcp251xfd_vdd_disable(const struct mcp251xfd_priv *priv)
127 128 129 130 131 132 133 134
{
	if (!priv->reg_vdd)
		return 0;

	return regulator_disable(priv->reg_vdd);
}

static inline int
135
mcp251xfd_transceiver_enable(const struct mcp251xfd_priv *priv)
136 137 138 139 140 141 142 143
{
	if (!priv->reg_xceiver)
		return 0;

	return regulator_enable(priv->reg_xceiver);
}

static inline int
144
mcp251xfd_transceiver_disable(const struct mcp251xfd_priv *priv)
145 146 147 148 149 150 151
{
	if (!priv->reg_xceiver)
		return 0;

	return regulator_disable(priv->reg_xceiver);
}

152
static int mcp251xfd_clks_and_vdd_enable(const struct mcp251xfd_priv *priv)
153 154 155 156 157 158 159
{
	int err;

	err = clk_prepare_enable(priv->clk);
	if (err)
		return err;

160
	err = mcp251xfd_vdd_enable(priv);
161 162 163 164
	if (err)
		clk_disable_unprepare(priv->clk);

	/* Wait for oscillator stabilisation time after power up */
165 166
	usleep_range(MCP251XFD_OSC_STAB_SLEEP_US,
		     2 * MCP251XFD_OSC_STAB_SLEEP_US);
167 168 169 170

	return err;
}

171
static int mcp251xfd_clks_and_vdd_disable(const struct mcp251xfd_priv *priv)
172 173 174
{
	int err;

175
	err = mcp251xfd_vdd_disable(priv);
176 177 178 179 180 181 182 183 184
	if (err)
		return err;

	clk_disable_unprepare(priv->clk);

	return 0;
}

static inline u8
185 186
mcp251xfd_cmd_prepare_write_reg(const struct mcp251xfd_priv *priv,
				union mcp251xfd_write_reg_buf *write_reg_buf,
187 188 189 190 191 192
				const u16 reg, const u32 mask, const u32 val)
{
	u8 first_byte, last_byte, len;
	u8 *data;
	__le32 val_le32;

193 194
	first_byte = mcp251xfd_first_byte_set(mask);
	last_byte = mcp251xfd_last_byte_set(mask);
195 196
	len = last_byte - first_byte + 1;

197
	data = mcp251xfd_spi_cmd_write(priv, write_reg_buf, reg + first_byte);
198 199 200
	val_le32 = cpu_to_le32(val >> BITS_PER_BYTE * first_byte);
	memcpy(data, &val_le32, len);

201
	if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_REG) {
202 203
		u16 crc;

204
		mcp251xfd_spi_cmd_crc_set_len_in_reg(&write_reg_buf->crc.cmd,
205 206 207
						     len);
		/* CRC */
		len += sizeof(write_reg_buf->crc.cmd);
208
		crc = mcp251xfd_crc16_compute(&write_reg_buf->crc, len);
209 210 211 212 213 214 215 216 217 218 219 220
		put_unaligned_be16(crc, (void *)write_reg_buf + len);

		/* Total length */
		len += sizeof(write_reg_buf->crc.crc);
	} else {
		len += sizeof(write_reg_buf->nocrc.cmd);
	}

	return len;
}

static inline int
221
mcp251xfd_tef_tail_get_from_chip(const struct mcp251xfd_priv *priv,
222 223 224 225 226
				 u8 *tef_tail)
{
	u32 tef_ua;
	int err;

227
	err = regmap_read(priv->map_reg, MCP251XFD_REG_TEFUA, &tef_ua);
228 229 230
	if (err)
		return err;

231
	*tef_tail = tef_ua / sizeof(struct mcp251xfd_hw_tef_obj);
232 233 234 235 236

	return 0;
}

static inline int
237
mcp251xfd_tx_tail_get_from_chip(const struct mcp251xfd_priv *priv,
238 239 240 241 242 243
				u8 *tx_tail)
{
	u32 fifo_sta;
	int err;

	err = regmap_read(priv->map_reg,
244
			  MCP251XFD_REG_FIFOSTA(MCP251XFD_TX_FIFO),
245 246 247 248
			  &fifo_sta);
	if (err)
		return err;

249
	*tx_tail = FIELD_GET(MCP251XFD_REG_FIFOSTA_FIFOCI_MASK, fifo_sta);
250 251 252 253 254

	return 0;
}

static inline int
255 256
mcp251xfd_rx_head_get_from_chip(const struct mcp251xfd_priv *priv,
				const struct mcp251xfd_rx_ring *ring,
257 258 259 260 261
				u8 *rx_head)
{
	u32 fifo_sta;
	int err;

262
	err = regmap_read(priv->map_reg, MCP251XFD_REG_FIFOSTA(ring->fifo_nr),
263 264 265 266
			  &fifo_sta);
	if (err)
		return err;

267
	*rx_head = FIELD_GET(MCP251XFD_REG_FIFOSTA_FIFOCI_MASK, fifo_sta);
268 269 270 271 272

	return 0;
}

static inline int
273 274
mcp251xfd_rx_tail_get_from_chip(const struct mcp251xfd_priv *priv,
				const struct mcp251xfd_rx_ring *ring,
275 276 277 278 279
				u8 *rx_tail)
{
	u32 fifo_ua;
	int err;

280
	err = regmap_read(priv->map_reg, MCP251XFD_REG_FIFOUA(ring->fifo_nr),
281 282 283 284
			  &fifo_ua);
	if (err)
		return err;

285
	fifo_ua -= ring->base - MCP251XFD_RAM_START;
286 287 288 289 290 291
	*rx_tail = fifo_ua / ring->obj_size;

	return 0;
}

static void
292 293 294
mcp251xfd_tx_ring_init_tx_obj(const struct mcp251xfd_priv *priv,
			      const struct mcp251xfd_tx_ring *ring,
			      struct mcp251xfd_tx_obj *tx_obj,
295 296 297 298 299 300 301
			      const u8 rts_buf_len,
			      const u8 n)
{
	struct spi_transfer *xfer;
	u16 addr;

	/* FIFO load */
302 303 304
	addr = mcp251xfd_get_tx_obj_addr(ring, n);
	if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
		mcp251xfd_spi_cmd_write_crc_set_addr(&tx_obj->buf.crc.cmd,
305 306
						     addr);
	else
307
		mcp251xfd_spi_cmd_write_nocrc(&tx_obj->buf.nocrc.cmd,
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
					      addr);

	xfer = &tx_obj->xfer[0];
	xfer->tx_buf = &tx_obj->buf;
	xfer->len = 0;	/* actual len is assigned on the fly */
	xfer->cs_change = 1;
	xfer->cs_change_delay.value = 0;
	xfer->cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;

	/* FIFO request to send */
	xfer = &tx_obj->xfer[1];
	xfer->tx_buf = &ring->rts_buf;
	xfer->len = rts_buf_len;

	/* SPI message */
	spi_message_init_with_transfers(&tx_obj->msg, tx_obj->xfer,
					ARRAY_SIZE(tx_obj->xfer));
}

327
static void mcp251xfd_ring_init(struct mcp251xfd_priv *priv)
328
{
329 330 331
	struct mcp251xfd_tx_ring *tx_ring;
	struct mcp251xfd_rx_ring *rx_ring, *prev_rx_ring = NULL;
	struct mcp251xfd_tx_obj *tx_obj;
332 333 334 335 336 337 338 339 340 341 342 343 344
	u32 val;
	u16 addr;
	u8 len;
	int i;

	/* TEF */
	priv->tef.head = 0;
	priv->tef.tail = 0;

	/* TX */
	tx_ring = priv->tx;
	tx_ring->head = 0;
	tx_ring->tail = 0;
345
	tx_ring->base = mcp251xfd_get_tef_obj_addr(tx_ring->obj_num);
346 347

	/* FIFO request to send */
348 349 350
	addr = MCP251XFD_REG_FIFOCON(MCP251XFD_TX_FIFO);
	val = MCP251XFD_REG_FIFOCON_TXREQ | MCP251XFD_REG_FIFOCON_UINC;
	len = mcp251xfd_cmd_prepare_write_reg(priv, &tx_ring->rts_buf,
351 352
					      addr, val, val);

353 354
	mcp251xfd_for_each_tx_obj(tx_ring, tx_obj, i)
		mcp251xfd_tx_ring_init_tx_obj(priv, tx_ring, tx_obj, len, i);
355 356

	/* RX */
357
	mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
358 359 360
		rx_ring->head = 0;
		rx_ring->tail = 0;
		rx_ring->nr = i;
361
		rx_ring->fifo_nr = MCP251XFD_RX_FIFO(i);
362 363 364

		if (!prev_rx_ring)
			rx_ring->base =
365
				mcp251xfd_get_tx_obj_addr(tx_ring,
366 367 368 369 370 371 372 373 374 375
							  tx_ring->obj_num);
		else
			rx_ring->base = prev_rx_ring->base +
				prev_rx_ring->obj_size *
				prev_rx_ring->obj_num;

		prev_rx_ring = rx_ring;
	}
}

376
static void mcp251xfd_ring_free(struct mcp251xfd_priv *priv)
377 378 379
{
	int i;

380
	for (i = ARRAY_SIZE(priv->rx) - 1; i >= 0; i--) {
381 382 383 384 385
		kfree(priv->rx[i]);
		priv->rx[i] = NULL;
	}
}

386
static int mcp251xfd_ring_alloc(struct mcp251xfd_priv *priv)
387
{
388 389
	struct mcp251xfd_tx_ring *tx_ring;
	struct mcp251xfd_rx_ring *rx_ring;
390 391 392 393
	int tef_obj_size, tx_obj_size, rx_obj_size;
	int tx_obj_num;
	int ram_free, i;

394
	tef_obj_size = sizeof(struct mcp251xfd_hw_tef_obj);
395 396
	/* listen-only mode works like FD mode */
	if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD)) {
397 398 399
		tx_obj_num = MCP251XFD_TX_OBJ_NUM_CANFD;
		tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_canfd);
		rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_canfd);
400
	} else {
401 402 403
		tx_obj_num = MCP251XFD_TX_OBJ_NUM_CAN;
		tx_obj_size = sizeof(struct mcp251xfd_hw_tx_obj_can);
		rx_obj_size = sizeof(struct mcp251xfd_hw_rx_obj_can);
404 405 406 407 408 409
	}

	tx_ring = priv->tx;
	tx_ring->obj_num = tx_obj_num;
	tx_ring->obj_size = tx_obj_size;

410
	ram_free = MCP251XFD_RAM_SIZE - tx_obj_num *
411 412 413 414 415 416 417 418 419 420 421 422 423
		(tef_obj_size + tx_obj_size);

	for (i = 0;
	     i < ARRAY_SIZE(priv->rx) && ram_free >= rx_obj_size;
	     i++) {
		int rx_obj_num;

		rx_obj_num = ram_free / rx_obj_size;
		rx_obj_num = min(1 << (fls(rx_obj_num) - 1), 32);

		rx_ring = kzalloc(sizeof(*rx_ring) + rx_obj_size * rx_obj_num,
				  GFP_KERNEL);
		if (!rx_ring) {
424
			mcp251xfd_ring_free(priv);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
			return -ENOMEM;
		}
		rx_ring->obj_num = rx_obj_num;
		rx_ring->obj_size = rx_obj_size;
		priv->rx[i] = rx_ring;

		ram_free -= rx_ring->obj_num * rx_ring->obj_size;
	}
	priv->rx_ring_num = i;

	netdev_dbg(priv->ndev,
		   "FIFO setup: TEF: %d*%d bytes = %d bytes, TX: %d*%d bytes = %d bytes\n",
		   tx_obj_num, tef_obj_size, tef_obj_size * tx_obj_num,
		   tx_obj_num, tx_obj_size, tx_obj_size * tx_obj_num);

440
	mcp251xfd_for_each_rx_ring(priv, rx_ring, i) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454
		netdev_dbg(priv->ndev,
			   "FIFO setup: RX-%d: %d*%d bytes = %d bytes\n",
			   i, rx_ring->obj_num, rx_ring->obj_size,
			   rx_ring->obj_size * rx_ring->obj_num);
	}

	netdev_dbg(priv->ndev,
		   "FIFO setup: free: %d bytes\n",
		   ram_free);

	return 0;
}

static inline int
455
mcp251xfd_chip_get_mode(const struct mcp251xfd_priv *priv, u8 *mode)
456 457 458 459
{
	u32 val;
	int err;

460
	err = regmap_read(priv->map_reg, MCP251XFD_REG_CON, &val);
461 462 463
	if (err)
		return err;

464
	*mode = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, val);
465 466 467 468 469

	return 0;
}

static int
470
__mcp251xfd_chip_set_mode(const struct mcp251xfd_priv *priv,
471 472 473 474 475
			  const u8 mode_req, bool nowait)
{
	u32 con, con_reqop;
	int err;

476 477 478
	con_reqop = FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK, mode_req);
	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_CON,
				 MCP251XFD_REG_CON_REQOP_MASK, con_reqop);
479 480 481
	if (err)
		return err;

482
	if (mode_req == MCP251XFD_REG_CON_MODE_SLEEP || nowait)
483 484
		return 0;

485 486
	err = regmap_read_poll_timeout(priv->map_reg, MCP251XFD_REG_CON, con,
				       FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK,
487
						 con) == mode_req,
488 489
				       MCP251XFD_POLL_SLEEP_US,
				       MCP251XFD_POLL_TIMEOUT_US);
490
	if (err) {
491
		u8 mode = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, con);
492 493 494

		netdev_err(priv->ndev,
			   "Controller failed to enter mode %s Mode (%u) and stays in %s Mode (%u).\n",
495 496
			   mcp251xfd_get_mode_str(mode_req), mode_req,
			   mcp251xfd_get_mode_str(mode), mode);
497 498 499 500 501 502 503
		return err;
	}

	return 0;
}

static inline int
504
mcp251xfd_chip_set_mode(const struct mcp251xfd_priv *priv,
505 506
			const u8 mode_req)
{
507
	return __mcp251xfd_chip_set_mode(priv, mode_req, false);
508 509 510
}

static inline int
511
mcp251xfd_chip_set_mode_nowait(const struct mcp251xfd_priv *priv,
512 513
			       const u8 mode_req)
{
514
	return __mcp251xfd_chip_set_mode(priv, mode_req, true);
515 516
}

517
static inline bool mcp251xfd_osc_invalid(u32 reg)
518 519 520 521
{
	return reg == 0x0 || reg == 0xffffffff;
}

522
static int mcp251xfd_chip_clock_enable(const struct mcp251xfd_priv *priv)
523 524 525 526 527 528 529
{
	u32 osc, osc_reference, osc_mask;
	int err;

	/* Set Power On Defaults for "Clock Output Divisor" and remove
	 * "Oscillator Disable" bit.
	 */
530 531 532 533
	osc = FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
			 MCP251XFD_REG_OSC_CLKODIV_10);
	osc_reference = MCP251XFD_REG_OSC_OSCRDY;
	osc_mask = MCP251XFD_REG_OSC_OSCRDY | MCP251XFD_REG_OSC_PLLRDY;
534 535 536 537 538 539 540

	/* Note:
	 *
	 * If the controller is in Sleep Mode the following write only
	 * removes the "Oscillator Disable" bit and powers it up. All
	 * other bits are unaffected.
	 */
541
	err = regmap_write(priv->map_reg, MCP251XFD_REG_OSC, osc);
542 543 544 545
	if (err)
		return err;

	/* Wait for "Oscillator Ready" bit */
546
	err = regmap_read_poll_timeout(priv->map_reg, MCP251XFD_REG_OSC, osc,
547
				       (osc & osc_mask) == osc_reference,
548 549 550
				       MCP251XFD_OSC_STAB_SLEEP_US,
				       MCP251XFD_OSC_STAB_TIMEOUT_US);
	if (mcp251xfd_osc_invalid(osc)) {
551 552
		netdev_err(priv->ndev,
			   "Failed to detect %s (osc=0x%08x).\n",
553
			   mcp251xfd_get_model_str(priv), osc);
554 555 556 557 558 559 560 561 562 563 564 565 566
		return -ENODEV;
	} else if (err == -ETIMEDOUT) {
		netdev_err(priv->ndev,
			   "Timeout waiting for Oscillator Ready (osc=0x%08x, osc_reference=0x%08x)\n",
			   osc, osc_reference);
		return -ETIMEDOUT;
	} else if (err) {
		return err;
	}

	return 0;
}

567
static int mcp251xfd_chip_softreset_do(const struct mcp251xfd_priv *priv)
568
{
569
	const __be16 cmd = mcp251xfd_cmd_reset();
570 571 572 573 574
	int err;

	/* The Set Mode and SPI Reset command only seems to works if
	 * the controller is not in Sleep Mode.
	 */
575
	err = mcp251xfd_chip_clock_enable(priv);
576 577 578
	if (err)
		return err;

579
	err = mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_CONFIG);
580 581 582 583 584 585 586
	if (err)
		return err;

	/* spi_write_then_read() works with non DMA-safe buffers */
	return spi_write_then_read(priv->spi, &cmd, sizeof(cmd), NULL, 0);
}

587
static int mcp251xfd_chip_softreset_check(const struct mcp251xfd_priv *priv)
588 589 590 591 592
{
	u32 osc, osc_reference;
	u8 mode;
	int err;

593
	err = mcp251xfd_chip_get_mode(priv, &mode);
594 595 596
	if (err)
		return err;

597
	if (mode != MCP251XFD_REG_CON_MODE_CONFIG) {
598 599
		netdev_info(priv->ndev,
			    "Controller not in Config Mode after reset, but in %s Mode (%u).\n",
600
			    mcp251xfd_get_mode_str(mode), mode);
601 602 603
		return -ETIMEDOUT;
	}

604 605 606
	osc_reference = MCP251XFD_REG_OSC_OSCRDY |
		FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
			   MCP251XFD_REG_OSC_CLKODIV_10);
607 608

	/* check reset defaults of OSC reg */
609
	err = regmap_read(priv->map_reg, MCP251XFD_REG_OSC, &osc);
610 611 612 613 614 615 616 617 618 619 620 621 622
	if (err)
		return err;

	if (osc != osc_reference) {
		netdev_info(priv->ndev,
			    "Controller failed to reset. osc=0x%08x, reference value=0x%08x\n",
			    osc, osc_reference);
		return -ETIMEDOUT;
	}

	return 0;
}

623
static int mcp251xfd_chip_softreset(const struct mcp251xfd_priv *priv)
624 625 626
{
	int err, i;

627
	for (i = 0; i < MCP251XFD_SOFTRESET_RETRIES_MAX; i++) {
628 629 630 631
		if (i)
			netdev_info(priv->ndev,
				    "Retrying to reset Controller.\n");

632
		err = mcp251xfd_chip_softreset_do(priv);
633 634 635 636 637
		if (err == -ETIMEDOUT)
			continue;
		if (err)
			return err;

638
		err = mcp251xfd_chip_softreset_check(priv);
639 640 641 642 643 644 645 646 647 648 649 650 651 652
		if (err == -ETIMEDOUT)
			continue;
		if (err)
			return err;

		return 0;
	}

	if (err)
		return err;

	return -ETIMEDOUT;
}

653
static int mcp251xfd_chip_clock_init(const struct mcp251xfd_priv *priv)
654 655 656 657 658 659 660 661
{
	u32 osc;
	int err;

	/* Activate Low Power Mode on Oscillator Disable. This only
	 * works on the MCP2518FD. The MCP2517FD will go into normal
	 * Sleep Mode instead.
	 */
662 663 664 665
	osc = MCP251XFD_REG_OSC_LPMEN |
		FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK,
			   MCP251XFD_REG_OSC_CLKODIV_10);
	err = regmap_write(priv->map_reg, MCP251XFD_REG_OSC, osc);
666 667 668 669 670 671 672 673
	if (err)
		return err;

	/* Set Time Base Counter Prescaler to 1.
	 *
	 * This means an overflow of the 32 bit Time Base Counter
	 * register at 40 MHz every 107 seconds.
	 */
674 675
	return regmap_write(priv->map_reg, MCP251XFD_REG_TSCON,
			    MCP251XFD_REG_TSCON_TBCEN);
676 677
}

678
static int mcp251xfd_set_bittiming(const struct mcp251xfd_priv *priv)
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
{
	const struct can_bittiming *bt = &priv->can.bittiming;
	const struct can_bittiming *dbt = &priv->can.data_bittiming;
	u32 val = 0;
	s8 tdco;
	int err;

	/* CAN Control Register
	 *
	 * - no transmit bandwidth sharing
	 * - config mode
	 * - disable transmit queue
	 * - store in transmit FIFO event
	 * - transition to restricted operation mode on system error
	 * - ESI is transmitted recessive when ESI of message is high or
	 *   CAN controller error passive
	 * - restricted retransmission attempts,
	 *   use TQXCON_TXAT and FIFOCON_TXAT
	 * - wake-up filter bits T11FILTER
	 * - use CAN bus line filter for wakeup
	 * - protocol exception is treated as a form error
	 * - Do not compare data bytes
	 */
702 703 704 705 706 707 708 709 710
	val = FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK,
			 MCP251XFD_REG_CON_MODE_CONFIG) |
		MCP251XFD_REG_CON_STEF |
		MCP251XFD_REG_CON_ESIGM |
		MCP251XFD_REG_CON_RTXAT |
		FIELD_PREP(MCP251XFD_REG_CON_WFT_MASK,
			   MCP251XFD_REG_CON_WFT_T11FILTER) |
		MCP251XFD_REG_CON_WAKFIL |
		MCP251XFD_REG_CON_PXEDIS;
711 712

	if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO))
713
		val |= MCP251XFD_REG_CON_ISOCRCEN;
714

715
	err = regmap_write(priv->map_reg, MCP251XFD_REG_CON, val);
716 717 718 719
	if (err)
		return err;

	/* Nominal Bit Time */
720 721
	val = FIELD_PREP(MCP251XFD_REG_NBTCFG_BRP_MASK, bt->brp - 1) |
		FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG1_MASK,
722
			   bt->prop_seg + bt->phase_seg1 - 1) |
723
		FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG2_MASK,
724
			   bt->phase_seg2 - 1) |
725
		FIELD_PREP(MCP251XFD_REG_NBTCFG_SJW_MASK, bt->sjw - 1);
726

727
	err = regmap_write(priv->map_reg, MCP251XFD_REG_NBTCFG, val);
728 729 730 731 732 733 734
	if (err)
		return err;

	if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD))
		return 0;

	/* Data Bit Time */
735 736
	val = FIELD_PREP(MCP251XFD_REG_DBTCFG_BRP_MASK, dbt->brp - 1) |
		FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG1_MASK,
737
			   dbt->prop_seg + dbt->phase_seg1 - 1) |
738
		FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG2_MASK,
739
			   dbt->phase_seg2 - 1) |
740
		FIELD_PREP(MCP251XFD_REG_DBTCFG_SJW_MASK, dbt->sjw - 1);
741

742
	err = regmap_write(priv->map_reg, MCP251XFD_REG_DBTCFG, val);
743 744 745 746 747 748
	if (err)
		return err;

	/* Transmitter Delay Compensation */
	tdco = clamp_t(int, dbt->brp * (dbt->prop_seg + dbt->phase_seg1),
		       -64, 63);
749 750 751
	val = FIELD_PREP(MCP251XFD_REG_TDC_TDCMOD_MASK,
			 MCP251XFD_REG_TDC_TDCMOD_AUTO) |
		FIELD_PREP(MCP251XFD_REG_TDC_TDCO_MASK, tdco);
752

753
	return regmap_write(priv->map_reg, MCP251XFD_REG_TDC, val);
754 755
}

756
static int mcp251xfd_chip_rx_int_enable(const struct mcp251xfd_priv *priv)
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
{
	u32 val;

	if (!priv->rx_int)
		return 0;

	/* Configure GPIOs:
	 * - PIN0: GPIO Input
	 * - PIN1: GPIO Input/RX Interrupt
	 *
	 * PIN1 must be Input, otherwise there is a glitch on the
	 * rx-INT line. It happens between setting the PIN as output
	 * (in the first byte of the SPI transfer) and configuring the
	 * PIN as interrupt (in the last byte of the SPI transfer).
	 */
772 773 774
	val = MCP251XFD_REG_IOCON_PM0 | MCP251XFD_REG_IOCON_TRIS1 |
		MCP251XFD_REG_IOCON_TRIS0;
	return regmap_write(priv->map_reg, MCP251XFD_REG_IOCON, val);
775 776
}

777
static int mcp251xfd_chip_rx_int_disable(const struct mcp251xfd_priv *priv)
778 779 780 781 782 783 784 785 786 787
{
	u32 val;

	if (!priv->rx_int)
		return 0;

	/* Configure GPIOs:
	 * - PIN0: GPIO Input
	 * - PIN1: GPIO Input
	 */
788 789 790
	val = MCP251XFD_REG_IOCON_PM1 | MCP251XFD_REG_IOCON_PM0 |
		MCP251XFD_REG_IOCON_TRIS1 | MCP251XFD_REG_IOCON_TRIS0;
	return regmap_write(priv->map_reg, MCP251XFD_REG_IOCON, val);
791 792 793
}

static int
794 795
mcp251xfd_chip_rx_fifo_init_one(const struct mcp251xfd_priv *priv,
				const struct mcp251xfd_rx_ring *ring)
796 797 798 799 800 801 802 803 804
{
	u32 fifo_con;

	/* Enable RXOVIE on _all_ RX FIFOs, not just the last one.
	 *
	 * FIFOs hit by a RX MAB overflow and RXOVIE enabled will
	 * generate a RXOVIF, use this to properly detect RX MAB
	 * overflows.
	 */
805
	fifo_con = FIELD_PREP(MCP251XFD_REG_FIFOCON_FSIZE_MASK,
806
			      ring->obj_num - 1) |
807 808 809
		MCP251XFD_REG_FIFOCON_RXTSEN |
		MCP251XFD_REG_FIFOCON_RXOVIE |
		MCP251XFD_REG_FIFOCON_TFNRFNIE;
810

811
	if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD))
812 813
		fifo_con |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
				       MCP251XFD_REG_FIFOCON_PLSIZE_64);
814
	else
815 816
		fifo_con |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
				       MCP251XFD_REG_FIFOCON_PLSIZE_8);
817 818

	return regmap_write(priv->map_reg,
819
			    MCP251XFD_REG_FIFOCON(ring->fifo_nr), fifo_con);
820 821 822
}

static int
823 824
mcp251xfd_chip_rx_filter_init_one(const struct mcp251xfd_priv *priv,
				  const struct mcp251xfd_rx_ring *ring)
825 826 827
{
	u32 fltcon;

828 829
	fltcon = MCP251XFD_REG_FLTCON_FLTEN(ring->nr) |
		MCP251XFD_REG_FLTCON_FBP(ring->nr, ring->fifo_nr);
830 831

	return regmap_update_bits(priv->map_reg,
832 833
				  MCP251XFD_REG_FLTCON(ring->nr >> 2),
				  MCP251XFD_REG_FLTCON_FLT_MASK(ring->nr),
834 835 836
				  fltcon);
}

837
static int mcp251xfd_chip_fifo_init(const struct mcp251xfd_priv *priv)
838
{
839 840
	const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
	const struct mcp251xfd_rx_ring *rx_ring;
841 842 843 844
	u32 val;
	int err, n;

	/* TEF */
845
	val = FIELD_PREP(MCP251XFD_REG_TEFCON_FSIZE_MASK,
846
			 tx_ring->obj_num - 1) |
847 848 849
		MCP251XFD_REG_TEFCON_TEFTSEN |
		MCP251XFD_REG_TEFCON_TEFOVIE |
		MCP251XFD_REG_TEFCON_TEFNEIE;
850

851
	err = regmap_write(priv->map_reg, MCP251XFD_REG_TEFCON, val);
852 853 854 855
	if (err)
		return err;

	/* FIFO 1 - TX */
856
	val = FIELD_PREP(MCP251XFD_REG_FIFOCON_FSIZE_MASK,
857
			 tx_ring->obj_num - 1) |
858 859
		MCP251XFD_REG_FIFOCON_TXEN |
		MCP251XFD_REG_FIFOCON_TXATIE;
860

861
	if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_FD))
862 863
		val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
				  MCP251XFD_REG_FIFOCON_PLSIZE_64);
864
	else
865 866
		val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
				  MCP251XFD_REG_FIFOCON_PLSIZE_8);
867 868

	if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
869 870
		val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_TXAT_MASK,
				  MCP251XFD_REG_FIFOCON_TXAT_ONE_SHOT);
871
	else
872 873
		val |= FIELD_PREP(MCP251XFD_REG_FIFOCON_TXAT_MASK,
				  MCP251XFD_REG_FIFOCON_TXAT_UNLIMITED);
874 875

	err = regmap_write(priv->map_reg,
876
			   MCP251XFD_REG_FIFOCON(MCP251XFD_TX_FIFO),
877 878 879 880 881
			   val);
	if (err)
		return err;

	/* RX FIFOs */
882 883
	mcp251xfd_for_each_rx_ring(priv, rx_ring, n) {
		err = mcp251xfd_chip_rx_fifo_init_one(priv, rx_ring);
884 885 886
		if (err)
			return err;

887
		err = mcp251xfd_chip_rx_filter_init_one(priv, rx_ring);
888 889 890 891 892 893 894
		if (err)
			return err;
	}

	return 0;
}

895
static int mcp251xfd_chip_ecc_init(struct mcp251xfd_priv *priv)
896
{
897
	struct mcp251xfd_ecc *ecc = &priv->ecc;
898 899 900 901 902 903
	void *ram;
	u32 val = 0;
	int err;

	ecc->ecc_stat = 0;

904 905
	if (priv->devtype_data.quirks & MCP251XFD_QUIRK_ECC)
		val = MCP251XFD_REG_ECCCON_ECCEN;
906

907 908
	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON,
				 MCP251XFD_REG_ECCCON_ECCEN, val);
909 910 911
	if (err)
		return err;

912
	ram = kzalloc(MCP251XFD_RAM_SIZE, GFP_KERNEL);
913 914 915
	if (!ram)
		return -ENOMEM;

916 917
	err = regmap_raw_write(priv->map_reg, MCP251XFD_RAM_START, ram,
			       MCP251XFD_RAM_SIZE);
918 919 920 921 922
	kfree(ram);

	return err;
}

923
static inline void mcp251xfd_ecc_tefif_successful(struct mcp251xfd_priv *priv)
924
{
925
	struct mcp251xfd_ecc *ecc = &priv->ecc;
926 927 928 929

	ecc->ecc_stat = 0;
}

930
static u8 mcp251xfd_get_normal_mode(const struct mcp251xfd_priv *priv)
931 932 933
{
	u8 mode;

934
	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
935
		mode = MCP251XFD_REG_CON_MODE_LISTENONLY;
936
	else if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
937
		mode = MCP251XFD_REG_CON_MODE_MIXED;
938
	else
939
		mode = MCP251XFD_REG_CON_MODE_CAN2_0;
940 941 942 943 944

	return mode;
}

static int
945
__mcp251xfd_chip_set_normal_mode(const struct mcp251xfd_priv *priv,
946 947 948 949
				 bool nowait)
{
	u8 mode;

950
	mode = mcp251xfd_get_normal_mode(priv);
951

952
	return __mcp251xfd_chip_set_mode(priv, mode, nowait);
953 954 955
}

static inline int
956
mcp251xfd_chip_set_normal_mode(const struct mcp251xfd_priv *priv)
957
{
958
	return __mcp251xfd_chip_set_normal_mode(priv, false);
959 960 961
}

static inline int
962
mcp251xfd_chip_set_normal_mode_nowait(const struct mcp251xfd_priv *priv)
963
{
964
	return __mcp251xfd_chip_set_normal_mode(priv, true);
965 966
}

967
static int mcp251xfd_chip_interrupts_enable(const struct mcp251xfd_priv *priv)
968 969 970 971
{
	u32 val;
	int err;

972 973
	val = MCP251XFD_REG_CRC_FERRIE | MCP251XFD_REG_CRC_CRCERRIE;
	err = regmap_write(priv->map_reg, MCP251XFD_REG_CRC, val);
974 975 976
	if (err)
		return err;

977 978
	val = MCP251XFD_REG_ECCCON_DEDIE | MCP251XFD_REG_ECCCON_SECIE;
	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON, val, val);
979 980 981
	if (err)
		return err;

982 983 984 985 986 987 988 989 990
	val = MCP251XFD_REG_INT_CERRIE |
		MCP251XFD_REG_INT_SERRIE |
		MCP251XFD_REG_INT_RXOVIE |
		MCP251XFD_REG_INT_TXATIE |
		MCP251XFD_REG_INT_SPICRCIE |
		MCP251XFD_REG_INT_ECCIE |
		MCP251XFD_REG_INT_TEFIE |
		MCP251XFD_REG_INT_MODIE |
		MCP251XFD_REG_INT_RXIE;
991 992

	if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
993
		val |= MCP251XFD_REG_INT_IVMIE;
994

995
	return regmap_write(priv->map_reg, MCP251XFD_REG_INT, val);
996 997
}

998
static int mcp251xfd_chip_interrupts_disable(const struct mcp251xfd_priv *priv)
999 1000 1001 1002
{
	int err;
	u32 mask;

1003
	err = regmap_write(priv->map_reg, MCP251XFD_REG_INT, 0);
1004 1005 1006
	if (err)
		return err;

1007 1008
	mask = MCP251XFD_REG_ECCCON_DEDIE | MCP251XFD_REG_ECCCON_SECIE;
	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCCON,
1009 1010 1011 1012
				 mask, 0x0);
	if (err)
		return err;

1013
	return regmap_write(priv->map_reg, MCP251XFD_REG_CRC, 0);
1014 1015
}

1016
static int mcp251xfd_chip_stop(struct mcp251xfd_priv *priv,
1017 1018 1019 1020
			       const enum can_state state)
{
	priv->can.state = state;

1021 1022 1023
	mcp251xfd_chip_interrupts_disable(priv);
	mcp251xfd_chip_rx_int_disable(priv);
	return mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_SLEEP);
1024 1025
}

1026
static int mcp251xfd_chip_start(struct mcp251xfd_priv *priv)
1027 1028 1029
{
	int err;

1030
	err = mcp251xfd_chip_softreset(priv);
1031 1032 1033
	if (err)
		goto out_chip_stop;

1034
	err = mcp251xfd_chip_clock_init(priv);
1035 1036 1037
	if (err)
		goto out_chip_stop;

1038
	err = mcp251xfd_set_bittiming(priv);
1039 1040 1041
	if (err)
		goto out_chip_stop;

1042
	err = mcp251xfd_chip_rx_int_enable(priv);
1043 1044 1045
	if (err)
		return err;

1046
	err = mcp251xfd_chip_ecc_init(priv);
1047 1048 1049
	if (err)
		goto out_chip_stop;

1050
	mcp251xfd_ring_init(priv);
1051

1052
	err = mcp251xfd_chip_fifo_init(priv);
1053 1054 1055 1056 1057
	if (err)
		goto out_chip_stop;

	priv->can.state = CAN_STATE_ERROR_ACTIVE;

1058
	err = mcp251xfd_chip_set_normal_mode(priv);
1059 1060 1061 1062 1063 1064
	if (err)
		goto out_chip_stop;

	return 0;

 out_chip_stop:
1065
	mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
1066 1067 1068 1069

	return err;
}

1070
static int mcp251xfd_set_mode(struct net_device *ndev, enum can_mode mode)
1071
{
1072
	struct mcp251xfd_priv *priv = netdev_priv(ndev);
1073 1074 1075 1076
	int err;

	switch (mode) {
	case CAN_MODE_START:
1077
		err = mcp251xfd_chip_start(priv);
1078 1079 1080
		if (err)
			return err;

1081
		err = mcp251xfd_chip_interrupts_enable(priv);
1082
		if (err) {
1083
			mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
			return err;
		}

		netif_wake_queue(ndev);
		break;

	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

1097
static int __mcp251xfd_get_berr_counter(const struct net_device *ndev,
1098 1099
					struct can_berr_counter *bec)
{
1100
	const struct mcp251xfd_priv *priv = netdev_priv(ndev);
1101 1102 1103
	u32 trec;
	int err;

1104
	err = regmap_read(priv->map_reg, MCP251XFD_REG_TREC, &trec);
1105 1106 1107
	if (err)
		return err;

1108
	if (trec & MCP251XFD_REG_TREC_TXBO)
1109 1110
		bec->txerr = 256;
	else
1111 1112
		bec->txerr = FIELD_GET(MCP251XFD_REG_TREC_TEC_MASK, trec);
	bec->rxerr = FIELD_GET(MCP251XFD_REG_TREC_REC_MASK, trec);
1113 1114 1115 1116

	return 0;
}

1117
static int mcp251xfd_get_berr_counter(const struct net_device *ndev,
1118 1119
				      struct can_berr_counter *bec)
{
1120
	const struct mcp251xfd_priv *priv = netdev_priv(ndev);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

	/* Avoid waking up the controller if the interface is down */
	if (!(ndev->flags & IFF_UP))
		return 0;

	/* The controller is powered down during Bus Off, use saved
	 * bec values.
	 */
	if (priv->can.state == CAN_STATE_BUS_OFF) {
		*bec = priv->bec;
		return 0;
	}

1134
	return __mcp251xfd_get_berr_counter(ndev, bec);
1135 1136
}

1137
static int mcp251xfd_check_tef_tail(const struct mcp251xfd_priv *priv)
1138 1139 1140 1141
{
	u8 tef_tail_chip, tef_tail;
	int err;

1142
	if (!IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY))
1143 1144
		return 0;

1145
	err = mcp251xfd_tef_tail_get_from_chip(priv, &tef_tail_chip);
1146 1147 1148
	if (err)
		return err;

1149
	tef_tail = mcp251xfd_get_tef_tail(priv);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	if (tef_tail_chip != tef_tail) {
		netdev_err(priv->ndev,
			   "TEF tail of chip (0x%02x) and ours (0x%08x) inconsistent.\n",
			   tef_tail_chip, tef_tail);
		return -EILSEQ;
	}

	return 0;
}

static int
1161 1162
mcp251xfd_check_rx_tail(const struct mcp251xfd_priv *priv,
			const struct mcp251xfd_rx_ring *ring)
1163 1164 1165 1166
{
	u8 rx_tail_chip, rx_tail;
	int err;

1167
	if (!IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY))
1168 1169
		return 0;

1170
	err = mcp251xfd_rx_tail_get_from_chip(priv, ring, &rx_tail_chip);
1171 1172 1173
	if (err)
		return err;

1174
	rx_tail = mcp251xfd_get_rx_tail(ring);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	if (rx_tail_chip != rx_tail) {
		netdev_err(priv->ndev,
			   "RX tail of chip (%d) and ours (%d) inconsistent.\n",
			   rx_tail_chip, rx_tail);
		return -EILSEQ;
	}

	return 0;
}

static int
1186
mcp251xfd_handle_tefif_recover(const struct mcp251xfd_priv *priv, const u32 seq)
1187
{
1188
	const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
1189 1190 1191
	u32 tef_sta;
	int err;

1192
	err = regmap_read(priv->map_reg, MCP251XFD_REG_TEFSTA, &tef_sta);
1193 1194 1195
	if (err)
		return err;

1196
	if (tef_sta & MCP251XFD_REG_TEFSTA_TEFOVIF) {
1197 1198 1199 1200 1201 1202 1203
		netdev_err(priv->ndev,
			   "Transmit Event FIFO buffer overflow.\n");
		return -ENOBUFS;
	}

	netdev_info(priv->ndev,
		    "Transmit Event FIFO buffer %s. (seq=0x%08x, tef_tail=0x%08x, tef_head=0x%08x, tx_head=0x%08x)\n",
1204 1205
		    tef_sta & MCP251XFD_REG_TEFSTA_TEFFIF ?
		    "full" : tef_sta & MCP251XFD_REG_TEFSTA_TEFNEIF ?
1206 1207 1208 1209 1210 1211 1212 1213
		    "not empty" : "empty",
		    seq, priv->tef.tail, priv->tef.head, tx_ring->head);

	/* The Sequence Number in the TEF doesn't match our tef_tail. */
	return -EAGAIN;
}

static int
1214 1215
mcp251xfd_handle_tefif_one(struct mcp251xfd_priv *priv,
			   const struct mcp251xfd_hw_tef_obj *hw_tef_obj)
1216
{
1217
	struct mcp251xfd_tx_ring *tx_ring = priv->tx;
1218 1219 1220 1221
	struct net_device_stats *stats = &priv->ndev->stats;
	u32 seq, seq_masked, tef_tail_masked;
	int err;

1222
	seq = FIELD_GET(MCP251XFD_OBJ_FLAGS_SEQ_MCP2518FD_MASK,
1223 1224 1225 1226 1227 1228 1229
			hw_tef_obj->flags);

	/* Use the MCP2517FD mask on the MCP2518FD, too. We only
	 * compare 7 bits, this should be enough to detect
	 * net-yet-completed, i.e. old TEF objects.
	 */
	seq_masked = seq &
1230
		field_mask(MCP251XFD_OBJ_FLAGS_SEQ_MCP2517FD_MASK);
1231
	tef_tail_masked = priv->tef.tail &
1232
		field_mask(MCP251XFD_OBJ_FLAGS_SEQ_MCP2517FD_MASK);
1233
	if (seq_masked != tef_tail_masked)
1234
		return mcp251xfd_handle_tefif_recover(priv, seq);
1235 1236 1237

	stats->tx_bytes +=
		can_rx_offload_get_echo_skb(&priv->offload,
1238
					    mcp251xfd_get_tef_tail(priv),
1239 1240 1241 1242
					    hw_tef_obj->ts);
	stats->tx_packets++;

	/* finally increment the TEF pointer */
1243
	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_TEFCON,
1244
				 GENMASK(15, 8),
1245
				 MCP251XFD_REG_TEFCON_UINC);
1246 1247 1248 1249 1250 1251
	if (err)
		return err;

	priv->tef.tail++;
	tx_ring->tail++;

1252
	return mcp251xfd_check_tef_tail(priv);
1253 1254
}

1255
static int mcp251xfd_tef_ring_update(struct mcp251xfd_priv *priv)
1256
{
1257
	const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
1258 1259 1260 1261
	unsigned int new_head;
	u8 chip_tx_tail;
	int err;

1262
	err = mcp251xfd_tx_tail_get_from_chip(priv, &chip_tx_tail);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	if (err)
		return err;

	/* chip_tx_tail, is the next TX-Object send by the HW.
	 * The new TEF head must be >= the old head, ...
	 */
	new_head = round_down(priv->tef.head, tx_ring->obj_num) + chip_tx_tail;
	if (new_head <= priv->tef.head)
		new_head += tx_ring->obj_num;

	/* ... but it cannot exceed the TX head. */
	priv->tef.head = min(new_head, tx_ring->head);

1276
	return mcp251xfd_check_tef_tail(priv);
1277 1278 1279
}

static inline int
1280 1281
mcp251xfd_tef_obj_read(const struct mcp251xfd_priv *priv,
		       struct mcp251xfd_hw_tef_obj *hw_tef_obj,
1282 1283
		       const u8 offset, const u8 len)
{
1284
	const struct mcp251xfd_tx_ring *tx_ring = priv->tx;
1285

1286
	if (IS_ENABLED(CONFIG_CAN_MCP251XFD_SANITY) &&
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	    (offset > tx_ring->obj_num ||
	     len > tx_ring->obj_num ||
	     offset + len > tx_ring->obj_num)) {
		netdev_err(priv->ndev,
			   "Trying to read to many TEF objects (max=%d, offset=%d, len=%d).\n",
			   tx_ring->obj_num, offset, len);
		return -ERANGE;
	}

	return regmap_bulk_read(priv->map_rx,
1297
				mcp251xfd_get_tef_obj_addr(offset),
1298 1299 1300 1301
				hw_tef_obj,
				sizeof(*hw_tef_obj) / sizeof(u32) * len);
}

1302
static int mcp251xfd_handle_tefif(struct mcp251xfd_priv *priv)
1303
{
1304
	struct mcp251xfd_hw_tef_obj hw_tef_obj[MCP251XFD_TX_OBJ_NUM_MAX];
1305 1306 1307
	u8 tef_tail, len, l;
	int err, i;

1308
	err = mcp251xfd_tef_ring_update(priv);
1309 1310 1311
	if (err)
		return err;

1312 1313 1314 1315
	tef_tail = mcp251xfd_get_tef_tail(priv);
	len = mcp251xfd_get_tef_len(priv);
	l = mcp251xfd_get_tef_linear_len(priv);
	err = mcp251xfd_tef_obj_read(priv, hw_tef_obj, tef_tail, l);
1316 1317 1318 1319
	if (err)
		return err;

	if (l < len) {
1320
		err = mcp251xfd_tef_obj_read(priv, &hw_tef_obj[l], 0, len - l);
1321 1322 1323 1324 1325
		if (err)
			return err;
	}

	for (i = 0; i < len; i++) {
1326
		err = mcp251xfd_handle_tefif_one(priv, &hw_tef_obj[i]);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		/* -EAGAIN means the Sequence Number in the TEF
		 * doesn't match our tef_tail. This can happen if we
		 * read the TEF objects too early. Leave loop let the
		 * interrupt handler call us again.
		 */
		if (err == -EAGAIN)
			goto out_netif_wake_queue;
		if (err)
			return err;
	}

 out_netif_wake_queue:
1339
	mcp251xfd_ecc_tefif_successful(priv);
1340

1341
	if (mcp251xfd_get_tx_free(priv->tx)) {
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		/* Make sure that anybody stopping the queue after
		 * this sees the new tx_ring->tail.
		 */
		smp_mb();
		netif_wake_queue(priv->ndev);
	}

	return 0;
}

static int
1353 1354
mcp251xfd_rx_ring_update(const struct mcp251xfd_priv *priv,
			 struct mcp251xfd_rx_ring *ring)
1355 1356 1357 1358 1359
{
	u32 new_head;
	u8 chip_rx_head;
	int err;

1360
	err = mcp251xfd_rx_head_get_from_chip(priv, ring, &chip_rx_head);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	if (err)
		return err;

	/* chip_rx_head, is the next RX-Object filled by the HW.
	 * The new RX head must be >= the old head.
	 */
	new_head = round_down(ring->head, ring->obj_num) + chip_rx_head;
	if (new_head <= ring->head)
		new_head += ring->obj_num;

	ring->head = new_head;

1373
	return mcp251xfd_check_rx_tail(priv, ring);
1374 1375 1376
}

static void
1377 1378
mcp251xfd_hw_rx_obj_to_skb(const struct mcp251xfd_priv *priv,
			   const struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj,
1379 1380 1381 1382
			   struct sk_buff *skb)
{
	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;

1383
	if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_IDE) {
1384 1385
		u32 sid, eid;

1386 1387
		eid = FIELD_GET(MCP251XFD_OBJ_ID_EID_MASK, hw_rx_obj->id);
		sid = FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK, hw_rx_obj->id);
1388 1389

		cfd->can_id = CAN_EFF_FLAG |
1390 1391
			FIELD_PREP(MCP251XFD_REG_FRAME_EFF_EID_MASK, eid) |
			FIELD_PREP(MCP251XFD_REG_FRAME_EFF_SID_MASK, sid);
1392
	} else {
1393
		cfd->can_id = FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK,
1394 1395 1396 1397
					hw_rx_obj->id);
	}

	/* CANFD */
1398
	if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_FDF) {
1399 1400
		u8 dlc;

1401
		if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_ESI)
1402 1403
			cfd->flags |= CANFD_ESI;

1404
		if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_BRS)
1405 1406
			cfd->flags |= CANFD_BRS;

1407
		dlc = FIELD_GET(MCP251XFD_OBJ_FLAGS_DLC, hw_rx_obj->flags);
1408 1409
		cfd->len = can_dlc2len(get_canfd_dlc(dlc));
	} else {
1410
		if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_RTR)
1411 1412
			cfd->can_id |= CAN_RTR_FLAG;

1413
		cfd->len = get_can_dlc(FIELD_GET(MCP251XFD_OBJ_FLAGS_DLC,
1414 1415 1416 1417 1418 1419 1420
						 hw_rx_obj->flags));
	}

	memcpy(cfd->data, hw_rx_obj->data, cfd->len);
}

static int
1421 1422 1423
mcp251xfd_handle_rxif_one(struct mcp251xfd_priv *priv,
			  struct mcp251xfd_rx_ring *ring,
			  const struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj)
1424 1425 1426 1427 1428 1429
{
	struct net_device_stats *stats = &priv->ndev->stats;
	struct sk_buff *skb;
	struct canfd_frame *cfd;
	int err;

1430
	if (hw_rx_obj->flags & MCP251XFD_OBJ_FLAGS_FDF)
1431 1432 1433 1434 1435 1436 1437 1438 1439
		skb = alloc_canfd_skb(priv->ndev, &cfd);
	else
		skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cfd);

	if (!cfd) {
		stats->rx_dropped++;
		return 0;
	}

1440
	mcp251xfd_hw_rx_obj_to_skb(priv, hw_rx_obj, skb);
1441 1442 1443 1444 1445 1446 1447 1448
	err = can_rx_offload_queue_sorted(&priv->offload, skb, hw_rx_obj->ts);
	if (err)
		stats->rx_fifo_errors++;

	ring->tail++;

	/* finally increment the RX pointer */
	return regmap_update_bits(priv->map_reg,
1449
				  MCP251XFD_REG_FIFOCON(ring->fifo_nr),
1450
				  GENMASK(15, 8),
1451
				  MCP251XFD_REG_FIFOCON_UINC);
1452 1453 1454
}

static inline int
1455 1456 1457
mcp251xfd_rx_obj_read(const struct mcp251xfd_priv *priv,
		      const struct mcp251xfd_rx_ring *ring,
		      struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj,
1458 1459 1460 1461 1462
		      const u8 offset, const u8 len)
{
	int err;

	err = regmap_bulk_read(priv->map_rx,
1463
			       mcp251xfd_get_rx_obj_addr(ring, offset),
1464 1465 1466 1467 1468 1469 1470
			       hw_rx_obj,
			       len * ring->obj_size / sizeof(u32));

	return err;
}

static int
1471 1472
mcp251xfd_handle_rxif_ring(struct mcp251xfd_priv *priv,
			   struct mcp251xfd_rx_ring *ring)
1473
{
1474
	struct mcp251xfd_hw_rx_obj_canfd *hw_rx_obj = ring->obj;
1475 1476 1477
	u8 rx_tail, len;
	int err, i;

1478
	err = mcp251xfd_rx_ring_update(priv, ring);
1479 1480 1481
	if (err)
		return err;

1482 1483
	while ((len = mcp251xfd_get_rx_linear_len(ring))) {
		rx_tail = mcp251xfd_get_rx_tail(ring);
1484

1485
		err = mcp251xfd_rx_obj_read(priv, ring, hw_rx_obj,
1486 1487 1488 1489 1490
					    rx_tail, len);
		if (err)
			return err;

		for (i = 0; i < len; i++) {
1491
			err = mcp251xfd_handle_rxif_one(priv, ring,
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
							(void *)hw_rx_obj +
							i * ring->obj_size);
			if (err)
				return err;
		}
	}

	return 0;
}

1502
static int mcp251xfd_handle_rxif(struct mcp251xfd_priv *priv)
1503
{
1504
	struct mcp251xfd_rx_ring *ring;
1505 1506
	int err, n;

1507 1508
	mcp251xfd_for_each_rx_ring(priv, ring, n) {
		err = mcp251xfd_handle_rxif_ring(priv, ring);
1509 1510 1511 1512 1513 1514 1515
		if (err)
			return err;
	}

	return 0;
}

1516
static inline int mcp251xfd_get_timestamp(const struct mcp251xfd_priv *priv,
1517 1518
					  u32 *timestamp)
{
1519
	return regmap_read(priv->map_reg, MCP251XFD_REG_TBC, timestamp);
1520 1521 1522
}

static struct sk_buff *
1523
mcp251xfd_alloc_can_err_skb(const struct mcp251xfd_priv *priv,
1524 1525 1526 1527
			    struct can_frame **cf, u32 *timestamp)
{
	int err;

1528
	err = mcp251xfd_get_timestamp(priv, timestamp);
1529 1530 1531 1532 1533 1534
	if (err)
		return NULL;

	return alloc_can_err_skb(priv->ndev, cf);
}

1535
static int mcp251xfd_handle_rxovif(struct mcp251xfd_priv *priv)
1536 1537
{
	struct net_device_stats *stats = &priv->ndev->stats;
1538
	struct mcp251xfd_rx_ring *ring;
1539 1540 1541 1542 1543 1544 1545 1546
	struct sk_buff *skb;
	struct can_frame *cf;
	u32 timestamp, rxovif;
	int err, i;

	stats->rx_over_errors++;
	stats->rx_errors++;

1547
	err = regmap_read(priv->map_reg, MCP251XFD_REG_RXOVIF, &rxovif);
1548 1549 1550
	if (err)
		return err;

1551
	mcp251xfd_for_each_rx_ring(priv, ring, i) {
1552 1553 1554 1555
		if (!(rxovif & BIT(ring->fifo_nr)))
			continue;

		/* If SERRIF is active, there was a RX MAB overflow. */
1556
		if (priv->regs_status.intf & MCP251XFD_REG_INT_SERRIF) {
1557 1558 1559 1560 1561 1562 1563 1564 1565
			netdev_info(priv->ndev,
				    "RX-%d: MAB overflow detected.\n",
				    ring->nr);
		} else {
			netdev_info(priv->ndev,
				    "RX-%d: FIFO overflow.\n", ring->nr);
		}

		err = regmap_update_bits(priv->map_reg,
1566 1567
					 MCP251XFD_REG_FIFOSTA(ring->fifo_nr),
					 MCP251XFD_REG_FIFOSTA_RXOVIF,
1568 1569 1570 1571 1572
					 0x0);
		if (err)
			return err;
	}

1573
	skb = mcp251xfd_alloc_can_err_skb(priv, &cf, &timestamp);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	if (!skb)
		return 0;

	cf->can_id |= CAN_ERR_CRTL;
	cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;

	err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
	if (err)
		stats->rx_fifo_errors++;

	return 0;
}

1587
static int mcp251xfd_handle_txatif(struct mcp251xfd_priv *priv)
1588 1589 1590 1591 1592 1593
{
	netdev_info(priv->ndev, "%s\n", __func__);

	return 0;
}

1594
static int mcp251xfd_handle_ivmif(struct mcp251xfd_priv *priv)
1595 1596 1597 1598 1599 1600 1601
{
	struct net_device_stats *stats = &priv->ndev->stats;
	u32 bdiag1, timestamp;
	struct sk_buff *skb;
	struct can_frame *cf = NULL;
	int err;

1602
	err = mcp251xfd_get_timestamp(priv, &timestamp);
1603 1604 1605
	if (err)
		return err;

1606
	err = regmap_read(priv->map_reg, MCP251XFD_REG_BDIAG1, &bdiag1);
1607 1608 1609 1610 1611 1612
	if (err)
		return err;

	/* Write 0s to clear error bits, don't write 1s to non active
	 * bits, as they will be set.
	 */
1613
	err = regmap_write(priv->map_reg, MCP251XFD_REG_BDIAG1, 0x0);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	if (err)
		return err;

	priv->can.can_stats.bus_error++;

	skb = alloc_can_err_skb(priv->ndev, &cf);
	if (cf)
		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;

	/* Controller misconfiguration */
1624
	if (WARN_ON(bdiag1 & MCP251XFD_REG_BDIAG1_DLCMM))
1625 1626 1627 1628
		netdev_err(priv->ndev,
			   "recv'd DLC is larger than PLSIZE of FIFO element.");

	/* RX errors */
1629 1630
	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DCRCERR |
		      MCP251XFD_REG_BDIAG1_NCRCERR)) {
1631 1632 1633 1634 1635 1636
		netdev_dbg(priv->ndev, "CRC error\n");

		stats->rx_errors++;
		if (cf)
			cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
	}
1637 1638
	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DSTUFERR |
		      MCP251XFD_REG_BDIAG1_NSTUFERR)) {
1639 1640 1641 1642 1643 1644
		netdev_dbg(priv->ndev, "Stuff error\n");

		stats->rx_errors++;
		if (cf)
			cf->data[2] |= CAN_ERR_PROT_STUFF;
	}
1645 1646
	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DFORMERR |
		      MCP251XFD_REG_BDIAG1_NFORMERR)) {
1647 1648 1649 1650 1651 1652 1653 1654
		netdev_dbg(priv->ndev, "Format error\n");

		stats->rx_errors++;
		if (cf)
			cf->data[2] |= CAN_ERR_PROT_FORM;
	}

	/* TX errors */
1655
	if (bdiag1 & MCP251XFD_REG_BDIAG1_NACKERR) {
1656 1657 1658 1659 1660 1661 1662 1663
		netdev_dbg(priv->ndev, "NACK error\n");

		stats->tx_errors++;
		if (cf) {
			cf->can_id |= CAN_ERR_ACK;
			cf->data[2] |= CAN_ERR_PROT_TX;
		}
	}
1664 1665
	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DBIT1ERR |
		      MCP251XFD_REG_BDIAG1_NBIT1ERR)) {
1666 1667 1668 1669 1670 1671
		netdev_dbg(priv->ndev, "Bit1 error\n");

		stats->tx_errors++;
		if (cf)
			cf->data[2] |= CAN_ERR_PROT_TX | CAN_ERR_PROT_BIT1;
	}
1672 1673
	if (bdiag1 & (MCP251XFD_REG_BDIAG1_DBIT0ERR |
		      MCP251XFD_REG_BDIAG1_NBIT0ERR)) {
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		netdev_dbg(priv->ndev, "Bit0 error\n");

		stats->tx_errors++;
		if (cf)
			cf->data[2] |= CAN_ERR_PROT_TX | CAN_ERR_PROT_BIT0;
	}

	if (!cf)
		return 0;

	err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
	if (err)
		stats->rx_fifo_errors++;

	return 0;
}

1691
static int mcp251xfd_handle_cerrif(struct mcp251xfd_priv *priv)
1692 1693 1694 1695 1696 1697 1698 1699
{
	struct net_device_stats *stats = &priv->ndev->stats;
	struct sk_buff *skb;
	struct can_frame *cf = NULL;
	enum can_state new_state, rx_state, tx_state;
	u32 trec, timestamp;
	int err;

1700
	err = regmap_read(priv->map_reg, MCP251XFD_REG_TREC, &trec);
1701 1702 1703
	if (err)
		return err;

1704
	if (trec & MCP251XFD_REG_TREC_TXBO)
1705
		tx_state = CAN_STATE_BUS_OFF;
1706
	else if (trec & MCP251XFD_REG_TREC_TXBP)
1707
		tx_state = CAN_STATE_ERROR_PASSIVE;
1708
	else if (trec & MCP251XFD_REG_TREC_TXWARN)
1709 1710 1711 1712
		tx_state = CAN_STATE_ERROR_WARNING;
	else
		tx_state = CAN_STATE_ERROR_ACTIVE;

1713
	if (trec & MCP251XFD_REG_TREC_RXBP)
1714
		rx_state = CAN_STATE_ERROR_PASSIVE;
1715
	else if (trec & MCP251XFD_REG_TREC_RXWARN)
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
		rx_state = CAN_STATE_ERROR_WARNING;
	else
		rx_state = CAN_STATE_ERROR_ACTIVE;

	new_state = max(tx_state, rx_state);
	if (new_state == priv->can.state)
		return 0;

	/* The skb allocation might fail, but can_change_state()
	 * handles cf == NULL.
	 */
1727
	skb = mcp251xfd_alloc_can_err_skb(priv, &cf, &timestamp);
1728 1729 1730 1731 1732 1733 1734 1735
	can_change_state(priv->ndev, cf, tx_state, rx_state);

	if (new_state == CAN_STATE_BUS_OFF) {
		/* As we're going to switch off the chip now, let's
		 * save the error counters and return them to
		 * userspace, if do_get_berr_counter() is called while
		 * the chip is in Bus Off.
		 */
1736
		err = __mcp251xfd_get_berr_counter(priv->ndev, &priv->bec);
1737 1738 1739
		if (err)
			return err;

1740
		mcp251xfd_chip_stop(priv, CAN_STATE_BUS_OFF);
1741 1742 1743 1744 1745 1746 1747 1748 1749
		can_bus_off(priv->ndev);
	}

	if (!skb)
		return 0;

	if (new_state != CAN_STATE_BUS_OFF) {
		struct can_berr_counter bec;

1750
		err = mcp251xfd_get_berr_counter(priv->ndev, &bec);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
		if (err)
			return err;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
	}

	err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
	if (err)
		stats->rx_fifo_errors++;

	return 0;
}

static int
1765
mcp251xfd_handle_modif(const struct mcp251xfd_priv *priv, bool *set_normal_mode)
1766
{
1767
	const u8 mode_reference = mcp251xfd_get_normal_mode(priv);
1768 1769 1770
	u8 mode;
	int err;

1771
	err = mcp251xfd_chip_get_mode(priv, &mode);
1772 1773 1774 1775 1776 1777
	if (err)
		return err;

	if (mode == mode_reference) {
		netdev_dbg(priv->ndev,
			   "Controller changed into %s Mode (%u).\n",
1778
			   mcp251xfd_get_mode_str(mode), mode);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
		return 0;
	}

	/* According to MCP2517FD errata DS80000792B 1., during a TX
	 * MAB underflow, the controller will transition to Restricted
	 * Operation Mode or Listen Only Mode (depending on SERR2LOM).
	 *
	 * However this is not always the case. If SERR2LOM is
	 * configured for Restricted Operation Mode (SERR2LOM not set)
	 * the MCP2517FD will sometimes transition to Listen Only Mode
	 * first. When polling this bit we see that it will transition
	 * to Restricted Operation Mode shortly after.
	 */
1792 1793 1794
	if ((priv->devtype_data.quirks & MCP251XFD_QUIRK_MAB_NO_WARN) &&
	    (mode == MCP251XFD_REG_CON_MODE_RESTRICTED ||
	     mode == MCP251XFD_REG_CON_MODE_LISTENONLY))
1795 1796
		netdev_dbg(priv->ndev,
			   "Controller changed into %s Mode (%u).\n",
1797
			   mcp251xfd_get_mode_str(mode), mode);
1798 1799 1800
	else
		netdev_err(priv->ndev,
			   "Controller changed into %s Mode (%u).\n",
1801
			   mcp251xfd_get_mode_str(mode), mode);
1802 1803 1804 1805 1806 1807 1808

	/* After the application requests Normal mode, the Controller
	 * will automatically attempt to retransmit the message that
	 * caused the TX MAB underflow.
	 *
	 * However, if there is an ECC error in the TX-RAM, we first
	 * have to reload the tx-object before requesting Normal
1809
	 * mode. This is done later in mcp251xfd_handle_eccif().
1810
	 */
1811
	if (priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF) {
1812 1813 1814 1815
		*set_normal_mode = true;
		return 0;
	}

1816
	return mcp251xfd_chip_set_normal_mode_nowait(priv);
1817 1818
}

1819
static int mcp251xfd_handle_serrif(struct mcp251xfd_priv *priv)
1820
{
1821
	struct mcp251xfd_ecc *ecc = &priv->ecc;
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	struct net_device_stats *stats = &priv->ndev->stats;
	bool handled = false;

	/* TX MAB underflow
	 *
	 * According to MCP2517FD Errata DS80000792B 1. a TX MAB
	 * underflow is indicated by SERRIF and MODIF.
	 *
	 * In addition to the effects mentioned in the Errata, there
	 * are Bus Errors due to the aborted CAN frame, so a IVMIF
	 * will be seen as well.
	 *
	 * Sometimes there is an ECC error in the TX-RAM, which leads
	 * to a TX MAB underflow.
	 *
	 * However, probably due to a race condition, there is no
	 * associated MODIF pending.
	 *
	 * Further, there are situations, where the SERRIF is caused
	 * by an ECC error in the TX-RAM, but not even the ECCIF is
	 * set. This only seems to happen _after_ the first occurrence
	 * of a ECCIF (which is tracked in ecc->cnt).
	 *
	 * Treat all as a known system errors..
	 */
1847 1848 1849
	if ((priv->regs_status.intf & MCP251XFD_REG_INT_MODIF &&
	     priv->regs_status.intf & MCP251XFD_REG_INT_IVMIF) ||
	    priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF ||
1850 1851 1852
	    ecc->cnt) {
		const char *msg;

1853
		if (priv->regs_status.intf & MCP251XFD_REG_INT_ECCIF ||
1854 1855 1856 1857 1858
		    ecc->cnt)
			msg = "TX MAB underflow due to ECC error detected.";
		else
			msg = "TX MAB underflow detected.";

1859
		if (priv->devtype_data.quirks & MCP251XFD_QUIRK_MAB_NO_WARN)
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
			netdev_dbg(priv->ndev, "%s\n", msg);
		else
			netdev_info(priv->ndev, "%s\n", msg);

		stats->tx_aborted_errors++;
		stats->tx_errors++;
		handled = true;
	}

	/* RX MAB overflow
	 *
	 * According to MCP2517FD Errata DS80000792B 1. a RX MAB
	 * overflow is indicated by SERRIF.
	 *
	 * In addition to the effects mentioned in the Errata, (most
	 * of the times) a RXOVIF is raised, if the FIFO that is being
	 * received into has the RXOVIE activated (and we have enabled
	 * RXOVIE on all FIFOs).
	 *
	 * Sometimes there is no RXOVIF just a RXIF is pending.
	 *
	 * Treat all as a known system errors..
	 */
1883 1884
	if (priv->regs_status.intf & MCP251XFD_REG_INT_RXOVIF ||
	    priv->regs_status.intf & MCP251XFD_REG_INT_RXIF) {
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
		stats->rx_dropped++;
		handled = true;
	}

	if (!handled)
		netdev_err(priv->ndev,
			   "Unhandled System Error Interrupt (intf=0x%08x)!\n",
			   priv->regs_status.intf);

	return 0;
}

static int
1898
mcp251xfd_handle_eccif_recover(struct mcp251xfd_priv *priv, u8 nr)
1899
{
1900 1901 1902
	struct mcp251xfd_tx_ring *tx_ring = priv->tx;
	struct mcp251xfd_ecc *ecc = &priv->ecc;
	struct mcp251xfd_tx_obj *tx_obj;
1903 1904 1905 1906
	u8 chip_tx_tail, tx_tail, offset;
	u16 addr;
	int err;

1907
	addr = FIELD_GET(MCP251XFD_REG_ECCSTAT_ERRADDR_MASK, ecc->ecc_stat);
1908

1909
	err = mcp251xfd_tx_tail_get_from_chip(priv, &chip_tx_tail);
1910 1911 1912
	if (err)
		return err;

1913
	tx_tail = mcp251xfd_get_tx_tail(tx_ring);
1914 1915 1916 1917 1918 1919 1920 1921
	offset = (nr - chip_tx_tail) & (tx_ring->obj_num - 1);

	/* Bail out if one of the following is met:
	 * - tx_tail information is inconsistent
	 * - for mcp2517fd: offset not 0
	 * - for mcp2518fd: offset not 0 or 1
	 */
	if (chip_tx_tail != tx_tail ||
1922
	    !(offset == 0 || (offset == 1 && mcp251xfd_is_2518(priv)))) {
1923 1924 1925 1926 1927 1928 1929 1930 1931
		netdev_err(priv->ndev,
			   "ECC Error information inconsistent (addr=0x%04x, nr=%d, tx_tail=0x%08x(%d), chip_tx_tail=%d, offset=%d).\n",
			   addr, nr, tx_ring->tail, tx_tail, chip_tx_tail,
			   offset);
		return -EINVAL;
	}

	netdev_info(priv->ndev,
		    "Recovering %s ECC Error at address 0x%04x (in TX-RAM, tx_obj=%d, tx_tail=0x%08x(%d), offset=%d).\n",
1932
		    ecc->ecc_stat & MCP251XFD_REG_ECCSTAT_SECIF ?
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		    "Single" : "Double",
		    addr, nr, tx_ring->tail, tx_tail, offset);

	/* reload tx_obj into controller RAM ... */
	tx_obj = &tx_ring->obj[nr];
	err = spi_sync_transfer(priv->spi, tx_obj->xfer, 1);
	if (err)
		return err;

	/* ... and trigger retransmit */
1943
	return mcp251xfd_chip_set_normal_mode(priv);
1944 1945 1946
}

static int
1947
mcp251xfd_handle_eccif(struct mcp251xfd_priv *priv, bool set_normal_mode)
1948
{
1949
	struct mcp251xfd_ecc *ecc = &priv->ecc;
1950 1951 1952 1953 1954 1955 1956
	const char *msg;
	bool in_tx_ram;
	u32 ecc_stat;
	u16 addr;
	u8 nr;
	int err;

1957
	err = regmap_read(priv->map_reg, MCP251XFD_REG_ECCSTAT, &ecc_stat);
1958 1959 1960
	if (err)
		return err;

1961 1962
	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_ECCSTAT,
				 MCP251XFD_REG_ECCSTAT_IF_MASK, ~ecc_stat);
1963 1964 1965 1966
	if (err)
		return err;

	/* Check if ECC error occurred in TX-RAM */
1967 1968
	addr = FIELD_GET(MCP251XFD_REG_ECCSTAT_ERRADDR_MASK, ecc_stat);
	err = mcp251xfd_get_tx_nr_by_addr(priv->tx, &nr, addr);
1969 1970 1971 1972 1973 1974 1975
	if (!err)
		in_tx_ram = true;
	else if (err == -ENOENT)
		in_tx_ram = false;
	else
		return err;

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	/* Errata Reference:
	 * mcp2517fd: DS80000789B, mcp2518fd: DS80000792C 2.
	 *
	 * ECC single error correction does not work in all cases:
	 *
	 * Fix/Work Around:
	 * Enable single error correction and double error detection
	 * interrupts by setting SECIE and DEDIE. Handle SECIF as a
	 * detection interrupt and do not rely on the error
	 * correction. Instead, handle both interrupts as a
	 * notification that the RAM word at ERRADDR was corrupted.
	 */
1988
	if (ecc_stat & MCP251XFD_REG_ECCSTAT_SECIF)
1989
		msg = "Single ECC Error detected at address";
1990
	else if (ecc_stat & MCP251XFD_REG_ECCSTAT_DEDIF)
1991 1992 1993 1994 1995 1996 1997
		msg = "Double ECC Error detected at address";
	else
		return -EINVAL;

	if (!in_tx_ram) {
		ecc->ecc_stat = 0;

1998
		netdev_notice(priv->ndev, "%s 0x%04x.\n", msg, addr);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	} else {
		/* Re-occurring error? */
		if (ecc->ecc_stat == ecc_stat) {
			ecc->cnt++;
		} else {
			ecc->ecc_stat = ecc_stat;
			ecc->cnt = 1;
		}

		netdev_info(priv->ndev,
			    "%s 0x%04x (in TX-RAM, tx_obj=%d), occurred %d time%s.\n",
			    msg, addr, nr, ecc->cnt, ecc->cnt > 1 ? "s" : "");

2012 2013
		if (ecc->cnt >= MCP251XFD_ECC_CNT_MAX)
			return mcp251xfd_handle_eccif_recover(priv, nr);
2014 2015 2016
	}

	if (set_normal_mode)
2017
		return mcp251xfd_chip_set_normal_mode_nowait(priv);
2018 2019 2020 2021

	return 0;
}

2022
static int mcp251xfd_handle_spicrcif(struct mcp251xfd_priv *priv)
2023 2024 2025 2026
{
	int err;
	u32 crc;

2027
	err = regmap_read(priv->map_reg, MCP251XFD_REG_CRC, &crc);
2028 2029 2030
	if (err)
		return err;

2031 2032
	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_CRC,
				 MCP251XFD_REG_CRC_IF_MASK,
2033 2034 2035 2036
				 ~crc);
	if (err)
		return err;

2037
	if (crc & MCP251XFD_REG_CRC_FERRIF)
2038
		netdev_notice(priv->ndev, "CRC write command format error.\n");
2039
	else if (crc & MCP251XFD_REG_CRC_CRCERRIF)
2040 2041
		netdev_notice(priv->ndev,
			      "CRC write error detected. CRC=0x%04lx.\n",
2042
			      FIELD_GET(MCP251XFD_REG_CRC_MASK, crc));
2043 2044 2045 2046

	return 0;
}

2047
#define mcp251xfd_handle(priv, irq, ...) \
2048
({ \
2049
	struct mcp251xfd_priv *_priv = (priv); \
2050 2051
	int err; \
\
2052
	err = mcp251xfd_handle_##irq(_priv, ## __VA_ARGS__); \
2053 2054
	if (err) \
		netdev_err(_priv->ndev, \
2055
			"IRQ handler mcp251xfd_handle_%s() returned %d.\n", \
2056 2057 2058 2059
			__stringify(irq), err); \
	err; \
})

2060
static irqreturn_t mcp251xfd_irq(int irq, void *dev_id)
2061
{
2062
	struct mcp251xfd_priv *priv = dev_id;
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	irqreturn_t handled = IRQ_NONE;
	int err;

	if (priv->rx_int)
		do {
			int rx_pending;

			rx_pending = gpiod_get_value_cansleep(priv->rx_int);
			if (!rx_pending)
				break;

2074
			err = mcp251xfd_handle(priv, rxif);
2075 2076 2077 2078 2079 2080 2081 2082
			if (err)
				goto out_fail;

			handled = IRQ_HANDLED;
		} while (1);

	do {
		u32 intf_pending, intf_pending_clearable;
2083
		bool set_normal_mode = false;
2084

2085
		err = regmap_bulk_read(priv->map_reg, MCP251XFD_REG_INT,
2086 2087 2088 2089 2090 2091
				       &priv->regs_status,
				       sizeof(priv->regs_status) /
				       sizeof(u32));
		if (err)
			goto out_fail;

2092
		intf_pending = FIELD_GET(MCP251XFD_REG_INT_IF_MASK,
2093
					 priv->regs_status.intf) &
2094
			FIELD_GET(MCP251XFD_REG_INT_IE_MASK,
2095 2096 2097 2098 2099 2100
				  priv->regs_status.intf);

		if (!(intf_pending))
			return handled;

		/* Some interrupts must be ACKed in the
2101
		 * MCP251XFD_REG_INT register.
2102 2103 2104 2105
		 * - First ACK then handle, to avoid lost-IRQ race
		 *   condition on fast re-occurring interrupts.
		 * - Write "0" to clear active IRQs, "1" to all other,
		 *   to avoid r/m/w race condition on the
2106
		 *   MCP251XFD_REG_INT register.
2107 2108
		 */
		intf_pending_clearable = intf_pending &
2109
			MCP251XFD_REG_INT_IF_CLEARABLE_MASK;
2110 2111
		if (intf_pending_clearable) {
			err = regmap_update_bits(priv->map_reg,
2112 2113
						 MCP251XFD_REG_INT,
						 MCP251XFD_REG_INT_IF_MASK,
2114 2115 2116 2117 2118
						 ~intf_pending_clearable);
			if (err)
				goto out_fail;
		}

2119 2120
		if (intf_pending & MCP251XFD_REG_INT_MODIF) {
			err = mcp251xfd_handle(priv, modif, &set_normal_mode);
2121 2122 2123 2124
			if (err)
				goto out_fail;
		}

2125 2126
		if (intf_pending & MCP251XFD_REG_INT_RXIF) {
			err = mcp251xfd_handle(priv, rxif);
2127 2128 2129 2130
			if (err)
				goto out_fail;
		}

2131 2132
		if (intf_pending & MCP251XFD_REG_INT_TEFIF) {
			err = mcp251xfd_handle(priv, tefif);
2133 2134 2135 2136
			if (err)
				goto out_fail;
		}

2137 2138
		if (intf_pending & MCP251XFD_REG_INT_RXOVIF) {
			err = mcp251xfd_handle(priv, rxovif);
2139 2140 2141 2142
			if (err)
				goto out_fail;
		}

2143 2144
		if (intf_pending & MCP251XFD_REG_INT_TXATIF) {
			err = mcp251xfd_handle(priv, txatif);
2145 2146 2147 2148
			if (err)
				goto out_fail;
		}

2149 2150
		if (intf_pending & MCP251XFD_REG_INT_IVMIF) {
			err = mcp251xfd_handle(priv, ivmif);
2151 2152 2153 2154
			if (err)
				goto out_fail;
		}

2155 2156
		if (intf_pending & MCP251XFD_REG_INT_SERRIF) {
			err = mcp251xfd_handle(priv, serrif);
2157 2158 2159 2160
			if (err)
				goto out_fail;
		}

2161 2162
		if (intf_pending & MCP251XFD_REG_INT_ECCIF) {
			err = mcp251xfd_handle(priv, eccif, set_normal_mode);
2163 2164 2165 2166
			if (err)
				goto out_fail;
		}

2167 2168
		if (intf_pending & MCP251XFD_REG_INT_SPICRCIF) {
			err = mcp251xfd_handle(priv, spicrcif);
2169 2170 2171 2172 2173 2174 2175 2176
			if (err)
				goto out_fail;
		}

		/* On the MCP2527FD and MCP2518FD, we don't get a
		 * CERRIF IRQ on the transition TX ERROR_WARNING -> TX
		 * ERROR_ACTIVE.
		 */
2177
		if (intf_pending & MCP251XFD_REG_INT_CERRIF ||
2178
		    priv->can.state > CAN_STATE_ERROR_ACTIVE) {
2179
			err = mcp251xfd_handle(priv, cerrif);
2180 2181 2182 2183 2184 2185
			if (err)
				goto out_fail;

			/* In Bus Off we completely shut down the
			 * controller. Every subsequent register read
			 * will read bogus data, and if
2186
			 * MCP251XFD_QUIRK_CRC_REG is enabled the CRC
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
			 * check will fail, too. So leave IRQ handler
			 * directly.
			 */
			if (priv->can.state == CAN_STATE_BUS_OFF)
				return IRQ_HANDLED;
		}

		handled = IRQ_HANDLED;
	} while (1);

 out_fail:
	netdev_err(priv->ndev, "IRQ handler returned %d (intf=0x%08x).\n",
		   err, priv->regs_status.intf);
2200
	mcp251xfd_chip_interrupts_disable(priv);
2201 2202 2203 2204 2205

	return handled;
}

static inline struct
2206
mcp251xfd_tx_obj *mcp251xfd_get_tx_obj_next(struct mcp251xfd_tx_ring *tx_ring)
2207 2208 2209
{
	u8 tx_head;

2210
	tx_head = mcp251xfd_get_tx_head(tx_ring);
2211 2212 2213 2214 2215

	return &tx_ring->obj[tx_head];
}

static void
2216 2217
mcp251xfd_tx_obj_from_skb(const struct mcp251xfd_priv *priv,
			  struct mcp251xfd_tx_obj *tx_obj,
2218 2219 2220 2221
			  const struct sk_buff *skb,
			  unsigned int seq)
{
	const struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
2222 2223
	struct mcp251xfd_hw_tx_obj_raw *hw_tx_obj;
	union mcp251xfd_tx_obj_load_buf *load_buf;
2224 2225 2226 2227 2228 2229 2230
	u8 dlc;
	u32 id, flags;
	int offset, len;

	if (cfd->can_id & CAN_EFF_FLAG) {
		u32 sid, eid;

2231 2232
		sid = FIELD_GET(MCP251XFD_REG_FRAME_EFF_SID_MASK, cfd->can_id);
		eid = FIELD_GET(MCP251XFD_REG_FRAME_EFF_EID_MASK, cfd->can_id);
2233

2234 2235
		id = FIELD_PREP(MCP251XFD_OBJ_ID_EID_MASK, eid) |
			FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, sid);
2236

2237
		flags = MCP251XFD_OBJ_FLAGS_IDE;
2238
	} else {
2239
		id = FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, cfd->can_id);
2240 2241 2242 2243 2244 2245 2246 2247
		flags = 0;
	}

	/* Use the MCP2518FD mask even on the MCP2517FD. It doesn't
	 * harm, only the lower 7 bits will be transferred into the
	 * TEF object.
	 */
	dlc = can_len2dlc(cfd->len);
2248 2249
	flags |= FIELD_PREP(MCP251XFD_OBJ_FLAGS_SEQ_MCP2518FD_MASK, seq) |
		FIELD_PREP(MCP251XFD_OBJ_FLAGS_DLC, dlc);
2250 2251

	if (cfd->can_id & CAN_RTR_FLAG)
2252
		flags |= MCP251XFD_OBJ_FLAGS_RTR;
2253 2254 2255 2256

	/* CANFD */
	if (can_is_canfd_skb(skb)) {
		if (cfd->flags & CANFD_ESI)
2257
			flags |= MCP251XFD_OBJ_FLAGS_ESI;
2258

2259
		flags |= MCP251XFD_OBJ_FLAGS_FDF;
2260 2261

		if (cfd->flags & CANFD_BRS)
2262
			flags |= MCP251XFD_OBJ_FLAGS_BRS;
2263 2264 2265
	}

	load_buf = &tx_obj->buf;
2266
	if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX)
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
		hw_tx_obj = &load_buf->crc.hw_tx_obj;
	else
		hw_tx_obj = &load_buf->nocrc.hw_tx_obj;

	put_unaligned_le32(id, &hw_tx_obj->id);
	put_unaligned_le32(flags, &hw_tx_obj->flags);

	/* Clear data at end of CAN frame */
	offset = round_down(cfd->len, sizeof(u32));
	len = round_up(can_dlc2len(dlc), sizeof(u32)) - offset;
2277
	if (MCP251XFD_SANITIZE_CAN && len)
2278 2279 2280 2281 2282
		memset(hw_tx_obj->data + offset, 0x0, len);
	memcpy(hw_tx_obj->data, cfd->data, cfd->len);

	/* Number of bytes to be written into the RAM of the controller */
	len = sizeof(hw_tx_obj->id) + sizeof(hw_tx_obj->flags);
2283
	if (MCP251XFD_SANITIZE_CAN)
2284 2285 2286 2287
		len += round_up(can_dlc2len(dlc), sizeof(u32));
	else
		len += round_up(cfd->len, sizeof(u32));

2288
	if (priv->devtype_data.quirks & MCP251XFD_QUIRK_CRC_TX) {
2289 2290
		u16 crc;

2291
		mcp251xfd_spi_cmd_crc_set_len_in_ram(&load_buf->crc.cmd,
2292 2293 2294
						     len);
		/* CRC */
		len += sizeof(load_buf->crc.cmd);
2295
		crc = mcp251xfd_crc16_compute(&load_buf->crc, len);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		put_unaligned_be16(crc, (void *)load_buf + len);

		/* Total length */
		len += sizeof(load_buf->crc.crc);
	} else {
		len += sizeof(load_buf->nocrc.cmd);
	}

	tx_obj->xfer[0].len = len;
}

2307 2308
static int mcp251xfd_tx_obj_write(const struct mcp251xfd_priv *priv,
				  struct mcp251xfd_tx_obj *tx_obj)
2309 2310 2311 2312
{
	return spi_async(priv->spi, &tx_obj->msg);
}

2313 2314
static bool mcp251xfd_tx_busy(const struct mcp251xfd_priv *priv,
			      struct mcp251xfd_tx_ring *tx_ring)
2315
{
2316
	if (mcp251xfd_get_tx_free(tx_ring) > 0)
2317 2318 2319 2320 2321 2322 2323
		return false;

	netif_stop_queue(priv->ndev);

	/* Memory barrier before checking tx_free (head and tail) */
	smp_mb();

2324
	if (mcp251xfd_get_tx_free(tx_ring) == 0) {
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
		netdev_dbg(priv->ndev,
			   "Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n",
			   tx_ring->head, tx_ring->tail,
			   tx_ring->head - tx_ring->tail);

		return true;
	}

	netif_start_queue(priv->ndev);

	return false;
}

2338
static netdev_tx_t mcp251xfd_start_xmit(struct sk_buff *skb,
2339 2340
					struct net_device *ndev)
{
2341 2342 2343
	struct mcp251xfd_priv *priv = netdev_priv(ndev);
	struct mcp251xfd_tx_ring *tx_ring = priv->tx;
	struct mcp251xfd_tx_obj *tx_obj;
2344 2345 2346 2347 2348 2349
	u8 tx_head;
	int err;

	if (can_dropped_invalid_skb(ndev, skb))
		return NETDEV_TX_OK;

2350
	if (mcp251xfd_tx_busy(priv, tx_ring))
2351 2352
		return NETDEV_TX_BUSY;

2353 2354
	tx_obj = mcp251xfd_get_tx_obj_next(tx_ring);
	mcp251xfd_tx_obj_from_skb(priv, tx_obj, skb, tx_ring->head);
2355 2356

	/* Stop queue if we occupy the complete TX FIFO */
2357
	tx_head = mcp251xfd_get_tx_head(tx_ring);
2358 2359 2360 2361 2362 2363
	tx_ring->head++;
	if (tx_ring->head - tx_ring->tail >= tx_ring->obj_num)
		netif_stop_queue(ndev);

	can_put_echo_skb(skb, ndev, tx_head);

2364
	err = mcp251xfd_tx_obj_write(priv, tx_obj);
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	if (err)
		goto out_err;

	return NETDEV_TX_OK;

 out_err:
	netdev_err(priv->ndev, "ERROR in %s: %d\n", __func__, err);

	return NETDEV_TX_OK;
}

2376
static int mcp251xfd_open(struct net_device *ndev)
2377
{
2378
	struct mcp251xfd_priv *priv = netdev_priv(ndev);
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	const struct spi_device *spi = priv->spi;
	int err;

	err = pm_runtime_get_sync(ndev->dev.parent);
	if (err < 0) {
		pm_runtime_put_noidle(ndev->dev.parent);
		return err;
	}

	err = open_candev(ndev);
	if (err)
		goto out_pm_runtime_put;

2392
	err = mcp251xfd_ring_alloc(priv);
2393 2394 2395
	if (err)
		goto out_close_candev;

2396
	err = mcp251xfd_transceiver_enable(priv);
2397
	if (err)
2398
		goto out_mcp251xfd_ring_free;
2399

2400
	err = mcp251xfd_chip_start(priv);
2401 2402 2403 2404 2405
	if (err)
		goto out_transceiver_disable;

	can_rx_offload_enable(&priv->offload);

2406
	err = request_threaded_irq(spi->irq, NULL, mcp251xfd_irq,
2407 2408 2409 2410 2411
				   IRQF_ONESHOT, dev_name(&spi->dev),
				   priv);
	if (err)
		goto out_can_rx_offload_disable;

2412
	err = mcp251xfd_chip_interrupts_enable(priv);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	if (err)
		goto out_free_irq;

	netif_start_queue(ndev);

	return 0;

 out_free_irq:
	free_irq(spi->irq, priv);
 out_can_rx_offload_disable:
	can_rx_offload_disable(&priv->offload);
 out_transceiver_disable:
2425 2426 2427
	mcp251xfd_transceiver_disable(priv);
 out_mcp251xfd_ring_free:
	mcp251xfd_ring_free(priv);
2428 2429 2430
 out_close_candev:
	close_candev(ndev);
 out_pm_runtime_put:
2431
	mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
2432 2433 2434 2435 2436
	pm_runtime_put(ndev->dev.parent);

	return err;
}

2437
static int mcp251xfd_stop(struct net_device *ndev)
2438
{
2439
	struct mcp251xfd_priv *priv = netdev_priv(ndev);
2440 2441

	netif_stop_queue(ndev);
2442
	mcp251xfd_chip_interrupts_disable(priv);
2443 2444
	free_irq(ndev->irq, priv);
	can_rx_offload_disable(&priv->offload);
2445 2446 2447
	mcp251xfd_chip_stop(priv, CAN_STATE_STOPPED);
	mcp251xfd_transceiver_disable(priv);
	mcp251xfd_ring_free(priv);
2448 2449 2450 2451 2452 2453 2454
	close_candev(ndev);

	pm_runtime_put(ndev->dev.parent);

	return 0;
}

2455 2456 2457 2458
static const struct net_device_ops mcp251xfd_netdev_ops = {
	.ndo_open = mcp251xfd_open,
	.ndo_stop = mcp251xfd_stop,
	.ndo_start_xmit	= mcp251xfd_start_xmit,
2459 2460 2461 2462
	.ndo_change_mtu = can_change_mtu,
};

static void
2463
mcp251xfd_register_quirks(struct mcp251xfd_priv *priv)
2464 2465 2466 2467 2468
{
	const struct spi_device *spi = priv->spi;
	const struct spi_controller *ctlr = spi->controller;

	if (ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX)
2469
		priv->devtype_data.quirks |= MCP251XFD_QUIRK_HALF_DUPLEX;
2470 2471
}

2472
static int mcp251xfd_register_chip_detect(struct mcp251xfd_priv *priv)
2473 2474
{
	const struct net_device *ndev = priv->ndev;
2475
	const struct mcp251xfd_devtype_data *devtype_data;
2476 2477 2478 2479 2480 2481
	u32 osc;
	int err;

	/* The OSC_LPMEN is only supported on MCP2518FD, so use it to
	 * autodetect the model.
	 */
2482 2483 2484
	err = regmap_update_bits(priv->map_reg, MCP251XFD_REG_OSC,
				 MCP251XFD_REG_OSC_LPMEN,
				 MCP251XFD_REG_OSC_LPMEN);
2485 2486 2487
	if (err)
		return err;

2488
	err = regmap_read(priv->map_reg, MCP251XFD_REG_OSC, &osc);
2489 2490 2491
	if (err)
		return err;

2492 2493
	if (osc & MCP251XFD_REG_OSC_LPMEN)
		devtype_data = &mcp251xfd_devtype_data_mcp2518fd;
2494
	else
2495
		devtype_data = &mcp251xfd_devtype_data_mcp2517fd;
2496

2497
	if (!mcp251xfd_is_251X(priv) &&
2498 2499 2500
	    priv->devtype_data.model != devtype_data->model) {
		netdev_info(ndev,
			    "Detected %s, but firmware specifies a %s. Fixing up.",
2501 2502
			    __mcp251xfd_get_model_str(devtype_data->model),
			    mcp251xfd_get_model_str(priv));
2503 2504 2505 2506
	}
	priv->devtype_data = *devtype_data;

	/* We need to preserve the Half Duplex Quirk. */
2507
	mcp251xfd_register_quirks(priv);
2508 2509

	/* Re-init regmap with quirks of detected model. */
2510
	return mcp251xfd_regmap_init(priv);
2511 2512
}

2513
static int mcp251xfd_register_check_rx_int(struct mcp251xfd_priv *priv)
2514 2515 2516 2517 2518 2519
{
	int err, rx_pending;

	if (!priv->rx_int)
		return 0;

2520
	err = mcp251xfd_chip_rx_int_enable(priv);
2521 2522 2523 2524 2525 2526 2527 2528
	if (err)
		return err;

	/* Check if RX_INT is properly working. The RX_INT should not
	 * be active after a softreset.
	 */
	rx_pending = gpiod_get_value_cansleep(priv->rx_int);

2529
	err = mcp251xfd_chip_rx_int_disable(priv);
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	if (err)
		return err;

	if (!rx_pending)
		return 0;

	netdev_info(priv->ndev,
		    "RX_INT active after softreset, disabling RX_INT support.");
	devm_gpiod_put(&priv->spi->dev, priv->rx_int);
	priv->rx_int = NULL;

	return 0;
}

static int
2545
mcp251xfd_register_get_dev_id(const struct mcp251xfd_priv *priv,
2546 2547
			      u32 *dev_id, u32 *effective_speed_hz)
{
2548 2549
	struct mcp251xfd_map_buf_nocrc *buf_rx;
	struct mcp251xfd_map_buf_nocrc *buf_tx;
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
	struct spi_transfer xfer[2] = { };
	int err;

	buf_rx = kzalloc(sizeof(*buf_rx), GFP_KERNEL);
	if (!buf_rx)
		return -ENOMEM;

	buf_tx = kzalloc(sizeof(*buf_tx), GFP_KERNEL);
	if (!buf_tx) {
		err = -ENOMEM;
		goto out_kfree_buf_rx;
	}

	xfer[0].tx_buf = buf_tx;
	xfer[0].len = sizeof(buf_tx->cmd);
	xfer[1].rx_buf = buf_rx->data;
	xfer[1].len = sizeof(dev_id);

2568
	mcp251xfd_spi_cmd_read_nocrc(&buf_tx->cmd, MCP251XFD_REG_DEVID);
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	err = spi_sync_transfer(priv->spi, xfer, ARRAY_SIZE(xfer));
	if (err)
		goto out_kfree_buf_tx;

	*dev_id = be32_to_cpup((__be32 *)buf_rx->data);
	*effective_speed_hz = xfer->effective_speed_hz;

 out_kfree_buf_tx:
	kfree(buf_tx);
 out_kfree_buf_rx:
	kfree(buf_rx);

	return 0;
}

2584 2585
#define MCP251XFD_QUIRK_ACTIVE(quirk) \
	(priv->devtype_data.quirks & MCP251XFD_QUIRK_##quirk ? '+' : '-')
2586 2587

static int
2588
mcp251xfd_register_done(const struct mcp251xfd_priv *priv)
2589 2590 2591 2592
{
	u32 dev_id, effective_speed_hz;
	int err;

2593
	err = mcp251xfd_register_get_dev_id(priv, &dev_id,
2594 2595 2596 2597 2598 2599
					    &effective_speed_hz);
	if (err)
		return err;

	netdev_info(priv->ndev,
		    "%s rev%lu.%lu (%cRX_INT %cMAB_NO_WARN %cCRC_REG %cCRC_RX %cCRC_TX %cECC %cHD c:%u.%02uMHz m:%u.%02uMHz r:%u.%02uMHz e:%u.%02uMHz) successfully initialized.\n",
2600 2601 2602
		    mcp251xfd_get_model_str(priv),
		    FIELD_GET(MCP251XFD_REG_DEVID_ID_MASK, dev_id),
		    FIELD_GET(MCP251XFD_REG_DEVID_REV_MASK, dev_id),
2603
		    priv->rx_int ? '+' : '-',
2604 2605 2606 2607 2608 2609
		    MCP251XFD_QUIRK_ACTIVE(MAB_NO_WARN),
		    MCP251XFD_QUIRK_ACTIVE(CRC_REG),
		    MCP251XFD_QUIRK_ACTIVE(CRC_RX),
		    MCP251XFD_QUIRK_ACTIVE(CRC_TX),
		    MCP251XFD_QUIRK_ACTIVE(ECC),
		    MCP251XFD_QUIRK_ACTIVE(HALF_DUPLEX),
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		    priv->can.clock.freq / 1000000,
		    priv->can.clock.freq % 1000000 / 1000 / 10,
		    priv->spi_max_speed_hz_orig / 1000000,
		    priv->spi_max_speed_hz_orig % 1000000 / 1000 / 10,
		    priv->spi->max_speed_hz / 1000000,
		    priv->spi->max_speed_hz % 1000000 / 1000 / 10,
		    effective_speed_hz / 1000000,
		    effective_speed_hz % 1000000 / 1000 / 10);

	return 0;
}

2622
static int mcp251xfd_register(struct mcp251xfd_priv *priv)
2623 2624 2625 2626
{
	struct net_device *ndev = priv->ndev;
	int err;

2627
	err = mcp251xfd_clks_and_vdd_enable(priv);
2628 2629 2630 2631 2632 2633 2634 2635 2636
	if (err)
		return err;

	pm_runtime_get_noresume(ndev->dev.parent);
	err = pm_runtime_set_active(ndev->dev.parent);
	if (err)
		goto out_runtime_put_noidle;
	pm_runtime_enable(ndev->dev.parent);

2637
	mcp251xfd_register_quirks(priv);
2638

2639
	err = mcp251xfd_chip_softreset(priv);
2640 2641 2642 2643 2644
	if (err == -ENODEV)
		goto out_runtime_disable;
	if (err)
		goto out_chip_set_mode_sleep;

2645
	err = mcp251xfd_register_chip_detect(priv);
2646 2647 2648
	if (err)
		goto out_chip_set_mode_sleep;

2649
	err = mcp251xfd_register_check_rx_int(priv);
2650 2651 2652 2653 2654 2655 2656
	if (err)
		goto out_chip_set_mode_sleep;

	err = register_candev(ndev);
	if (err)
		goto out_chip_set_mode_sleep;

2657
	err = mcp251xfd_register_done(priv);
2658 2659 2660 2661 2662 2663 2664
	if (err)
		goto out_unregister_candev;

	/* Put controller into sleep mode and let pm_runtime_put()
	 * disable the clocks and vdd. If CONFIG_PM is not enabled,
	 * the clocks and vdd will stay powered.
	 */
2665
	err = mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_SLEEP);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	if (err)
		goto out_unregister_candev;

	pm_runtime_put(ndev->dev.parent);

	return 0;

 out_unregister_candev:
	unregister_candev(ndev);
 out_chip_set_mode_sleep:
2676
	mcp251xfd_chip_set_mode(priv, MCP251XFD_REG_CON_MODE_SLEEP);
2677 2678 2679 2680
 out_runtime_disable:
	pm_runtime_disable(ndev->dev.parent);
 out_runtime_put_noidle:
	pm_runtime_put_noidle(ndev->dev.parent);
2681
	mcp251xfd_clks_and_vdd_disable(priv);
2682 2683 2684 2685

	return err;
}

2686
static inline void mcp251xfd_unregister(struct mcp251xfd_priv *priv)
2687 2688 2689 2690 2691 2692 2693
{
	struct net_device *ndev	= priv->ndev;

	unregister_candev(ndev);

	pm_runtime_get_sync(ndev->dev.parent);
	pm_runtime_put_noidle(ndev->dev.parent);
2694
	mcp251xfd_clks_and_vdd_disable(priv);
2695 2696 2697
	pm_runtime_disable(ndev->dev.parent);
}

2698
static const struct of_device_id mcp251xfd_of_match[] = {
2699 2700
	{
		.compatible = "microchip,mcp2517fd",
2701
		.data = &mcp251xfd_devtype_data_mcp2517fd,
2702 2703
	}, {
		.compatible = "microchip,mcp2518fd",
2704
		.data = &mcp251xfd_devtype_data_mcp2518fd,
2705
	}, {
2706
		.compatible = "microchip,mcp251xfd",
2707
		.data = &mcp251xfd_devtype_data_mcp251xfd,
2708 2709 2710 2711
	}, {
		/* sentinel */
	},
};
2712
MODULE_DEVICE_TABLE(of, mcp251xfd_of_match);
2713

2714
static const struct spi_device_id mcp251xfd_id_table[] = {
2715 2716
	{
		.name = "mcp2517fd",
2717
		.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp2517fd,
2718 2719
	}, {
		.name = "mcp2518fd",
2720
		.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp2518fd,
2721
	}, {
2722
		.name = "mcp251xfd",
2723
		.driver_data = (kernel_ulong_t)&mcp251xfd_devtype_data_mcp251xfd,
2724 2725 2726 2727
	}, {
		/* sentinel */
	},
};
2728
MODULE_DEVICE_TABLE(spi, mcp251xfd_id_table);
2729

2730
static int mcp251xfd_probe(struct spi_device *spi)
2731 2732 2733
{
	const void *match;
	struct net_device *ndev;
2734
	struct mcp251xfd_priv *priv;
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	struct gpio_desc *rx_int;
	struct regulator *reg_vdd, *reg_xceiver;
	struct clk *clk;
	u32 freq;
	int err;

	rx_int = devm_gpiod_get_optional(&spi->dev, "microchip,rx-int",
					 GPIOD_IN);
	if (PTR_ERR(rx_int) == -EPROBE_DEFER)
		return -EPROBE_DEFER;
	else if (IS_ERR(rx_int))
		return PTR_ERR(rx_int);

	reg_vdd = devm_regulator_get_optional(&spi->dev, "vdd");
	if (PTR_ERR(reg_vdd) == -EPROBE_DEFER)
		return -EPROBE_DEFER;
	else if (PTR_ERR(reg_vdd) == -ENODEV)
		reg_vdd = NULL;
	else if (IS_ERR(reg_vdd))
		return PTR_ERR(reg_vdd);

	reg_xceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
	if (PTR_ERR(reg_xceiver) == -EPROBE_DEFER)
		return -EPROBE_DEFER;
	else if (PTR_ERR(reg_xceiver) == -ENODEV)
		reg_xceiver = NULL;
	else if (IS_ERR(reg_xceiver))
		return PTR_ERR(reg_xceiver);

	clk = devm_clk_get(&spi->dev, NULL);
	if (IS_ERR(clk)) {
		dev_err(&spi->dev, "No Oscillator (clock) defined.\n");
		return PTR_ERR(clk);
	}
	freq = clk_get_rate(clk);

	/* Sanity check */
2772 2773
	if (freq < MCP251XFD_SYSCLOCK_HZ_MIN ||
	    freq > MCP251XFD_SYSCLOCK_HZ_MAX) {
2774 2775 2776 2777 2778 2779
		dev_err(&spi->dev,
			"Oscillator frequency (%u Hz) is too low or high.\n",
			freq);
		return -ERANGE;
	}

2780
	if (freq <= MCP251XFD_SYSCLOCK_HZ_MAX / MCP251XFD_OSC_PLL_MULTIPLIER) {
2781 2782 2783 2784 2785 2786
		dev_err(&spi->dev,
			"Oscillator frequency (%u Hz) is too low and PLL is not supported.\n",
			freq);
		return -ERANGE;
	}

2787 2788
	ndev = alloc_candev(sizeof(struct mcp251xfd_priv),
			    MCP251XFD_TX_OBJ_NUM_MAX);
2789 2790 2791 2792 2793
	if (!ndev)
		return -ENOMEM;

	SET_NETDEV_DEV(ndev, &spi->dev);

2794
	ndev->netdev_ops = &mcp251xfd_netdev_ops;
2795 2796 2797 2798 2799 2800
	ndev->irq = spi->irq;
	ndev->flags |= IFF_ECHO;

	priv = netdev_priv(ndev);
	spi_set_drvdata(spi, priv);
	priv->can.clock.freq = freq;
2801 2802 2803 2804
	priv->can.do_set_mode = mcp251xfd_set_mode;
	priv->can.do_get_berr_counter = mcp251xfd_get_berr_counter;
	priv->can.bittiming_const = &mcp251xfd_bittiming_const;
	priv->can.data_bittiming_const = &mcp251xfd_data_bittiming_const;
2805 2806 2807
	priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
		CAN_CTRLMODE_BERR_REPORTING | CAN_CTRLMODE_FD |
		CAN_CTRLMODE_FD_NON_ISO;
2808 2809 2810 2811 2812 2813 2814 2815 2816
	priv->ndev = ndev;
	priv->spi = spi;
	priv->rx_int = rx_int;
	priv->clk = clk;
	priv->reg_vdd = reg_vdd;
	priv->reg_xceiver = reg_xceiver;

	match = device_get_match_data(&spi->dev);
	if (match)
2817
		priv->devtype_data = *(struct mcp251xfd_devtype_data *)match;
2818
	else
2819
		priv->devtype_data = *(struct mcp251xfd_devtype_data *)
2820 2821
			spi_get_device_id(spi)->driver_data;

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
	/* Errata Reference:
	 * mcp2517fd: DS80000789B, mcp2518fd: DS80000792C 4.
	 *
	 * The SPI can write corrupted data to the RAM at fast SPI
	 * speeds:
	 *
	 * Simultaneous activity on the CAN bus while writing data to
	 * RAM via the SPI interface, with high SCK frequency, can
	 * lead to corrupted data being written to RAM.
	 *
	 * Fix/Work Around:
	 * Ensure that FSCK is less than or equal to 0.85 *
	 * (FSYSCLK/2).
2835
	 *
2836
	 * Known good and bad combinations are:
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	 *
	 * MCP	ext-clk	SoC			SPI			SPI-clk		max-clk	parent-clk	Status	config
	 *
	 * 2518	20 MHz	allwinner,sun8i-h3	allwinner,sun8i-h3-spi	 8333333 Hz	 83.33%	600000000 Hz	good	assigned-clocks = <&ccu CLK_SPIx>
	 * 2518	20 MHz	allwinner,sun8i-h3	allwinner,sun8i-h3-spi	 9375000 Hz	 93.75%	600000000 Hz	bad	assigned-clocks = <&ccu CLK_SPIx>
	 * 2518	40 MHz	allwinner,sun8i-h3	allwinner,sun8i-h3-spi	16666667 Hz	 83.33%	600000000 Hz	good	assigned-clocks = <&ccu CLK_SPIx>
	 * 2518	40 MHz	allwinner,sun8i-h3	allwinner,sun8i-h3-spi	18750000 Hz	 93.75%	600000000 Hz	bad	assigned-clocks = <&ccu CLK_SPIx>
	 * 2517	20 MHz	fsl,imx8mm		fsl,imx51-ecspi		 8333333 Hz	 83.33%	 16666667 Hz	good	assigned-clocks = <&clk IMX8MM_CLK_ECSPIx_ROOT>
	 * 2517	20 MHz	fsl,imx8mm		fsl,imx51-ecspi		 9523809 Hz	 95.34%	 28571429 Hz	bad	assigned-clocks = <&clk IMX8MM_CLK_ECSPIx_ROOT>
	 * 2517 40 MHz	atmel,sama5d27		atmel,at91rm9200-spi	16400000 Hz	 82.00%	 82000000 Hz	good	default
	 * 2518 40 MHz	atmel,sama5d27		atmel,at91rm9200-spi	16400000 Hz	 82.00%	 82000000 Hz	good	default
	 *
	 */
	priv->spi_max_speed_hz_orig = spi->max_speed_hz;
	spi->max_speed_hz = min(spi->max_speed_hz, freq / 2 / 1000 * 850);
	spi->bits_per_word = 8;
	spi->rt = true;
	err = spi_setup(spi);
	if (err)
		goto out_free_candev;

2858
	err = mcp251xfd_regmap_init(priv);
2859 2860 2861 2862
	if (err)
		goto out_free_candev;

	err = can_rx_offload_add_manual(ndev, &priv->offload,
2863
					MCP251XFD_NAPI_WEIGHT);
2864 2865 2866
	if (err)
		goto out_free_candev;

2867
	err = mcp251xfd_register(priv);
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	if (err)
		goto out_free_candev;

	return 0;

 out_free_candev:
	spi->max_speed_hz = priv->spi_max_speed_hz_orig;

	free_candev(ndev);

	return err;
}

2881
static int mcp251xfd_remove(struct spi_device *spi)
2882
{
2883
	struct mcp251xfd_priv *priv = spi_get_drvdata(spi);
2884 2885 2886
	struct net_device *ndev = priv->ndev;

	can_rx_offload_del(&priv->offload);
2887
	mcp251xfd_unregister(priv);
2888 2889 2890 2891 2892 2893
	spi->max_speed_hz = priv->spi_max_speed_hz_orig;
	free_candev(ndev);

	return 0;
}

2894
static int __maybe_unused mcp251xfd_runtime_suspend(struct device *device)
2895
{
2896
	const struct mcp251xfd_priv *priv = dev_get_drvdata(device);
2897

2898
	return mcp251xfd_clks_and_vdd_disable(priv);
2899 2900
}

2901
static int __maybe_unused mcp251xfd_runtime_resume(struct device *device)
2902
{
2903
	const struct mcp251xfd_priv *priv = dev_get_drvdata(device);
2904

2905
	return mcp251xfd_clks_and_vdd_enable(priv);
2906 2907
}

2908 2909 2910
static const struct dev_pm_ops mcp251xfd_pm_ops = {
	SET_RUNTIME_PM_OPS(mcp251xfd_runtime_suspend,
			   mcp251xfd_runtime_resume, NULL)
2911 2912
};

2913
static struct spi_driver mcp251xfd_driver = {
2914 2915
	.driver = {
		.name = DEVICE_NAME,
2916 2917
		.pm = &mcp251xfd_pm_ops,
		.of_match_table = mcp251xfd_of_match,
2918
	},
2919 2920 2921
	.probe = mcp251xfd_probe,
	.remove = mcp251xfd_remove,
	.id_table = mcp251xfd_id_table,
2922
};
2923
module_spi_driver(mcp251xfd_driver);
2924 2925

MODULE_AUTHOR("Marc Kleine-Budde <mkl@pengutronix.de>");
2926
MODULE_DESCRIPTION("Microchip MCP251xFD Family CAN controller driver");
2927
MODULE_LICENSE("GPL v2");