zd_chip.c 40.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/* zd_chip.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

/* This file implements all the hardware specific functions for the ZD1211
 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
 */

#include <linux/kernel.h>
#include <linux/errno.h>

#include "zd_def.h"
#include "zd_chip.h"
#include "zd_ieee80211.h"
#include "zd_mac.h"
#include "zd_rf.h"
#include "zd_util.h"

void zd_chip_init(struct zd_chip *chip,
	         struct net_device *netdev,
		 struct usb_interface *intf)
{
	memset(chip, 0, sizeof(*chip));
	mutex_init(&chip->mutex);
	zd_usb_init(&chip->usb, netdev, intf);
	zd_rf_init(&chip->rf);
}

void zd_chip_clear(struct zd_chip *chip)
{
U
Ulrich Kunitz 已提交
45
	ZD_ASSERT(!mutex_is_locked(&chip->mutex));
46 47 48
	zd_usb_clear(&chip->usb);
	zd_rf_clear(&chip->rf);
	mutex_destroy(&chip->mutex);
U
Ulrich Kunitz 已提交
49
	ZD_MEMCLEAR(chip, sizeof(*chip));
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
}

static int scnprint_mac_oui(const u8 *addr, char *buffer, size_t size)
{
	return scnprintf(buffer, size, "%02x-%02x-%02x",
		         addr[0], addr[1], addr[2]);
}

/* Prints an identifier line, which will support debugging. */
static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
{
	int i = 0;

	i = scnprintf(buffer, size, "zd1211%s chip ",
		      chip->is_zd1211b ? "b" : "");
	i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
	i += scnprintf(buffer+i, size-i, " ");
	i += scnprint_mac_oui(chip->e2p_mac, buffer+i, size-i);
	i += scnprintf(buffer+i, size-i, " ");
	i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
70
	i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c", chip->pa_type,
71 72
		chip->patch_cck_gain ? 'g' : '-',
		chip->patch_cr157 ? '7' : '-',
73 74
		chip->patch_6m_band_edge ? '6' : '-',
		chip->new_phy_layout ? 'N' : '-');
75 76 77 78 79 80 81 82 83 84 85 86
	return i;
}

static void print_id(struct zd_chip *chip)
{
	char buffer[80];

	scnprint_id(chip, buffer, sizeof(buffer));
	buffer[sizeof(buffer)-1] = 0;
	dev_info(zd_chip_dev(chip), "%s\n", buffer);
}

87 88 89 90 91 92 93 94 95 96 97 98
static zd_addr_t inc_addr(zd_addr_t addr)
{
	u16 a = (u16)addr;
	/* Control registers use byte addressing, but everything else uses word
	 * addressing. */
	if ((a & 0xf000) == CR_START)
		a += 2;
	else
		a += 1;
	return (zd_addr_t)a;
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/* Read a variable number of 32-bit values. Parameter count is not allowed to
 * exceed USB_MAX_IOREAD32_COUNT.
 */
int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
		 unsigned int count)
{
	int r;
	int i;
	zd_addr_t *a16 = (zd_addr_t *)NULL;
	u16 *v16;
	unsigned int count16;

	if (count > USB_MAX_IOREAD32_COUNT)
		return -EINVAL;

	/* Allocate a single memory block for values and addresses. */
	count16 = 2*count;
116
	a16 = (zd_addr_t *) kmalloc(count16 * (sizeof(zd_addr_t) + sizeof(u16)),
117
		                   GFP_KERNEL);
118 119 120 121 122 123 124 125 126 127 128
	if (!a16) {
		dev_dbg_f(zd_chip_dev(chip),
			  "error ENOMEM in allocation of a16\n");
		r = -ENOMEM;
		goto out;
	}
	v16 = (u16 *)(a16 + count16);

	for (i = 0; i < count; i++) {
		int j = 2*i;
		/* We read the high word always first. */
129
		a16[j] = inc_addr(addr[i]);
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
		a16[j+1] = addr[i];
	}

	r = zd_ioread16v_locked(chip, v16, a16, count16);
	if (r) {
		dev_dbg_f(zd_chip_dev(chip),
			  "error: zd_ioread16v_locked. Error number %d\n", r);
		goto out;
	}

	for (i = 0; i < count; i++) {
		int j = 2*i;
		values[i] = (v16[j] << 16) | v16[j+1];
	}

out:
	kfree((void *)a16);
	return r;
}

int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
	           unsigned int count)
{
	int i, j, r;
	struct zd_ioreq16 *ioreqs16;
	unsigned int count16;

	ZD_ASSERT(mutex_is_locked(&chip->mutex));

	if (count == 0)
		return 0;
	if (count > USB_MAX_IOWRITE32_COUNT)
		return -EINVAL;

	/* Allocate a single memory block for values and addresses. */
	count16 = 2*count;
166
	ioreqs16 = kmalloc(count16 * sizeof(struct zd_ioreq16), GFP_KERNEL);
167 168 169 170 171 172 173 174 175 176 177
	if (!ioreqs16) {
		r = -ENOMEM;
		dev_dbg_f(zd_chip_dev(chip),
			  "error %d in ioreqs16 allocation\n", r);
		goto out;
	}

	for (i = 0; i < count; i++) {
		j = 2*i;
		/* We write the high word always first. */
		ioreqs16[j].value   = ioreqs[i].value >> 16;
178
		ioreqs16[j].addr    = inc_addr(ioreqs[i].addr);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
		ioreqs16[j+1].value = ioreqs[i].value;
		ioreqs16[j+1].addr  = ioreqs[i].addr;
	}

	r = zd_usb_iowrite16v(&chip->usb, ioreqs16, count16);
#ifdef DEBUG
	if (r) {
		dev_dbg_f(zd_chip_dev(chip),
			  "error %d in zd_usb_write16v\n", r);
	}
#endif /* DEBUG */
out:
	kfree(ioreqs16);
	return r;
}

int zd_iowrite16a_locked(struct zd_chip *chip,
                  const struct zd_ioreq16 *ioreqs, unsigned int count)
{
	int r;
	unsigned int i, j, t, max;

	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	for (i = 0; i < count; i += j + t) {
		t = 0;
		max = count-i;
		if (max > USB_MAX_IOWRITE16_COUNT)
			max = USB_MAX_IOWRITE16_COUNT;
		for (j = 0; j < max; j++) {
			if (!ioreqs[i+j].addr) {
				t = 1;
				break;
			}
		}

		r = zd_usb_iowrite16v(&chip->usb, &ioreqs[i], j);
		if (r) {
			dev_dbg_f(zd_chip_dev(chip),
				  "error zd_usb_iowrite16v. Error number %d\n",
				  r);
			return r;
		}
	}

	return 0;
}

/* Writes a variable number of 32 bit registers. The functions will split
 * that in several USB requests. A split can be forced by inserting an IO
 * request with an zero address field.
 */
int zd_iowrite32a_locked(struct zd_chip *chip,
	          const struct zd_ioreq32 *ioreqs, unsigned int count)
{
	int r;
	unsigned int i, j, t, max;

	for (i = 0; i < count; i += j + t) {
		t = 0;
		max = count-i;
		if (max > USB_MAX_IOWRITE32_COUNT)
			max = USB_MAX_IOWRITE32_COUNT;
		for (j = 0; j < max; j++) {
			if (!ioreqs[i+j].addr) {
				t = 1;
				break;
			}
		}

		r = _zd_iowrite32v_locked(chip, &ioreqs[i], j);
		if (r) {
			dev_dbg_f(zd_chip_dev(chip),
				"error _zd_iowrite32v_locked."
				" Error number %d\n", r);
			return r;
		}
	}

	return 0;
}

int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
{
	int r;

	mutex_lock(&chip->mutex);
	r = zd_ioread16_locked(chip, value, addr);
	mutex_unlock(&chip->mutex);
	return r;
}

int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
{
	int r;

	mutex_lock(&chip->mutex);
	r = zd_ioread32_locked(chip, value, addr);
	mutex_unlock(&chip->mutex);
	return r;
}

int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
{
	int r;

	mutex_lock(&chip->mutex);
	r = zd_iowrite16_locked(chip, value, addr);
	mutex_unlock(&chip->mutex);
	return r;
}

int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
{
	int r;

	mutex_lock(&chip->mutex);
	r = zd_iowrite32_locked(chip, value, addr);
	mutex_unlock(&chip->mutex);
	return r;
}

int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
	          u32 *values, unsigned int count)
{
	int r;

	mutex_lock(&chip->mutex);
	r = zd_ioread32v_locked(chip, values, addresses, count);
	mutex_unlock(&chip->mutex);
	return r;
}

int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
	          unsigned int count)
{
	int r;

	mutex_lock(&chip->mutex);
	r = zd_iowrite32a_locked(chip, ioreqs, count);
	mutex_unlock(&chip->mutex);
	return r;
}

static int read_pod(struct zd_chip *chip, u8 *rf_type)
{
	int r;
	u32 value;

	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	r = zd_ioread32_locked(chip, &value, E2P_POD);
	if (r)
		goto error;
	dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);

	/* FIXME: AL2230 handling (Bit 7 in POD) */
	*rf_type = value & 0x0f;
	chip->pa_type = (value >> 16) & 0x0f;
	chip->patch_cck_gain = (value >> 8) & 0x1;
	chip->patch_cr157 = (value >> 13) & 0x1;
	chip->patch_6m_band_edge = (value >> 21) & 0x1;
339
	chip->new_phy_layout = (value >> 31) & 0x1;
340
	chip->al2230s_bit = (value >> 7) & 0x1;
341 342 343 344 345 346
	chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
	chip->supports_tx_led = 1;
	if (value & (1 << 24)) { /* LED scenario */
		if (value & (1 << 29))
			chip->supports_tx_led = 0;
	}
347 348 349

	dev_dbg_f(zd_chip_dev(chip),
		"RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
350
		"patch 6M %d new PHY %d link LED%d tx led %d\n",
351 352
		zd_rf_name(*rf_type), *rf_type,
		chip->pa_type, chip->patch_cck_gain,
353 354 355 356
		chip->patch_cr157, chip->patch_6m_band_edge,
		chip->new_phy_layout,
		chip->link_led == LED1 ? 1 : 2,
		chip->supports_tx_led);
357 358 359 360 361 362 363
	return 0;
error:
	*rf_type = 0;
	chip->pa_type = 0;
	chip->patch_cck_gain = 0;
	chip->patch_cr157 = 0;
	chip->patch_6m_band_edge = 0;
364
	chip->new_phy_layout = 0;
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	return r;
}

static int _read_mac_addr(struct zd_chip *chip, u8 *mac_addr,
	                  const zd_addr_t *addr)
{
	int r;
	u32 parts[2];

	r = zd_ioread32v_locked(chip, parts, (const zd_addr_t *)addr, 2);
	if (r) {
		dev_dbg_f(zd_chip_dev(chip),
			"error: couldn't read e2p macs. Error number %d\n", r);
		return r;
	}

	mac_addr[0] = parts[0];
	mac_addr[1] = parts[0] >>  8;
	mac_addr[2] = parts[0] >> 16;
	mac_addr[3] = parts[0] >> 24;
	mac_addr[4] = parts[1];
	mac_addr[5] = parts[1] >>  8;

	return 0;
}

static int read_e2p_mac_addr(struct zd_chip *chip)
{
	static const zd_addr_t addr[2] = { E2P_MAC_ADDR_P1, E2P_MAC_ADDR_P2 };

	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	return _read_mac_addr(chip, chip->e2p_mac, (const zd_addr_t *)addr);
}

/* MAC address: if custom mac addresses are to to be used CR_MAC_ADDR_P1 and
 *              CR_MAC_ADDR_P2 must be overwritten
 */
void zd_get_e2p_mac_addr(struct zd_chip *chip, u8 *mac_addr)
{
	mutex_lock(&chip->mutex);
	memcpy(mac_addr, chip->e2p_mac, ETH_ALEN);
	mutex_unlock(&chip->mutex);
}

static int read_mac_addr(struct zd_chip *chip, u8 *mac_addr)
{
	static const zd_addr_t addr[2] = { CR_MAC_ADDR_P1, CR_MAC_ADDR_P2 };
	return _read_mac_addr(chip, mac_addr, (const zd_addr_t *)addr);
}

int zd_read_mac_addr(struct zd_chip *chip, u8 *mac_addr)
{
	int r;

	dev_dbg_f(zd_chip_dev(chip), "\n");
	mutex_lock(&chip->mutex);
	r = read_mac_addr(chip, mac_addr);
	mutex_unlock(&chip->mutex);
	return r;
}

int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
{
	int r;
	struct zd_ioreq32 reqs[2] = {
		[0] = { .addr = CR_MAC_ADDR_P1 },
		[1] = { .addr = CR_MAC_ADDR_P2 },
	};

	reqs[0].value = (mac_addr[3] << 24)
		      | (mac_addr[2] << 16)
		      | (mac_addr[1] <<  8)
		      |  mac_addr[0];
	reqs[1].value = (mac_addr[5] <<  8)
		      |  mac_addr[4];

	dev_dbg_f(zd_chip_dev(chip),
		"mac addr " MAC_FMT "\n", MAC_ARG(mac_addr));

	mutex_lock(&chip->mutex);
	r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
#ifdef DEBUG
	{
		u8 tmp[ETH_ALEN];
		read_mac_addr(chip, tmp);
	}
#endif /* DEBUG */
	mutex_unlock(&chip->mutex);
	return r;
}

int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
{
	int r;
	u32 value;

	mutex_lock(&chip->mutex);
	r = zd_ioread32_locked(chip, &value, E2P_SUBID);
	mutex_unlock(&chip->mutex);
	if (r)
		return r;

	*regdomain = value >> 16;
	dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);

	return 0;
}

static int read_values(struct zd_chip *chip, u8 *values, size_t count,
	               zd_addr_t e2p_addr, u32 guard)
{
	int r;
	int i;
	u32 v;

	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	for (i = 0;;) {
482 483
		r = zd_ioread32_locked(chip, &v,
			               (zd_addr_t)((u16)e2p_addr+i/2));
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
		if (r)
			return r;
		v -= guard;
		if (i+4 < count) {
			values[i++] = v;
			values[i++] = v >>  8;
			values[i++] = v >> 16;
			values[i++] = v >> 24;
			continue;
		}
		for (;i < count; i++)
			values[i] = v >> (8*(i%3));
		return 0;
	}
}

static int read_pwr_cal_values(struct zd_chip *chip)
{
	return read_values(chip, chip->pwr_cal_values,
		        E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
			0);
}

static int read_pwr_int_values(struct zd_chip *chip)
{
	return read_values(chip, chip->pwr_int_values,
		        E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
			E2P_PWR_INT_GUARD);
}

static int read_ofdm_cal_values(struct zd_chip *chip)
{
	int r;
	int i;
	static const zd_addr_t addresses[] = {
		E2P_36M_CAL_VALUE1,
		E2P_48M_CAL_VALUE1,
		E2P_54M_CAL_VALUE1,
	};

	for (i = 0; i < 3; i++) {
		r = read_values(chip, chip->ofdm_cal_values[i],
				E2P_CHANNEL_COUNT, addresses[i], 0);
		if (r)
			return r;
	}
	return 0;
}

static int read_cal_int_tables(struct zd_chip *chip)
{
	int r;

	r = read_pwr_cal_values(chip);
	if (r)
		return r;
	r = read_pwr_int_values(chip);
	if (r)
		return r;
	r = read_ofdm_cal_values(chip);
	if (r)
		return r;
	return 0;
}

/* phy means physical registers */
int zd_chip_lock_phy_regs(struct zd_chip *chip)
{
	int r;
	u32 tmp;

	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
	if (r) {
		dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
		return r;
	}

	dev_dbg_f(zd_chip_dev(chip),
		"CR_REG1: 0x%02x -> 0x%02x\n", tmp, tmp & ~UNLOCK_PHY_REGS);
	tmp &= ~UNLOCK_PHY_REGS;

	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
	if (r)
		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
	return r;
}

int zd_chip_unlock_phy_regs(struct zd_chip *chip)
{
	int r;
	u32 tmp;

	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
	if (r) {
		dev_err(zd_chip_dev(chip),
			"error ioread32(CR_REG1): %d\n", r);
		return r;
	}

	dev_dbg_f(zd_chip_dev(chip),
		"CR_REG1: 0x%02x -> 0x%02x\n", tmp, tmp | UNLOCK_PHY_REGS);
	tmp |= UNLOCK_PHY_REGS;

	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
	if (r)
		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
	return r;
}

595
/* CR157 can be optionally patched by the EEPROM for original ZD1211 */
596 597 598
static int patch_cr157(struct zd_chip *chip)
{
	int r;
599
	u16 value;
600 601 602 603

	if (!chip->patch_cr157)
		return 0;

604
	r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	if (r)
		return r;

	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
	return zd_iowrite32_locked(chip, value >> 8, CR157);
}

/*
 * 6M band edge can be optionally overwritten for certain RF's
 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
 * bit (for AL2230, AL2230S)
 */
static int patch_6m_band_edge(struct zd_chip *chip, int channel)
{
	struct zd_ioreq16 ioreqs[] = {
		{ CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
		{ CR47,  0x1e },
	};

	if (!chip->patch_6m_band_edge || !chip->rf.patch_6m_band_edge)
		return 0;

	/* FIXME: Channel 11 is not the edge for all regulatory domains. */
	if (channel == 1 || channel == 11)
		ioreqs[0].value = 0x12;

	dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
}

static int zd1211_hw_reset_phy(struct zd_chip *chip)
{
	static const struct zd_ioreq16 ioreqs[] = {
		{ CR0,   0x0a }, { CR1,   0x06 }, { CR2,   0x26 },
		{ CR3,   0x38 }, { CR4,   0x80 }, { CR9,   0xa0 },
		{ CR10,  0x81 }, { CR11,  0x00 }, { CR12,  0x7f },
		{ CR13,  0x8c }, { CR14,  0x80 }, { CR15,  0x3d },
		{ CR16,  0x20 }, { CR17,  0x1e }, { CR18,  0x0a },
		{ CR19,  0x48 }, { CR20,  0x0c }, { CR21,  0x0c },
		{ CR22,  0x23 }, { CR23,  0x90 }, { CR24,  0x14 },
		{ CR25,  0x40 }, { CR26,  0x10 }, { CR27,  0x19 },
		{ CR28,  0x7f }, { CR29,  0x80 }, { CR30,  0x4b },
		{ CR31,  0x60 }, { CR32,  0x43 }, { CR33,  0x08 },
		{ CR34,  0x06 }, { CR35,  0x0a }, { CR36,  0x00 },
		{ CR37,  0x00 }, { CR38,  0x38 }, { CR39,  0x0c },
		{ CR40,  0x84 }, { CR41,  0x2a }, { CR42,  0x80 },
		{ CR43,  0x10 }, { CR44,  0x12 }, { CR46,  0xff },
		{ CR47,  0x1E }, { CR48,  0x26 }, { CR49,  0x5b },
		{ CR64,  0xd0 }, { CR65,  0x04 }, { CR66,  0x58 },
		{ CR67,  0xc9 }, { CR68,  0x88 }, { CR69,  0x41 },
		{ CR70,  0x23 }, { CR71,  0x10 }, { CR72,  0xff },
		{ CR73,  0x32 }, { CR74,  0x30 }, { CR75,  0x65 },
		{ CR76,  0x41 }, { CR77,  0x1b }, { CR78,  0x30 },
		{ CR79,  0x68 }, { CR80,  0x64 }, { CR81,  0x64 },
		{ CR82,  0x00 }, { CR83,  0x00 }, { CR84,  0x00 },
		{ CR85,  0x02 }, { CR86,  0x00 }, { CR87,  0x00 },
		{ CR88,  0xff }, { CR89,  0xfc }, { CR90,  0x00 },
		{ CR91,  0x00 }, { CR92,  0x00 }, { CR93,  0x08 },
		{ CR94,  0x00 }, { CR95,  0x00 }, { CR96,  0xff },
		{ CR97,  0xe7 }, { CR98,  0x00 }, { CR99,  0x00 },
		{ CR100, 0x00 }, { CR101, 0xae }, { CR102, 0x02 },
		{ CR103, 0x00 }, { CR104, 0x03 }, { CR105, 0x65 },
		{ CR106, 0x04 }, { CR107, 0x00 }, { CR108, 0x0a },
		{ CR109, 0xaa }, { CR110, 0xaa }, { CR111, 0x25 },
		{ CR112, 0x25 }, { CR113, 0x00 }, { CR119, 0x1e },
		{ CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 },
		{ },
		{ CR5,   0x00 }, { CR6,   0x00 }, { CR7,   0x00 },
		{ CR8,   0x00 }, { CR9,   0x20 }, { CR12,  0xf0 },
		{ CR20,  0x0e }, { CR21,  0x0e }, { CR27,  0x10 },
		{ CR44,  0x33 }, { CR47,  0x1E }, { CR83,  0x24 },
		{ CR84,  0x04 }, { CR85,  0x00 }, { CR86,  0x0C },
		{ CR87,  0x12 }, { CR88,  0x0C }, { CR89,  0x00 },
		{ CR90,  0x10 }, { CR91,  0x08 }, { CR93,  0x00 },
		{ CR94,  0x01 }, { CR95,  0x00 }, { CR96,  0x50 },
		{ CR97,  0x37 }, { CR98,  0x35 }, { CR101, 0x13 },
		{ CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 },
		{ CR105, 0x12 }, { CR109, 0x27 }, { CR110, 0x27 },
		{ CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 },
		{ CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 },
		{ CR117, 0xfc }, { CR118, 0xfa }, { CR120, 0x4f },
		{ CR123, 0x27 }, { CR125, 0xaa }, { CR127, 0x03 },
		{ CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
		{ CR131, 0x0C }, { CR136, 0xdf }, { CR137, 0x40 },
		{ CR138, 0xa0 }, { CR139, 0xb0 }, { CR140, 0x99 },
		{ CR141, 0x82 }, { CR142, 0x54 }, { CR143, 0x1c },
		{ CR144, 0x6c }, { CR147, 0x07 }, { CR148, 0x4c },
		{ CR149, 0x50 }, { CR150, 0x0e }, { CR151, 0x18 },
		{ CR160, 0xfe }, { CR161, 0xee }, { CR162, 0xaa },
		{ CR163, 0xfa }, { CR164, 0xfa }, { CR165, 0xea },
		{ CR166, 0xbe }, { CR167, 0xbe }, { CR168, 0x6a },
		{ CR169, 0xba }, { CR170, 0xba }, { CR171, 0xba },
		/* Note: CR204 must lead the CR203 */
		{ CR204, 0x7d },
		{ },
		{ CR203, 0x30 },
	};

	int r, t;

	dev_dbg_f(zd_chip_dev(chip), "\n");

	r = zd_chip_lock_phy_regs(chip);
	if (r)
		goto out;

	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
	if (r)
		goto unlock;

	r = patch_cr157(chip);
unlock:
	t = zd_chip_unlock_phy_regs(chip);
	if (t && !r)
		r = t;
out:
	return r;
}

static int zd1211b_hw_reset_phy(struct zd_chip *chip)
{
	static const struct zd_ioreq16 ioreqs[] = {
		{ CR0,   0x14 }, { CR1,   0x06 }, { CR2,   0x26 },
		{ CR3,   0x38 }, { CR4,   0x80 }, { CR9,   0xe0 },
		{ CR10,  0x81 },
		/* power control { { CR11,  1 << 6 }, */
		{ CR11,  0x00 },
		{ CR12,  0xf0 }, { CR13,  0x8c }, { CR14,  0x80 },
		{ CR15,  0x3d }, { CR16,  0x20 }, { CR17,  0x1e },
		{ CR18,  0x0a }, { CR19,  0x48 },
		{ CR20,  0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
		{ CR21,  0x0e }, { CR22,  0x23 }, { CR23,  0x90 },
		{ CR24,  0x14 }, { CR25,  0x40 }, { CR26,  0x10 },
		{ CR27,  0x10 }, { CR28,  0x7f }, { CR29,  0x80 },
739
		{ CR30,  0x4b }, /* ASIC/FWT, no jointly decoder */
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
		{ CR31,  0x60 }, { CR32,  0x43 }, { CR33,  0x08 },
		{ CR34,  0x06 }, { CR35,  0x0a }, { CR36,  0x00 },
		{ CR37,  0x00 }, { CR38,  0x38 }, { CR39,  0x0c },
		{ CR40,  0x84 }, { CR41,  0x2a }, { CR42,  0x80 },
		{ CR43,  0x10 }, { CR44,  0x33 }, { CR46,  0xff },
		{ CR47,  0x1E }, { CR48,  0x26 }, { CR49,  0x5b },
		{ CR64,  0xd0 }, { CR65,  0x04 }, { CR66,  0x58 },
		{ CR67,  0xc9 }, { CR68,  0x88 }, { CR69,  0x41 },
		{ CR70,  0x23 }, { CR71,  0x10 }, { CR72,  0xff },
		{ CR73,  0x32 }, { CR74,  0x30 }, { CR75,  0x65 },
		{ CR76,  0x41 }, { CR77,  0x1b }, { CR78,  0x30 },
		{ CR79,  0xf0 }, { CR80,  0x64 }, { CR81,  0x64 },
		{ CR82,  0x00 }, { CR83,  0x24 }, { CR84,  0x04 },
		{ CR85,  0x00 }, { CR86,  0x0c }, { CR87,  0x12 },
		{ CR88,  0x0c }, { CR89,  0x00 }, { CR90,  0x58 },
		{ CR91,  0x04 }, { CR92,  0x00 }, { CR93,  0x00 },
		{ CR94,  0x01 },
		{ CR95,  0x20 }, /* ZD1211B */
		{ CR96,  0x50 }, { CR97,  0x37 }, { CR98,  0x35 },
		{ CR99,  0x00 }, { CR100, 0x01 }, { CR101, 0x13 },
		{ CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 },
		{ CR105, 0x12 }, { CR106, 0x04 }, { CR107, 0x00 },
		{ CR108, 0x0a }, { CR109, 0x27 }, { CR110, 0x27 },
		{ CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 },
		{ CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 },
		{ CR117, 0xfc }, { CR118, 0xfa }, { CR119, 0x1e },
		{ CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 },
		{ CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
		{ CR131, 0x0c }, { CR136, 0xdf }, { CR137, 0xa0 },
		{ CR138, 0xa8 }, { CR139, 0xb4 }, { CR140, 0x98 },
		{ CR141, 0x82 }, { CR142, 0x53 }, { CR143, 0x1c },
		{ CR144, 0x6c }, { CR147, 0x07 }, { CR148, 0x40 },
		{ CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
		{ CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
		{ CR151, 0x18 }, { CR159, 0x70 }, { CR160, 0xfe },
		{ CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa },
		{ CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe },
		{ CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba },
		{ CR170, 0xba }, { CR171, 0xba },
		/* Note: CR204 must lead the CR203 */
		{ CR204, 0x7d },
		{},
		{ CR203, 0x30 },
	};

	int r, t;

	dev_dbg_f(zd_chip_dev(chip), "\n");

	r = zd_chip_lock_phy_regs(chip);
	if (r)
		goto out;

	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
	t = zd_chip_unlock_phy_regs(chip);
	if (t && !r)
		r = t;
out:
	return r;
}

static int hw_reset_phy(struct zd_chip *chip)
{
	return chip->is_zd1211b ? zd1211b_hw_reset_phy(chip) :
		                  zd1211_hw_reset_phy(chip);
}

static int zd1211_hw_init_hmac(struct zd_chip *chip)
{
	static const struct zd_ioreq32 ioreqs[] = {
		{ CR_ZD1211_RETRY_MAX,		0x2 },
		{ CR_RX_THRESHOLD,		0x000c0640 },
	};

	dev_dbg_f(zd_chip_dev(chip), "\n");
	ZD_ASSERT(mutex_is_locked(&chip->mutex));
816
	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
817 818 819 820 821 822 823 824 825 826 827 828 829
}

static int zd1211b_hw_init_hmac(struct zd_chip *chip)
{
	static const struct zd_ioreq32 ioreqs[] = {
		{ CR_ZD1211B_RETRY_MAX,		0x02020202 },
		{ CR_ZD1211B_TX_PWR_CTL4,	0x007f003f },
		{ CR_ZD1211B_TX_PWR_CTL3,	0x007f003f },
		{ CR_ZD1211B_TX_PWR_CTL2,       0x003f001f },
		{ CR_ZD1211B_TX_PWR_CTL1,       0x001f000f },
		{ CR_ZD1211B_AIFS_CTL1,		0x00280028 },
		{ CR_ZD1211B_AIFS_CTL2,		0x008C003C },
		{ CR_ZD1211B_TXOP,		0x01800824 },
830 831 832 833 834 835 836 837 838 839 840 841 842 843
		{ CR_RX_THRESHOLD,		0x000c0eff, },
	};

	dev_dbg_f(zd_chip_dev(chip), "\n");
	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
}

static int hw_init_hmac(struct zd_chip *chip)
{
	int r;
	static const struct zd_ioreq32 ioreqs[] = {
		{ CR_ACK_TIMEOUT_EXT,		0x20 },
		{ CR_ADDA_MBIAS_WARMTIME,	0x30000808 },
844
		{ CR_SNIFFER_ON,		0 },
845
		{ CR_RX_FILTER,			STA_RX_FILTER },
846 847 848 849 850 851 852 853 854 855 856 857 858 859
		{ CR_GROUP_HASH_P1,		0x00 },
		{ CR_GROUP_HASH_P2,		0x80000000 },
		{ CR_REG1,			0xa4 },
		{ CR_ADDA_PWR_DWN,		0x7f },
		{ CR_BCN_PLCP_CFG,		0x00f00401 },
		{ CR_PHY_DELAY,			0x00 },
		{ CR_ACK_TIMEOUT_EXT,		0x80 },
		{ CR_ADDA_PWR_DWN,		0x00 },
		{ CR_ACK_TIME_80211,		0x100 },
		{ CR_RX_PE_DELAY,		0x70 },
		{ CR_PS_CTRL,			0x10000000 },
		{ CR_RTS_CTS_RATE,		0x02030203 },
		{ CR_AFTER_PNP,			0x1 },
		{ CR_WEP_PROTECT,		0x114 },
860
		{ CR_IFS_VALUE,			IFS_VALUE_DEFAULT },
861 862 863 864
	};

	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
865 866
	if (r)
		return r;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

	return chip->is_zd1211b ?
		zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
}

struct aw_pt_bi {
	u32 atim_wnd_period;
	u32 pre_tbtt;
	u32 beacon_interval;
};

static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
{
	int r;
	static const zd_addr_t aw_pt_bi_addr[] =
		{ CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
	u32 values[3];

	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
		         ARRAY_SIZE(aw_pt_bi_addr));
	if (r) {
		memset(s, 0, sizeof(*s));
		return r;
	}

	s->atim_wnd_period = values[0];
	s->pre_tbtt = values[1];
	s->beacon_interval = values[2];
	dev_dbg_f(zd_chip_dev(chip), "aw %u pt %u bi %u\n",
		s->atim_wnd_period, s->pre_tbtt, s->beacon_interval);
	return 0;
}

static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
{
	struct zd_ioreq32 reqs[3];

	if (s->beacon_interval <= 5)
		s->beacon_interval = 5;
	if (s->pre_tbtt < 4 || s->pre_tbtt >= s->beacon_interval)
		s->pre_tbtt = s->beacon_interval - 1;
	if (s->atim_wnd_period >= s->pre_tbtt)
		s->atim_wnd_period = s->pre_tbtt - 1;

	reqs[0].addr = CR_ATIM_WND_PERIOD;
	reqs[0].value = s->atim_wnd_period;
	reqs[1].addr = CR_PRE_TBTT;
	reqs[1].value = s->pre_tbtt;
	reqs[2].addr = CR_BCN_INTERVAL;
	reqs[2].value = s->beacon_interval;

	dev_dbg_f(zd_chip_dev(chip),
		"aw %u pt %u bi %u\n", s->atim_wnd_period, s->pre_tbtt,
		                       s->beacon_interval);
	return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
}


static int set_beacon_interval(struct zd_chip *chip, u32 interval)
{
	int r;
	struct aw_pt_bi s;

	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	r = get_aw_pt_bi(chip, &s);
	if (r)
		return r;
	s.beacon_interval = interval;
	return set_aw_pt_bi(chip, &s);
}

int zd_set_beacon_interval(struct zd_chip *chip, u32 interval)
{
	int r;

	mutex_lock(&chip->mutex);
	r = set_beacon_interval(chip, interval);
	mutex_unlock(&chip->mutex);
	return r;
}

static int hw_init(struct zd_chip *chip)
{
	int r;

	dev_dbg_f(zd_chip_dev(chip), "\n");
	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	r = hw_reset_phy(chip);
	if (r)
		return r;

	r = hw_init_hmac(chip);
	if (r)
		return r;
961 962

	return set_beacon_interval(chip, 100);
963 964
}

965 966 967 968 969
static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
{
	return (zd_addr_t)((u16)chip->fw_regs_base + offset);
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
#ifdef DEBUG
static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
	           const char *addr_string)
{
	int r;
	u32 value;

	r = zd_ioread32_locked(chip, &value, addr);
	if (r) {
		dev_dbg_f(zd_chip_dev(chip),
			"error reading %s. Error number %d\n", addr_string, r);
		return r;
	}

	dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
		addr_string, (unsigned int)value);
	return 0;
}

static int test_init(struct zd_chip *chip)
{
	int r;

	r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
	if (r)
		return r;
	r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
	if (r)
		return r;
	return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
}

static void dump_fw_registers(struct zd_chip *chip)
{
1004 1005 1006 1007 1008
	const zd_addr_t addr[4] = {
		fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
		fw_reg_addr(chip, FW_REG_USB_SPEED),
		fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	};

	int r;
	u16 values[4];

	r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
		         ARRAY_SIZE(addr));
	if (r) {
		dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
			 r);
		return;
	}

	dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
	dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
	dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
	dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
}
#endif /* DEBUG */

static int print_fw_version(struct zd_chip *chip)
{
	int r;
	u16 version;

1034 1035
	r = zd_ioread16_locked(chip, &version,
		fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	if (r)
		return r;

	dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
	return 0;
}

static int set_mandatory_rates(struct zd_chip *chip, enum ieee80211_std std)
{
	u32 rates;
	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	/* This sets the mandatory rates, which only depend from the standard
	 * that the device is supporting. Until further notice we should try
	 * to support 802.11g also for full speed USB.
	 */
	switch (std) {
	case IEEE80211B:
		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
		break;
	case IEEE80211G:
		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
			CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
		break;
	default:
		return -EINVAL;
	}
	return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
	u8 rts_rate, int preamble)
{
	int rts_mod = ZD_RX_CCK;
	u32 value = 0;

	/* Modulation bit */
	if (ZD_CS_TYPE(rts_rate) == ZD_CS_OFDM)
		rts_mod = ZD_RX_OFDM;

	dev_dbg_f(zd_chip_dev(chip), "rts_rate=%x preamble=%x\n",
		rts_rate, preamble);

	value |= rts_rate << RTSCTS_SH_RTS_RATE;
	value |= rts_mod << RTSCTS_SH_RTS_MOD_TYPE;
	value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
	value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;

	/* We always send 11M self-CTS messages, like the vendor driver. */
	value |= ZD_CCK_RATE_11M << RTSCTS_SH_CTS_RATE;
	value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;

	return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
int zd_chip_enable_hwint(struct zd_chip *chip)
{
	int r;

	mutex_lock(&chip->mutex);
	r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
	mutex_unlock(&chip->mutex);
	return r;
}

static int disable_hwint(struct zd_chip *chip)
{
	return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
}

int zd_chip_disable_hwint(struct zd_chip *chip)
{
	int r;

	mutex_lock(&chip->mutex);
	r = disable_hwint(chip);
	mutex_unlock(&chip->mutex);
	return r;
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static int read_fw_regs_offset(struct zd_chip *chip)
{
	int r;

	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
		               FWRAW_REGS_ADDR);
	if (r)
		return r;
	dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
		  (u16)chip->fw_regs_base);

	return 0;
}


1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
int zd_chip_init_hw(struct zd_chip *chip, u8 device_type)
{
	int r;
	u8 rf_type;

	dev_dbg_f(zd_chip_dev(chip), "\n");

	mutex_lock(&chip->mutex);
	chip->is_zd1211b = (device_type == DEVICE_ZD1211B) != 0;

#ifdef DEBUG
	r = test_init(chip);
	if (r)
		goto out;
#endif
	r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
	if (r)
		goto out;

1150
	r = read_fw_regs_offset(chip);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	if (r)
		goto out;

	/* GPI is always disabled, also in the other driver.
	 */
	r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
	if (r)
		goto out;
	r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
	if (r)
		goto out;
	/* Currently we support IEEE 802.11g for full and high speed USB.
	 * It might be discussed, whether we should suppport pure b mode for
	 * full speed USB.
	 */
	r = set_mandatory_rates(chip, IEEE80211G);
	if (r)
		goto out;
	/* Disabling interrupts is certainly a smart thing here.
	 */
	r = disable_hwint(chip);
	if (r)
		goto out;
	r = read_pod(chip, &rf_type);
	if (r)
		goto out;
	r = hw_init(chip);
	if (r)
		goto out;
	r = zd_rf_init_hw(&chip->rf, rf_type);
	if (r)
		goto out;

	r = print_fw_version(chip);
	if (r)
		goto out;

#ifdef DEBUG
	dump_fw_registers(chip);
	r = test_init(chip);
	if (r)
		goto out;
#endif /* DEBUG */

	r = read_e2p_mac_addr(chip);
	if (r)
		goto out;

	r = read_cal_int_tables(chip);
	if (r)
		goto out;

	print_id(chip);
out:
	mutex_unlock(&chip->mutex);
	return r;
}

static int update_pwr_int(struct zd_chip *chip, u8 channel)
{
	u8 value = chip->pwr_int_values[channel - 1];
	dev_dbg_f(zd_chip_dev(chip), "channel %d pwr_int %#04x\n",
		 channel, value);
1214
	return zd_iowrite16_locked(chip, value, CR31);
1215 1216 1217 1218 1219 1220 1221
}

static int update_pwr_cal(struct zd_chip *chip, u8 channel)
{
	u8 value = chip->pwr_cal_values[channel-1];
	dev_dbg_f(zd_chip_dev(chip), "channel %d pwr_cal %#04x\n",
		 channel, value);
1222
	return zd_iowrite16_locked(chip, value, CR68);
1223 1224 1225 1226
}

static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
{
1227
	struct zd_ioreq16 ioreqs[3];
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	ioreqs[0].addr = CR67;
	ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
	ioreqs[1].addr = CR66;
	ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
	ioreqs[2].addr = CR65;
	ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];

	dev_dbg_f(zd_chip_dev(chip),
		"channel %d ofdm_cal 36M %#04x 48M %#04x 54M %#04x\n",
		channel, ioreqs[0].value, ioreqs[1].value, ioreqs[2].value);
1239
	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
}

static int update_channel_integration_and_calibration(struct zd_chip *chip,
	                                              u8 channel)
{
	int r;

	r = update_pwr_int(chip, channel);
	if (r)
		return r;
	if (chip->is_zd1211b) {
1251
		static const struct zd_ioreq16 ioreqs[] = {
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
			{ CR69, 0x28 },
			{},
			{ CR69, 0x2a },
		};

		r = update_ofdm_cal(chip, channel);
		if (r)
			return r;
		r = update_pwr_cal(chip, channel);
		if (r)
			return r;
1263
		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		if (r)
			return r;
	}

	return 0;
}

/* The CCK baseband gain can be optionally patched by the EEPROM */
static int patch_cck_gain(struct zd_chip *chip)
{
	int r;
	u32 value;

	if (!chip->patch_cck_gain)
		return 0;

	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
	if (r)
		return r;
	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1285
	return zd_iowrite16_locked(chip, value & 0xff, CR47);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
}

int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
{
	int r, t;

	mutex_lock(&chip->mutex);
	r = zd_chip_lock_phy_regs(chip);
	if (r)
		goto out;
	r = zd_rf_set_channel(&chip->rf, channel);
	if (r)
		goto unlock;
	r = update_channel_integration_and_calibration(chip, channel);
	if (r)
		goto unlock;
	r = patch_cck_gain(chip);
	if (r)
		goto unlock;
	r = patch_6m_band_edge(chip, channel);
	if (r)
		goto unlock;
	r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
unlock:
	t = zd_chip_unlock_phy_regs(chip);
	if (t && !r)
		r = t;
out:
	mutex_unlock(&chip->mutex);
	return r;
}

u8 zd_chip_get_channel(struct zd_chip *chip)
{
	u8 channel;

	mutex_lock(&chip->mutex);
	channel = chip->rf.channel;
	mutex_unlock(&chip->mutex);
	return channel;
}

1328
int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1329
{
1330 1331
	const zd_addr_t a[] = {
		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1332 1333
		CR_LED,
	};
1334

1335 1336 1337
	int r;
	u16 v[ARRAY_SIZE(a)];
	struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1338
		[0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1339 1340 1341
		[1] = { CR_LED },
	};
	u16 other_led;
1342 1343

	mutex_lock(&chip->mutex);
1344
	r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1345
	if (r)
1346 1347 1348 1349
		goto out;

	other_led = chip->link_led == LED1 ? LED2 : LED1;

1350 1351
	switch (status) {
	case LED_OFF:
1352 1353
		ioreqs[0].value = FW_LINK_OFF;
		ioreqs[1].value = v[1] & ~(LED1|LED2);
1354
		break;
1355 1356 1357 1358 1359 1360 1361 1362
	case LED_SCANNING:
		ioreqs[0].value = FW_LINK_OFF;
		ioreqs[1].value = v[1] & ~other_led;
		if (get_seconds() % 3 == 0) {
			ioreqs[1].value &= ~chip->link_led;
		} else {
			ioreqs[1].value |= chip->link_led;
		}
1363
		break;
1364 1365 1366 1367
	case LED_ASSOCIATED:
		ioreqs[0].value = FW_LINK_TX;
		ioreqs[1].value = v[1] & ~other_led;
		ioreqs[1].value |= chip->link_led;
1368 1369
		break;
	default:
1370
		r = -EINVAL;
1371 1372 1373
		goto out;
	}

1374 1375 1376
	if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
		if (r)
1377 1378
			goto out;
	}
1379
	r = 0;
1380
out:
1381
	mutex_unlock(&chip->mutex);
1382 1383 1384
	return r;
}

1385
int zd_chip_set_basic_rates_locked(struct zd_chip *chip, u16 cr_rates)
1386
{
1387 1388
	ZD_ASSERT((cr_rates & ~(CR_RATES_80211B | CR_RATES_80211G)) == 0);
	dev_dbg_f(zd_chip_dev(chip), "%x\n", cr_rates);
1389

1390
	return zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
}

static int ofdm_qual_db(u8 status_quality, u8 rate, unsigned int size)
{
	static const u16 constants[] = {
		715, 655, 585, 540, 470, 410, 360, 315,
		270, 235, 205, 175, 150, 125, 105,  85,
		 65,  50,  40,  25,  15
	};

	int i;
	u32 x;

	/* It seems that their quality parameter is somehow per signal
	 * and is now transferred per bit.
	 */
	switch (rate) {
	case ZD_OFDM_RATE_6M:
	case ZD_OFDM_RATE_12M:
	case ZD_OFDM_RATE_24M:
		size *= 2;
		break;
	case ZD_OFDM_RATE_9M:
	case ZD_OFDM_RATE_18M:
	case ZD_OFDM_RATE_36M:
	case ZD_OFDM_RATE_54M:
		size *= 4;
		size /= 3;
		break;
	case ZD_OFDM_RATE_48M:
		size *= 3;
		size /= 2;
		break;
	default:
		return -EINVAL;
	}

	x = (10000 * status_quality)/size;
	for (i = 0; i < ARRAY_SIZE(constants); i++) {
		if (x > constants[i])
			break;
	}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	switch (rate) {
	case ZD_OFDM_RATE_6M:
	case ZD_OFDM_RATE_9M:
		i += 3;
		break;
	case ZD_OFDM_RATE_12M:
	case ZD_OFDM_RATE_18M:
		i += 5;
		break;
	case ZD_OFDM_RATE_24M:
	case ZD_OFDM_RATE_36M:
		i += 9;
		break;
	case ZD_OFDM_RATE_48M:
	case ZD_OFDM_RATE_54M:
		i += 15;
		break;
	default:
		return -EINVAL;
	}

1455 1456 1457
	return i;
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
static int ofdm_qual_percent(u8 status_quality, u8 rate, unsigned int size)
{
	int r;

	r = ofdm_qual_db(status_quality, rate, size);
	ZD_ASSERT(r >= 0);
	if (r < 0)
		r = 0;

	r = (r * 100)/29;
	return r <= 100 ? r : 100;
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
static unsigned int log10times100(unsigned int x)
{
	static const u8 log10[] = {
		  0,
		  0,   30,   47,   60,   69,   77,   84,   90,   95,  100,
		104,  107,  111,  114,  117,  120,  123,  125,  127,  130,
		132,  134,  136,  138,  139,  141,  143,  144,  146,  147,
		149,  150,  151,  153,  154,  155,  156,  157,  159,  160,
		161,  162,  163,  164,  165,  166,  167,  168,  169,  169,
		170,  171,  172,  173,  174,  174,  175,  176,  177,  177,
		178,  179,  179,  180,  181,  181,  182,  183,  183,  184,
		185,  185,  186,  186,  187,  188,  188,  189,  189,  190,
		190,  191,  191,  192,  192,  193,  193,  194,  194,  195,
		195,  196,  196,  197,  197,  198,  198,  199,  199,  200,
		200,  200,  201,  201,  202,  202,  202,  203,  203,  204,
		204,  204,  205,  205,  206,  206,  206,  207,  207,  207,
		208,  208,  208,  209,  209,  210,  210,  210,  211,  211,
		211,  212,  212,  212,  213,  213,  213,  213,  214,  214,
		214,  215,  215,  215,  216,  216,  216,  217,  217,  217,
		217,  218,  218,  218,  219,  219,  219,  219,  220,  220,
		220,  220,  221,  221,  221,  222,  222,  222,  222,  223,
		223,  223,  223,  224,  224,  224,  224,
	};

	return x < ARRAY_SIZE(log10) ? log10[x] : 225;
}

enum {
	MAX_CCK_EVM_DB = 45,
};

static int cck_evm_db(u8 status_quality)
{
	return (20 * log10times100(status_quality)) / 100;
}

static int cck_snr_db(u8 status_quality)
{
	int r = MAX_CCK_EVM_DB - cck_evm_db(status_quality);
	ZD_ASSERT(r >= 0);
	return r;
}

1514
static int cck_qual_percent(u8 status_quality)
1515
{
1516 1517 1518 1519 1520
	int r;

	r = cck_snr_db(status_quality);
	r = (100*r)/17;
	return r <= 100 ? r : 100;
1521 1522 1523 1524 1525
}

u8 zd_rx_qual_percent(const void *rx_frame, unsigned int size,
	              const struct rx_status *status)
{
1526 1527 1528 1529 1530
	return (status->frame_status&ZD_RX_OFDM) ?
		ofdm_qual_percent(status->signal_quality_ofdm,
			          zd_ofdm_plcp_header_rate(rx_frame),
			          size) :
		cck_qual_percent(status->signal_quality_cck);
1531 1532 1533 1534
}

u8 zd_rx_strength_percent(u8 rssi)
{
1535
	int r = (rssi*100) / 41;
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	if (r > 100)
		r = 100;
	return (u8) r;
}

u16 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
{
	static const u16 ofdm_rates[] = {
		[ZD_OFDM_RATE_6M]  = 60,
		[ZD_OFDM_RATE_9M]  = 90,
		[ZD_OFDM_RATE_12M] = 120,
		[ZD_OFDM_RATE_18M] = 180,
		[ZD_OFDM_RATE_24M] = 240,
		[ZD_OFDM_RATE_36M] = 360,
		[ZD_OFDM_RATE_48M] = 480,
		[ZD_OFDM_RATE_54M] = 540,
	};
	u16 rate;
	if (status->frame_status & ZD_RX_OFDM) {
		u8 ofdm_rate = zd_ofdm_plcp_header_rate(rx_frame);
		rate = ofdm_rates[ofdm_rate & 0xf];
	} else {
		u8 cck_rate = zd_cck_plcp_header_rate(rx_frame);
		switch (cck_rate) {
		case ZD_CCK_SIGNAL_1M:
			rate = 10;
			break;
		case ZD_CCK_SIGNAL_2M:
			rate = 20;
			break;
		case ZD_CCK_SIGNAL_5M5:
			rate = 55;
			break;
		case ZD_CCK_SIGNAL_11M:
			rate = 110;
			break;
		default:
			rate = 0;
		}
	}

	return rate;
}

int zd_chip_switch_radio_on(struct zd_chip *chip)
{
	int r;

	mutex_lock(&chip->mutex);
	r = zd_switch_radio_on(&chip->rf);
	mutex_unlock(&chip->mutex);
	return r;
}

int zd_chip_switch_radio_off(struct zd_chip *chip)
{
	int r;

	mutex_lock(&chip->mutex);
	r = zd_switch_radio_off(&chip->rf);
	mutex_unlock(&chip->mutex);
	return r;
}

int zd_chip_enable_int(struct zd_chip *chip)
{
	int r;

	mutex_lock(&chip->mutex);
	r = zd_usb_enable_int(&chip->usb);
	mutex_unlock(&chip->mutex);
	return r;
}

void zd_chip_disable_int(struct zd_chip *chip)
{
	mutex_lock(&chip->mutex);
	zd_usb_disable_int(&chip->usb);
	mutex_unlock(&chip->mutex);
}

int zd_chip_enable_rx(struct zd_chip *chip)
{
	int r;

	mutex_lock(&chip->mutex);
	r = zd_usb_enable_rx(&chip->usb);
	mutex_unlock(&chip->mutex);
	return r;
}

void zd_chip_disable_rx(struct zd_chip *chip)
{
	mutex_lock(&chip->mutex);
	zd_usb_disable_rx(&chip->usb);
	mutex_unlock(&chip->mutex);
}

int zd_rfwritev_locked(struct zd_chip *chip,
	               const u32* values, unsigned int count, u8 bits)
{
	int r;
	unsigned int i;

	for (i = 0; i < count; i++) {
		r = zd_rfwrite_locked(chip, values[i], bits);
		if (r)
			return r;
	}

	return 0;
}
1648 1649 1650 1651 1652

/*
 * We can optionally program the RF directly through CR regs, if supported by
 * the hardware. This is much faster than the older method.
 */
1653
int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
{
	struct zd_ioreq16 ioreqs[] = {
		{ CR244, (value >> 16) & 0xff },
		{ CR243, (value >>  8) & 0xff },
		{ CR242,  value        & 0xff },
	};
	ZD_ASSERT(mutex_is_locked(&chip->mutex));
	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
}

int zd_rfwritev_cr_locked(struct zd_chip *chip,
	                  const u32 *values, unsigned int count)
{
	int r;
	unsigned int i;

	for (i = 0; i < count; i++) {
		r = zd_rfwrite_cr_locked(chip, values[i]);
		if (r)
			return r;
	}

	return 0;
}
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

int zd_chip_set_multicast_hash(struct zd_chip *chip,
	                       struct zd_mc_hash *hash)
{
	struct zd_ioreq32 ioreqs[] = {
		{ CR_GROUP_HASH_P1, hash->low },
		{ CR_GROUP_HASH_P2, hash->high },
	};

	dev_dbg_f(zd_chip_dev(chip), "hash l 0x%08x h 0x%08x\n",
		ioreqs[0].value, ioreqs[1].value);
	return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
}