adv7604.c 95.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * adv7604 - Analog Devices ADV7604 video decoder driver
 *
 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 *
 * This program is free software; you may redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

/*
 * References (c = chapter, p = page):
 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
 *		Revision 2.5, June 2010
 * REF_02 - Analog devices, Register map documentation, Documentation of
 *		the register maps, Software manual, Rev. F, June 2010
 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
 */

30
#include <linux/delay.h>
31
#include <linux/gpio/consumer.h>
32
#include <linux/hdmi.h>
33
#include <linux/i2c.h>
34 35 36
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
37
#include <linux/v4l2-dv-timings.h>
38 39
#include <linux/videodev2.h>
#include <linux/workqueue.h>
40
#include <linux/regmap.h>
41

42
#include <media/i2c/adv7604.h>
43
#include <media/v4l2-ctrls.h>
44
#include <media/v4l2-device.h>
45
#include <media/v4l2-event.h>
46
#include <media/v4l2-dv-timings.h>
47
#include <media/v4l2-of.h>
48 49 50 51 52 53 54 55 56 57 58

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");

MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
MODULE_LICENSE("GPL");

/* ADV7604 system clock frequency */
59
#define ADV76XX_FSC (28636360)
60

61
#define ADV76XX_RGB_OUT					(1 << 1)
62

63
#define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
64
#define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
65
#define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
66

67
#define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
68
#define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
69
#define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
70
#define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
71
#define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
72 73
#define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)

74 75 76 77 78 79
#define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
#define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
#define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
#define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
#define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
#define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
80

81
#define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
82

83
enum adv76xx_type {
84 85
	ADV7604,
	ADV7611,
86
	ADV7612,
87 88
};

89
struct adv76xx_reg_seq {
90 91 92 93
	unsigned int reg;
	u8 val;
};

94
struct adv76xx_format_info {
95
	u32 code;
96 97 98 99 100 101
	u8 op_ch_sel;
	bool rgb_out;
	bool swap_cb_cr;
	u8 op_format_sel;
};

102 103 104 105 106 107 108
struct adv76xx_cfg_read_infoframe {
	const char *desc;
	u8 present_mask;
	u8 head_addr;
	u8 payload_addr;
};

109 110
struct adv76xx_chip_info {
	enum adv76xx_type type;
111 112 113 114 115 116 117 118 119 120 121 122

	bool has_afe;
	unsigned int max_port;
	unsigned int num_dv_ports;

	unsigned int edid_enable_reg;
	unsigned int edid_status_reg;
	unsigned int lcf_reg;

	unsigned int cable_det_mask;
	unsigned int tdms_lock_mask;
	unsigned int fmt_change_digital_mask;
123
	unsigned int cp_csc;
124

125
	const struct adv76xx_format_info *formats;
126 127
	unsigned int nformats;

128 129 130 131 132 133
	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
	void (*setup_irqs)(struct v4l2_subdev *sd);
	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);

	/* 0 = AFE, 1 = HDMI */
134
	const struct adv76xx_reg_seq *recommended_settings[2];
135 136 137
	unsigned int num_recommended_settings[2];

	unsigned long page_mask;
138 139 140 141 142 143 144 145 146 147 148 149 150 151

	/* Masks for timings */
	unsigned int linewidth_mask;
	unsigned int field0_height_mask;
	unsigned int field1_height_mask;
	unsigned int hfrontporch_mask;
	unsigned int hsync_mask;
	unsigned int hbackporch_mask;
	unsigned int field0_vfrontporch_mask;
	unsigned int field1_vfrontporch_mask;
	unsigned int field0_vsync_mask;
	unsigned int field1_vsync_mask;
	unsigned int field0_vbackporch_mask;
	unsigned int field1_vbackporch_mask;
152 153
};

154 155 156 157 158 159 160
/*
 **********************************************************************
 *
 *  Arrays with configuration parameters for the ADV7604
 *
 **********************************************************************
 */
161

162 163 164
struct adv76xx_state {
	const struct adv76xx_chip_info *info;
	struct adv76xx_platform_data pdata;
165

166 167
	struct gpio_desc *hpd_gpio[4];

168
	struct v4l2_subdev sd;
169
	struct media_pad pads[ADV76XX_PAD_MAX];
170
	unsigned int source_pad;
171

172
	struct v4l2_ctrl_handler hdl;
173

174
	enum adv76xx_pad selected_input;
175

176
	struct v4l2_dv_timings timings;
177
	const struct adv76xx_format_info *format;
178

179 180 181 182 183
	struct {
		u8 edid[256];
		u32 present;
		unsigned blocks;
	} edid;
184
	u16 spa_port_a[2];
185 186 187 188
	struct v4l2_fract aspect_ratio;
	u32 rgb_quantization_range;
	struct workqueue_struct *work_queues;
	struct delayed_work delayed_work_enable_hotplug;
189
	bool restart_stdi_once;
190 191

	/* i2c clients */
192
	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
193

194 195 196
	/* Regmaps */
	struct regmap *regmap[ADV76XX_PAGE_MAX];

197 198 199 200 201 202 203 204
	/* controls */
	struct v4l2_ctrl *detect_tx_5v_ctrl;
	struct v4l2_ctrl *analog_sampling_phase_ctrl;
	struct v4l2_ctrl *free_run_color_manual_ctrl;
	struct v4l2_ctrl *free_run_color_ctrl;
	struct v4l2_ctrl *rgb_quantization_range_ctrl;
};

205
static bool adv76xx_has_afe(struct adv76xx_state *state)
206 207 208 209
{
	return state->info->has_afe;
}

210 211 212 213
/* Unsupported timings. This device cannot support 720p30. */
static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
	V4L2_DV_BT_CEA_1280X720P30,
	{ }
214 215
};

216 217 218 219 220 221 222 223 224 225
static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
{
	int i;

	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
			return false;
	return true;
}

226
struct adv76xx_video_standards {
227 228 229 230 231 232
	struct v4l2_dv_timings timings;
	u8 vid_std;
	u8 v_freq;
};

/* sorted by number of lines */
233
static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
234 235 236 237 238 239 240 241 242 243 244 245 246 247
	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	/* TODO add 1920x1080P60_RB (CVT timing) */
	{ },
};

/* sorted by number of lines */
248
static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
	/* TODO add 1600X1200P60_RB (not a DMT timing) */
	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
	{ },
};

/* sorted by number of lines */
276
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
277 278 279 280 281 282 283 284 285 286 287 288 289
	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	{ },
};

/* sorted by number of lines */
290
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ },
};

309 310 311 312 313
static const struct v4l2_event adv76xx_ev_fmt = {
	.type = V4L2_EVENT_SOURCE_CHANGE,
	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};

314 315
/* ----------------------------------------------------------------------- */

316
static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
317
{
318
	return container_of(sd, struct adv76xx_state, sd);
319 320 321 322
}

static inline unsigned htotal(const struct v4l2_bt_timings *t)
{
323
	return V4L2_DV_BT_FRAME_WIDTH(t);
324 325 326 327
}

static inline unsigned vtotal(const struct v4l2_bt_timings *t)
{
328
	return V4L2_DV_BT_FRAME_HEIGHT(t);
329 330 331 332
}

/* ----------------------------------------------------------------------- */

333 334
static int adv76xx_read_check(struct adv76xx_state *state,
			     int client_page, u8 reg)
335
{
336
	struct i2c_client *client = state->i2c_clients[client_page];
337
	int err;
338
	unsigned int val;
339

340 341 342 343 344 345
	err = regmap_read(state->regmap[client_page], reg, &val);

	if (err) {
		v4l_err(client, "error reading %02x, %02x\n",
				client->addr, reg);
		return err;
346
	}
347
	return val;
348 349
}

350 351 352 353 354 355 356 357 358
/* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
 * size to one or more registers.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
			      unsigned int init_reg, const void *val,
			      size_t val_len)
359
{
360 361 362 363
	struct regmap *regmap = state->regmap[client_page];

	if (val_len > I2C_SMBUS_BLOCK_MAX)
		val_len = I2C_SMBUS_BLOCK_MAX;
364

365
	return regmap_raw_write(regmap, init_reg, val, val_len);
366 367 368 369 370 371
}

/* ----------------------------------------------------------------------- */

static inline int io_read(struct v4l2_subdev *sd, u8 reg)
{
372
	struct adv76xx_state *state = to_state(sd);
373

374
	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
375 376 377 378
}

static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
379
	struct adv76xx_state *state = to_state(sd);
380

381
	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
382 383
}

384
static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
385
{
386
	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
387 388 389 390
}

static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
{
391
	struct adv76xx_state *state = to_state(sd);
392

393
	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
394 395 396 397
}

static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
398
	struct adv76xx_state *state = to_state(sd);
399

400
	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
401 402 403 404
}

static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
{
405
	struct adv76xx_state *state = to_state(sd);
406

407
	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
408 409 410 411
}

static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
412
	struct adv76xx_state *state = to_state(sd);
413

414
	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
415 416 417 418
}

static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
{
419
	struct adv76xx_state *state = to_state(sd);
420

421
	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
422 423 424 425
}

static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
426
	struct adv76xx_state *state = to_state(sd);
427

428
	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
429 430 431 432
}

static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
{
433
	struct adv76xx_state *state = to_state(sd);
434

435
	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
436 437 438 439
}

static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
440
	struct adv76xx_state *state = to_state(sd);
441

442
	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
443 444 445 446
}

static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
{
447
	struct adv76xx_state *state = to_state(sd);
448

449
	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
450 451 452 453
}

static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
454
	struct adv76xx_state *state = to_state(sd);
455

456
	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
457 458
}

459
static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
460
{
461
	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
462 463 464 465
}

static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
{
466
	struct adv76xx_state *state = to_state(sd);
467

468
	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
469 470 471 472
}

static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
473
	struct adv76xx_state *state = to_state(sd);
474

475
	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
476 477 478
}

static inline int edid_write_block(struct v4l2_subdev *sd,
479
					unsigned int total_len, const u8 *val)
480
{
481
	struct adv76xx_state *state = to_state(sd);
482
	int err = 0;
483 484
	int i = 0;
	int len = 0;
485

486 487 488 489 490 491 492 493 494 495 496 497
	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
				__func__, total_len);

	while (!err && i < total_len) {
		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
				I2C_SMBUS_BLOCK_MAX :
				(total_len - i);

		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
				i, val + i, len);
		i += len;
	}
498

499 500
	return err;
}
501

502
static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
503 504 505
{
	unsigned int i;

506
	for (i = 0; i < state->info->num_dv_ports; ++i)
507 508
		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));

509
	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
510 511
}

512
static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
513 514
{
	struct delayed_work *dwork = to_delayed_work(work);
515
	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
516 517
						delayed_work_enable_hotplug);
	struct v4l2_subdev *sd = &state->sd;
518

519
	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
520

521
	adv76xx_set_hpd(state, state->edid.present);
522 523 524 525
}

static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
{
526
	struct adv76xx_state *state = to_state(sd);
527

528
	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
529 530
}

531 532 533 534 535
static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
}

536 537
static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
538
	struct adv76xx_state *state = to_state(sd);
539

540
	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
541 542
}

543
static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
544
{
545
	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
546 547
}

548 549
static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
550
	struct adv76xx_state *state = to_state(sd);
551

552
	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
553 554 555 556
}

static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
{
557
	struct adv76xx_state *state = to_state(sd);
558

559
	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
560 561
}

562 563 564 565 566
static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
}

567 568
static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
569
	struct adv76xx_state *state = to_state(sd);
570

571
	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
572 573
}

574
static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
575
{
576
	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
577 578 579 580
}

static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
{
581
	struct adv76xx_state *state = to_state(sd);
582

583
	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
584 585 586 587
}

static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
588
	struct adv76xx_state *state = to_state(sd);
589

590
	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
591
}
592

593 594
#define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
#define ADV76XX_REG_SEQ_TERM		0xffff
595 596

#ifdef CONFIG_VIDEO_ADV_DEBUG
597
static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
598
{
599
	struct adv76xx_state *state = to_state(sd);
600
	unsigned int page = reg >> 8;
601 602
	unsigned int val;
	int err;
603 604 605 606 607

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;
608
	err = regmap_read(state->regmap[page], reg, &val);
609

610
	return err ? err : val;
611 612 613
}
#endif

614
static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
615
{
616
	struct adv76xx_state *state = to_state(sd);
617 618 619 620 621 622 623
	unsigned int page = reg >> 8;

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;

624
	return regmap_write(state->regmap[page], reg, val);
625 626
}

627 628
static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
				  const struct adv76xx_reg_seq *reg_seq)
629 630 631
{
	unsigned int i;

632 633
	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
634 635
}

636 637 638 639
/* -----------------------------------------------------------------------------
 * Format helpers
 */

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
static const struct adv76xx_format_info adv7604_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
679 680
};

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static const struct adv76xx_format_info adv7611_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
708 709
};

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
static const struct adv76xx_format_info adv7612_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
};

727 728
static const struct adv76xx_format_info *
adv76xx_format_info(struct adv76xx_state *state, u32 code)
729 730 731 732 733 734 735 736 737 738 739
{
	unsigned int i;

	for (i = 0; i < state->info->nformats; ++i) {
		if (state->info->formats[i].code == code)
			return &state->info->formats[i];
	}

	return NULL;
}

740 741
/* ----------------------------------------------------------------------- */

742 743
static inline bool is_analog_input(struct v4l2_subdev *sd)
{
744
	struct adv76xx_state *state = to_state(sd);
745

746 747
	return state->selected_input == ADV7604_PAD_VGA_RGB ||
	       state->selected_input == ADV7604_PAD_VGA_COMP;
748 749 750 751
}

static inline bool is_digital_input(struct v4l2_subdev *sd)
{
752
	struct adv76xx_state *state = to_state(sd);
753

754
	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
755 756 757
	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
758 759
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
	.type = V4L2_DV_BT_656_1120,
	/* keep this initialization for compatibility with GCC < 4.4.6 */
	.reserved = { 0 },
	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
			V4L2_DV_BT_CAP_CUSTOM)
};

static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
	.type = V4L2_DV_BT_656_1120,
	/* keep this initialization for compatibility with GCC < 4.4.6 */
	.reserved = { 0 },
	V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
			V4L2_DV_BT_CAP_CUSTOM)
};

static inline const struct v4l2_dv_timings_cap *
adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd)
{
	return is_digital_input(sd) ? &adv76xx_timings_cap_digital :
				      &adv7604_timings_cap_analog;
}


790 791
/* ----------------------------------------------------------------------- */

792
#ifdef CONFIG_VIDEO_ADV_DEBUG
793
static void adv76xx_inv_register(struct v4l2_subdev *sd)
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
{
	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
}

810
static int adv76xx_g_register(struct v4l2_subdev *sd,
811 812
					struct v4l2_dbg_register *reg)
{
813 814
	int ret;

815
	ret = adv76xx_read_reg(sd, reg->reg);
816
	if (ret < 0) {
817
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
818
		adv76xx_inv_register(sd);
819
		return ret;
820
	}
821 822 823 824

	reg->size = 1;
	reg->val = ret;

825 826 827
	return 0;
}

828
static int adv76xx_s_register(struct v4l2_subdev *sd,
829
					const struct v4l2_dbg_register *reg)
830
{
831
	int ret;
832

833
	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
834
	if (ret < 0) {
835
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
836
		adv76xx_inv_register(sd);
837
		return ret;
838
	}
839

840 841 842 843
	return 0;
}
#endif

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return ((value & 0x10) >> 4)
	     | ((value & 0x08) >> 2)
	     | ((value & 0x04) << 0)
	     | ((value & 0x02) << 2);
}

static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

861 862 863 864 865 866 867 868 869 870
static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
{
	/*  Reads CABLE_DET_A_RAW. For input B support, need to
	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
	 */
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

871
static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
872
{
873 874
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
875 876

	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
877
				info->read_cable_det(sd));
878 879
}

880 881
static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
		u8 prim_mode,
882
		const struct adv76xx_video_standards *predef_vid_timings,
883 884 885 886 887
		const struct v4l2_dv_timings *timings)
{
	int i;

	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
888
		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
889
				is_digital_input(sd) ? 250000 : 1000000, false))
890 891 892 893 894 895 896 897 898 899 900 901
			continue;
		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
				prim_mode); /* v_freq and prim mode */
		return 0;
	}

	return -1;
}

static int configure_predefined_video_timings(struct v4l2_subdev *sd,
		struct v4l2_dv_timings *timings)
902
{
903
	struct adv76xx_state *state = to_state(sd);
904 905 906 907
	int err;

	v4l2_dbg(1, debug, sd, "%s", __func__);

908
	if (adv76xx_has_afe(state)) {
909 910 911 912
		/* reset to default values */
		io_write(sd, 0x16, 0x43);
		io_write(sd, 0x17, 0x5a);
	}
913
	/* disable embedded syncs for auto graphics mode */
914
	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
915 916 917 918 919 920 921 922 923 924 925
	cp_write(sd, 0x8f, 0x00);
	cp_write(sd, 0x90, 0x00);
	cp_write(sd, 0xa2, 0x00);
	cp_write(sd, 0xa3, 0x00);
	cp_write(sd, 0xa4, 0x00);
	cp_write(sd, 0xa5, 0x00);
	cp_write(sd, 0xa6, 0x00);
	cp_write(sd, 0xa7, 0x00);
	cp_write(sd, 0xab, 0x00);
	cp_write(sd, 0xac, 0x00);

926
	if (is_analog_input(sd)) {
927 928 929 930 931
		err = find_and_set_predefined_video_timings(sd,
				0x01, adv7604_prim_mode_comp, timings);
		if (err)
			err = find_and_set_predefined_video_timings(sd,
					0x02, adv7604_prim_mode_gr, timings);
932
	} else if (is_digital_input(sd)) {
933
		err = find_and_set_predefined_video_timings(sd,
934
				0x05, adv76xx_prim_mode_hdmi_comp, timings);
935 936
		if (err)
			err = find_and_set_predefined_video_timings(sd,
937
					0x06, adv76xx_prim_mode_hdmi_gr, timings);
938 939 940
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
941 942 943 944 945 946 947 948 949 950
		err = -1;
	}


	return err;
}

static void configure_custom_video_timings(struct v4l2_subdev *sd,
		const struct v4l2_bt_timings *bt)
{
951
	struct adv76xx_state *state = to_state(sd);
952 953 954 955 956 957 958
	u32 width = htotal(bt);
	u32 height = vtotal(bt);
	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
	u16 cp_start_eav = width - bt->hfrontporch;
	u16 cp_start_vbi = height - bt->vfrontporch;
	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
959
		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
960 961 962 963
	const u8 pll[2] = {
		0xc0 | ((width >> 8) & 0x1f),
		width & 0xff
	};
964 965 966

	v4l2_dbg(2, debug, sd, "%s\n", __func__);

967
	if (is_analog_input(sd)) {
968 969 970 971
		/* auto graphics */
		io_write(sd, 0x00, 0x07); /* video std */
		io_write(sd, 0x01, 0x02); /* prim mode */
		/* enable embedded syncs for auto graphics mode */
972
		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
973

974
		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
975 976
		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
977 978
		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
					0x16, pll, 2))
979 980 981 982
			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");

		/* active video - horizontal timing */
		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
983
		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
984
				   ((cp_start_eav >> 8) & 0x0f));
985 986 987 988
		cp_write(sd, 0xa4, cp_start_eav & 0xff);

		/* active video - vertical timing */
		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
989
		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
990
				   ((cp_end_vbi >> 8) & 0xf));
991
		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
992
	} else if (is_digital_input(sd)) {
993
		/* set default prim_mode/vid_std for HDMI
994
		   according to [REF_03, c. 4.2] */
995 996
		io_write(sd, 0x00, 0x02); /* video std */
		io_write(sd, 0x01, 0x06); /* prim mode */
997 998 999
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1000 1001
	}

1002 1003 1004 1005 1006
	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
	cp_write(sd, 0xab, (height >> 4) & 0xff);
	cp_write(sd, 0xac, (height & 0x0f) << 4);
}
1007

1008
static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1009
{
1010
	struct adv76xx_state *state = to_state(sd);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	u8 offset_buf[4];

	if (auto_offset) {
		offset_a = 0x3ff;
		offset_b = 0x3ff;
		offset_c = 0x3ff;
	}

	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_offset ? "Auto" : "Manual",
			offset_a, offset_b, offset_c);

	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
	offset_buf[3] = offset_c & 0x0ff;

	/* Registers must be written in this order with no i2c access in between */
1029 1030
	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
			0x77, offset_buf, 4))
1031 1032 1033
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
}

1034
static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1035
{
1036
	struct adv76xx_state *state = to_state(sd);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	u8 gain_buf[4];
	u8 gain_man = 1;
	u8 agc_mode_man = 1;

	if (auto_gain) {
		gain_man = 0;
		agc_mode_man = 0;
		gain_a = 0x100;
		gain_b = 0x100;
		gain_c = 0x100;
	}

	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_gain ? "Auto" : "Manual",
			gain_a, gain_b, gain_c);

	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
	gain_buf[3] = ((gain_c & 0x0ff));

	/* Registers must be written in this order with no i2c access in between */
1059 1060
	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
			     0x73, gain_buf, 4))
1061 1062 1063
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
}

1064 1065
static void set_rgb_quantization_range(struct v4l2_subdev *sd)
{
1066
	struct adv76xx_state *state = to_state(sd);
1067 1068 1069 1070 1071 1072
	bool rgb_output = io_read(sd, 0x02) & 0x02;
	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;

	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
			__func__, state->rgb_quantization_range,
			rgb_output, hdmi_signal);
1073

1074 1075
	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1076

1077 1078
	switch (state->rgb_quantization_range) {
	case V4L2_DV_RGB_RANGE_AUTO:
1079
		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1080 1081
			/* Receiving analog RGB signal
			 * Set RGB full range (0-255) */
1082
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1083 1084 1085
			break;
		}

1086
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1087 1088
			/* Receiving analog YPbPr signal
			 * Set automode */
1089
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1090 1091 1092
			break;
		}

1093
		if (hdmi_signal) {
1094 1095
			/* Receiving HDMI signal
			 * Set automode */
1096
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1097 1098 1099 1100 1101 1102
			break;
		}

		/* Receiving DVI-D signal
		 * ADV7604 selects RGB limited range regardless of
		 * input format (CE/IT) in automatic mode */
1103
		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1104
			/* RGB limited range (16-235) */
1105
			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1106 1107
		} else {
			/* RGB full range (0-255) */
1108
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1109 1110

			if (is_digital_input(sd) && rgb_output) {
1111
				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1112
			} else {
1113 1114
				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1115
			}
1116 1117 1118
		}
		break;
	case V4L2_DV_RGB_RANGE_LIMITED:
1119
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1120
			/* YCrCb limited range (16-235) */
1121
			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1122
			break;
1123
		}
1124 1125

		/* RGB limited range (16-235) */
1126
		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1127

1128 1129
		break;
	case V4L2_DV_RGB_RANGE_FULL:
1130
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1131
			/* YCrCb full range (0-255) */
1132
			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1133 1134 1135 1136
			break;
		}

		/* RGB full range (0-255) */
1137
		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1138 1139 1140 1141 1142 1143

		if (is_analog_input(sd) || hdmi_signal)
			break;

		/* Adjust gain/offset for DVI-D signals only */
		if (rgb_output) {
1144
			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1145
		} else {
1146 1147
			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1148
		}
1149 1150 1151 1152
		break;
	}
}

1153
static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1154
{
1155
	struct v4l2_subdev *sd =
1156
		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1157

1158
	struct adv76xx_state *state = to_state(sd);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		cp_write(sd, 0x3c, ctrl->val);
		return 0;
	case V4L2_CID_CONTRAST:
		cp_write(sd, 0x3a, ctrl->val);
		return 0;
	case V4L2_CID_SATURATION:
		cp_write(sd, 0x3b, ctrl->val);
		return 0;
	case V4L2_CID_HUE:
		cp_write(sd, 0x3d, ctrl->val);
		return 0;
	case  V4L2_CID_DV_RX_RGB_RANGE:
		state->rgb_quantization_range = ctrl->val;
		set_rgb_quantization_range(sd);
		return 0;
	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1178
		if (!adv76xx_has_afe(state))
1179
			return -EINVAL;
1180 1181 1182 1183 1184 1185 1186 1187 1188
		/* Set the analog sampling phase. This is needed to find the
		   best sampling phase for analog video: an application or
		   driver has to try a number of phases and analyze the picture
		   quality before settling on the best performing phase. */
		afe_write(sd, 0xc8, ctrl->val);
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
		/* Use the default blue color for free running mode,
		   or supply your own. */
1189
		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
		return 0;
	}
	return -EINVAL;
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
	struct v4l2_subdev *sd =
		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;

	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
		return 0;
	}
	return -EINVAL;
}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/* ----------------------------------------------------------------------- */

static inline bool no_power(struct v4l2_subdev *sd)
{
	/* Entire chip or CP powered off */
	return io_read(sd, 0x0c) & 0x24;
}

static inline bool no_signal_tmds(struct v4l2_subdev *sd)
{
1224
	struct adv76xx_state *state = to_state(sd);
1225 1226

	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1227 1228 1229 1230
}

static inline bool no_lock_tmds(struct v4l2_subdev *sd)
{
1231 1232
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1233 1234

	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1235 1236
}

1237 1238 1239 1240 1241
static inline bool is_hdmi(struct v4l2_subdev *sd)
{
	return hdmi_read(sd, 0x05) & 0x80;
}

1242 1243
static inline bool no_lock_sspd(struct v4l2_subdev *sd)
{
1244
	struct adv76xx_state *state = to_state(sd);
1245 1246 1247 1248 1249

	/*
	 * Chips without a AFE don't expose registers for the SSPD, so just assume
	 * that we have a lock.
	 */
1250
	if (adv76xx_has_afe(state))
1251 1252
		return false;

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	/* TODO channel 2 */
	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
}

static inline bool no_lock_stdi(struct v4l2_subdev *sd)
{
	/* TODO channel 2 */
	return !(cp_read(sd, 0xb1) & 0x80);
}

static inline bool no_signal(struct v4l2_subdev *sd)
{
	bool ret;

	ret = no_power(sd);

	ret |= no_lock_stdi(sd);
	ret |= no_lock_sspd(sd);

1272
	if (is_digital_input(sd)) {
1273 1274 1275 1276 1277 1278 1279 1280 1281
		ret |= no_lock_tmds(sd);
		ret |= no_signal_tmds(sd);
	}

	return ret;
}

static inline bool no_lock_cp(struct v4l2_subdev *sd)
{
1282
	struct adv76xx_state *state = to_state(sd);
1283

1284
	if (!adv76xx_has_afe(state))
1285 1286
		return false;

1287 1288 1289 1290 1291
	/* CP has detected a non standard number of lines on the incoming
	   video compared to what it is configured to receive by s_dv_timings */
	return io_read(sd, 0x12) & 0x01;
}

1292 1293 1294 1295 1296
static inline bool in_free_run(struct v4l2_subdev *sd)
{
	return cp_read(sd, 0xff) & 0x10;
}

1297
static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1298 1299 1300 1301
{
	*status = 0;
	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1302 1303 1304
	if (!in_free_run(sd) && no_lock_cp(sd))
		*status |= is_digital_input(sd) ?
			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);

	return 0;
}

/* ----------------------------------------------------------------------- */

struct stdi_readback {
	u16 bl, lcf, lcvs;
	u8 hs_pol, vs_pol;
	bool interlaced;
};

static int stdi2dv_timings(struct v4l2_subdev *sd,
		struct stdi_readback *stdi,
		struct v4l2_dv_timings *timings)
{
1323 1324
	struct adv76xx_state *state = to_state(sd);
	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1325 1326 1327
	u32 pix_clk;
	int i;

1328 1329 1330 1331 1332 1333
	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;

		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
					   adv76xx_get_dv_timings_cap(sd),
					   adv76xx_check_dv_timings, NULL))
1334
			continue;
1335 1336 1337
		if (vtotal(bt) != stdi->lcf + 1)
			continue;
		if (bt->vsync != stdi->lcvs)
1338 1339
			continue;

1340
		pix_clk = hfreq * htotal(bt);
1341

1342 1343 1344
		if ((pix_clk < bt->pixelclock + 1000000) &&
		    (pix_clk > bt->pixelclock - 1000000)) {
			*timings = v4l2_dv_timings_presets[i];
1345 1346 1347 1348
			return 0;
		}
	}

1349
	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1350 1351
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1352
			false, timings))
1353 1354 1355 1356
		return 0;
	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1357
			false, state->aspect_ratio, timings))
1358 1359
		return 0;

1360 1361 1362 1363
	v4l2_dbg(2, debug, sd,
		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
		stdi->hs_pol, stdi->vs_pol);
1364 1365 1366
	return -1;
}

1367

1368 1369
static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
{
1370 1371
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1372 1373
	u8 polarity;

1374 1375 1376 1377 1378 1379
	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
		return -1;
	}

	/* read STDI */
1380
	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1381
	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1382 1383 1384
	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
	stdi->interlaced = io_read(sd, 0x12) & 0x10;

1385
	if (adv76xx_has_afe(state)) {
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
		/* read SSPD */
		polarity = cp_read(sd, 0xb5);
		if ((polarity & 0x03) == 0x01) {
			stdi->hs_pol = polarity & 0x10
				     ? (polarity & 0x08 ? '+' : '-') : 'x';
			stdi->vs_pol = polarity & 0x40
				     ? (polarity & 0x20 ? '+' : '-') : 'x';
		} else {
			stdi->hs_pol = 'x';
			stdi->vs_pol = 'x';
		}
1397
	} else {
1398 1399 1400
		polarity = hdmi_read(sd, 0x05);
		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	}

	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd,
			"%s: signal lost during readout of STDI/SSPD\n", __func__);
		return -1;
	}

	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
		memset(stdi, 0, sizeof(struct stdi_readback));
		return -1;
	}

	v4l2_dbg(2, debug, sd,
		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
		stdi->hs_pol, stdi->vs_pol,
		stdi->interlaced ? "interlaced" : "progressive");

	return 0;
}

1424
static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1425 1426
			struct v4l2_enum_dv_timings *timings)
{
1427
	struct adv76xx_state *state = to_state(sd);
1428 1429 1430 1431

	if (timings->pad >= state->source_pad)
		return -EINVAL;

1432 1433
	return v4l2_enum_dv_timings_cap(timings,
		adv76xx_get_dv_timings_cap(sd), adv76xx_check_dv_timings, NULL);
1434 1435
}

1436
static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1437
			struct v4l2_dv_timings_cap *cap)
1438
{
1439
	struct adv76xx_state *state = to_state(sd);
1440 1441 1442 1443

	if (cap->pad >= state->source_pad)
		return -EINVAL;

1444
	*cap = *adv76xx_get_dv_timings_cap(sd);
1445 1446 1447 1448
	return 0;
}

/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1449 1450
   if the format is listed in adv76xx_timings[] */
static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1451 1452
		struct v4l2_dv_timings *timings)
{
1453 1454 1455
	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd),
			is_digital_input(sd) ? 250000 : 1000000,
			adv76xx_check_dv_timings, NULL);
1456 1457
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	unsigned int freq;
	int a, b;

	a = hdmi_read(sd, 0x06);
	b = hdmi_read(sd, 0x3b);
	if (a < 0 || b < 0)
		return 0;
	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;

	if (is_hdmi(sd)) {
		/* adjust for deep color mode */
		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;

		freq = freq * 8 / bits_per_channel;
	}

	return freq;
}

static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	int a, b;

	a = hdmi_read(sd, 0x51);
	b = hdmi_read(sd, 0x52);
	if (a < 0 || b < 0)
		return 0;
	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
}

1490
static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1491 1492
			struct v4l2_dv_timings *timings)
{
1493 1494
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1495 1496 1497 1498 1499 1500 1501 1502 1503
	struct v4l2_bt_timings *bt = &timings->bt;
	struct stdi_readback stdi;

	if (!timings)
		return -EINVAL;

	memset(timings, 0, sizeof(struct v4l2_dv_timings));

	if (no_signal(sd)) {
1504
		state->restart_stdi_once = true;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
		return -ENOLINK;
	}

	/* read STDI */
	if (read_stdi(sd, &stdi)) {
		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
		return -ENOLINK;
	}
	bt->interlaced = stdi.interlaced ?
		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;

1517
	if (is_digital_input(sd)) {
1518 1519
		timings->type = V4L2_DV_BT_656_1120;

1520 1521
		bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
		bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1522
		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1523 1524 1525 1526 1527 1528 1529 1530
		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
		bt->vfrontporch = hdmi_read16(sd, 0x2a,
			info->field0_vfrontporch_mask) / 2;
		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
		bt->vbackporch = hdmi_read16(sd, 0x32,
			info->field0_vbackporch_mask) / 2;
1531 1532 1533
		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
		if (bt->interlaced == V4L2_DV_INTERLACED) {
1534 1535 1536 1537 1538 1539 1540 1541
			bt->height += hdmi_read16(sd, 0x0b,
				info->field1_height_mask);
			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
				info->field1_vfrontporch_mask) / 2;
			bt->il_vsync = hdmi_read16(sd, 0x30,
				info->field1_vsync_mask) / 2;
			bt->il_vbackporch = hdmi_read16(sd, 0x34,
				info->field1_vbackporch_mask) / 2;
1542
		}
1543
		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1544 1545
	} else {
		/* find format
1546
		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
		 */
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs += 1;
		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs -= 2;
		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
		if (stdi2dv_timings(sd, &stdi, timings)) {
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
			/*
			 * The STDI block may measure wrong values, especially
			 * for lcvs and lcf. If the driver can not find any
			 * valid timing, the STDI block is restarted to measure
			 * the video timings again. The function will return an
			 * error, but the restart of STDI will generate a new
			 * STDI interrupt and the format detection process will
			 * restart.
			 */
			if (state->restart_stdi_once) {
				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
				/* TODO restart STDI for Sync Channel 2 */
				/* enter one-shot mode */
1571
				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1572
				/* trigger STDI restart */
1573
				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1574
				/* reset to continuous mode */
1575
				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1576 1577 1578
				state->restart_stdi_once = false;
				return -ENOLINK;
			}
1579 1580 1581
			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
			return -ERANGE;
		}
1582
		state->restart_stdi_once = true;
1583 1584 1585 1586 1587 1588 1589 1590 1591
	}
found:

	if (no_signal(sd)) {
		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
		memset(timings, 0, sizeof(struct v4l2_dv_timings));
		return -ENOLINK;
	}

1592 1593
	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1594 1595 1596 1597 1598 1599
		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
				__func__, (u32)bt->pixelclock);
		return -ERANGE;
	}

	if (debug > 1)
1600
		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1601
				      timings, true);
1602 1603 1604 1605

	return 0;
}

1606
static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1607 1608
		struct v4l2_dv_timings *timings)
{
1609
	struct adv76xx_state *state = to_state(sd);
1610
	struct v4l2_bt_timings *bt;
1611
	int err;
1612 1613 1614 1615

	if (!timings)
		return -EINVAL;

1616
	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1617 1618 1619 1620
		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
		return 0;
	}

1621 1622
	bt = &timings->bt;

1623 1624
	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd),
				   adv76xx_check_dv_timings, NULL))
1625
		return -ERANGE;
1626

1627
	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1628 1629 1630

	state->timings = *timings;

1631
	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1632 1633 1634 1635 1636 1637 1638 1639

	/* Use prim_mode and vid_std when available */
	err = configure_predefined_video_timings(sd, timings);
	if (err) {
		/* custom settings when the video format
		 does not have prim_mode/vid_std */
		configure_custom_video_timings(sd, bt);
	}
1640 1641 1642 1643

	set_rgb_quantization_range(sd);

	if (debug > 1)
1644
		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1645
				      timings, true);
1646 1647 1648
	return 0;
}

1649
static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1650 1651
		struct v4l2_dv_timings *timings)
{
1652
	struct adv76xx_state *state = to_state(sd);
1653 1654 1655 1656 1657

	*timings = state->timings;
	return 0;
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
}

static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
}

1668
static void enable_input(struct v4l2_subdev *sd)
1669
{
1670
	struct adv76xx_state *state = to_state(sd);
1671

1672
	if (is_analog_input(sd)) {
1673
		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1674
	} else if (is_digital_input(sd)) {
1675
		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1676
		state->info->set_termination(sd, true);
1677
		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1678
		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1679 1680 1681
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1682 1683 1684 1685 1686
	}
}

static void disable_input(struct v4l2_subdev *sd)
{
1687
	struct adv76xx_state *state = to_state(sd);
1688

1689
	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1690
	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1691
	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1692
	state->info->set_termination(sd, false);
1693 1694
}

1695
static void select_input(struct v4l2_subdev *sd)
1696
{
1697 1698
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1699

1700
	if (is_analog_input(sd)) {
1701
		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1702 1703 1704 1705

		afe_write(sd, 0x00, 0x08); /* power up ADC */
		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
		afe_write(sd, 0xc8, 0x00); /* phase control */
1706 1707
	} else if (is_digital_input(sd)) {
		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1708

1709
		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1710

1711
		if (adv76xx_has_afe(state)) {
1712 1713 1714 1715 1716
			afe_write(sd, 0x00, 0xff); /* power down ADC */
			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
			afe_write(sd, 0xc8, 0x40); /* phase control */
		}

1717 1718 1719
		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1720 1721 1722
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1723 1724 1725
	}
}

1726
static int adv76xx_s_routing(struct v4l2_subdev *sd,
1727 1728
		u32 input, u32 output, u32 config)
{
1729
	struct adv76xx_state *state = to_state(sd);
1730

1731 1732 1733 1734 1735
	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
			__func__, input, state->selected_input);

	if (input == state->selected_input)
		return 0;
1736

1737 1738 1739
	if (input > state->info->max_port)
		return -EINVAL;

1740
	state->selected_input = input;
1741 1742

	disable_input(sd);
1743 1744
	select_input(sd);
	enable_input(sd);
1745

1746 1747
	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);

1748 1749 1750
	return 0;
}

1751
static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1752
				  struct v4l2_subdev_pad_config *cfg,
1753
				  struct v4l2_subdev_mbus_code_enum *code)
1754
{
1755
	struct adv76xx_state *state = to_state(sd);
1756 1757

	if (code->index >= state->info->nformats)
1758
		return -EINVAL;
1759 1760 1761

	code->code = state->info->formats[code->index].code;

1762 1763 1764
	return 0;
}

1765
static void adv76xx_fill_format(struct adv76xx_state *state,
1766
				struct v4l2_mbus_framefmt *format)
1767
{
1768
	memset(format, 0, sizeof(*format));
1769

1770 1771 1772
	format->width = state->timings.bt.width;
	format->height = state->timings.bt.height;
	format->field = V4L2_FIELD_NONE;
1773
	format->colorspace = V4L2_COLORSPACE_SRGB;
1774

1775
	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1776
		format->colorspace = (state->timings.bt.height <= 576) ?
1777
			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1778 1779 1780 1781 1782 1783 1784 1785 1786
}

/*
 * Compute the op_ch_sel value required to obtain on the bus the component order
 * corresponding to the selected format taking into account bus reordering
 * applied by the board at the output of the device.
 *
 * The following table gives the op_ch_value from the format component order
 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1787
 * adv76xx_bus_order value in row).
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
 *
 *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
 * ----------+-------------------------------------------------
 * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
 * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
 * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
 * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
 * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
 * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
 */
1798
static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1799 1800
{
#define _SEL(a,b,c,d,e,f)	{ \
1801 1802
	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
#define _BUS(x)			[ADV7604_BUS_ORDER_##x]

	static const unsigned int op_ch_sel[6][6] = {
		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
	};

	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
}

1817
static void adv76xx_setup_format(struct adv76xx_state *state)
1818 1819 1820
{
	struct v4l2_subdev *sd = &state->sd;

1821
	io_write_clr_set(sd, 0x02, 0x02,
1822
			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1823 1824
	io_write(sd, 0x03, state->format->op_format_sel |
		 state->pdata.op_format_mode_sel);
1825
	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1826
	io_write_clr_set(sd, 0x05, 0x01,
1827
			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1828 1829
}

1830 1831
static int adv76xx_get_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1832 1833
			      struct v4l2_subdev_format *format)
{
1834
	struct adv76xx_state *state = to_state(sd);
1835 1836 1837 1838

	if (format->pad != state->source_pad)
		return -EINVAL;

1839
	adv76xx_fill_format(state, &format->format);
1840 1841 1842 1843

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1844
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1845 1846 1847
		format->format.code = fmt->code;
	} else {
		format->format.code = state->format->code;
1848
	}
1849 1850 1851 1852

	return 0;
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
static int adv76xx_get_selection(struct v4l2_subdev *sd,
				 struct v4l2_subdev_pad_config *cfg,
				 struct v4l2_subdev_selection *sel)
{
	struct adv76xx_state *state = to_state(sd);

	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
		return -EINVAL;
	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
		return -EINVAL;

	sel->r.left	= 0;
	sel->r.top	= 0;
	sel->r.width	= state->timings.bt.width;
	sel->r.height	= state->timings.bt.height;

	return 0;
}

1873 1874
static int adv76xx_set_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1875 1876
			      struct v4l2_subdev_format *format)
{
1877 1878
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_format_info *info;
1879 1880 1881 1882

	if (format->pad != state->source_pad)
		return -EINVAL;

1883
	info = adv76xx_format_info(state, format->format.code);
1884
	if (info == NULL)
1885
		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1886

1887
	adv76xx_fill_format(state, &format->format);
1888 1889 1890 1891 1892
	format->format.code = info->code;

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1893
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1894 1895 1896
		fmt->code = format->format.code;
	} else {
		state->format = info;
1897
		adv76xx_setup_format(state);
1898 1899
	}

1900 1901 1902
	return 0;
}

1903
static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1904
{
1905 1906
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	const u8 irq_reg_0x43 = io_read(sd, 0x43);
	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
	const u8 irq_reg_0x70 = io_read(sd, 0x70);
	u8 fmt_change_digital;
	u8 fmt_change;
	u8 tx_5v;

	if (irq_reg_0x43)
		io_write(sd, 0x44, irq_reg_0x43);
	if (irq_reg_0x70)
		io_write(sd, 0x71, irq_reg_0x70);
	if (irq_reg_0x6b)
		io_write(sd, 0x6c, irq_reg_0x6b);
1920

1921 1922
	v4l2_dbg(2, debug, sd, "%s: ", __func__);

1923
	/* format change */
1924
	fmt_change = irq_reg_0x43 & 0x98;
1925 1926 1927
	fmt_change_digital = is_digital_input(sd)
			   ? irq_reg_0x6b & info->fmt_change_digital_mask
			   : 0;
1928

1929 1930
	if (fmt_change || fmt_change_digital) {
		v4l2_dbg(1, debug, sd,
1931
			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1932
			__func__, fmt_change, fmt_change_digital);
1933

1934
		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1935

1936 1937 1938
		if (handled)
			*handled = true;
	}
1939 1940 1941 1942 1943 1944 1945 1946 1947
	/* HDMI/DVI mode */
	if (irq_reg_0x6b & 0x01) {
		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
		set_rgb_quantization_range(sd);
		if (handled)
			*handled = true;
	}

1948
	/* tx 5v detect */
1949
	tx_5v = irq_reg_0x70 & info->cable_det_mask;
1950 1951
	if (tx_5v) {
		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
1952
		adv76xx_s_detect_tx_5v_ctrl(sd);
1953 1954 1955 1956 1957 1958
		if (handled)
			*handled = true;
	}
	return 0;
}

1959
static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1960
{
1961
	struct adv76xx_state *state = to_state(sd);
1962
	u8 *data = NULL;
1963

1964
	memset(edid->reserved, 0, sizeof(edid->reserved));
1965 1966

	switch (edid->pad) {
1967
	case ADV76XX_PAD_HDMI_PORT_A:
1968 1969 1970
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
1971 1972 1973 1974 1975 1976
		if (state->edid.present & (1 << edid->pad))
			data = state->edid.edid;
		break;
	default:
		return -EINVAL;
	}
1977 1978 1979 1980 1981 1982 1983

	if (edid->start_block == 0 && edid->blocks == 0) {
		edid->blocks = data ? state->edid.blocks : 0;
		return 0;
	}

	if (data == NULL)
1984 1985
		return -ENODATA;

1986 1987 1988 1989 1990 1991 1992 1993
	if (edid->start_block >= state->edid.blocks)
		return -EINVAL;

	if (edid->start_block + edid->blocks > state->edid.blocks)
		edid->blocks = state->edid.blocks - edid->start_block;

	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);

1994 1995 1996
	return 0;
}

1997
static int get_edid_spa_location(const u8 *edid)
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
{
	u8 d;

	if ((edid[0x7e] != 1) ||
	    (edid[0x80] != 0x02) ||
	    (edid[0x81] != 0x03)) {
		return -1;
	}

	/* search Vendor Specific Data Block (tag 3) */
	d = edid[0x82] & 0x7f;
	if (d > 4) {
		int i = 0x84;
		int end = 0x80 + d;

		do {
			u8 tag = edid[i] >> 5;
			u8 len = edid[i] & 0x1f;

			if ((tag == 3) && (len >= 5))
				return i + 4;
			i += len + 1;
		} while (i < end);
	}
	return -1;
}

2025
static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2026
{
2027 2028
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2029
	int spa_loc;
2030
	int err;
2031
	int i;
2032

2033 2034
	memset(edid->reserved, 0, sizeof(edid->reserved));

2035
	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2036 2037 2038 2039
		return -EINVAL;
	if (edid->start_block != 0)
		return -EINVAL;
	if (edid->blocks == 0) {
2040
		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2041
		state->edid.present &= ~(1 << edid->pad);
2042
		adv76xx_set_hpd(state, state->edid.present);
2043
		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2044

2045 2046 2047
		/* Fall back to a 16:9 aspect ratio */
		state->aspect_ratio.numerator = 16;
		state->aspect_ratio.denominator = 9;
2048 2049 2050 2051 2052 2053

		if (!state->edid.present)
			state->edid.blocks = 0;

		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
				__func__, edid->pad, state->edid.present);
2054 2055
		return 0;
	}
2056 2057
	if (edid->blocks > 2) {
		edid->blocks = 2;
2058
		return -E2BIG;
2059 2060
	}

2061 2062 2063
	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
			__func__, edid->pad, state->edid.present);

2064
	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2065
	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2066
	adv76xx_set_hpd(state, 0);
2067
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2068

2069 2070 2071 2072
	spa_loc = get_edid_spa_location(edid->edid);
	if (spa_loc < 0)
		spa_loc = 0xc0; /* Default value [REF_02, p. 116] */

2073
	switch (edid->pad) {
2074
	case ADV76XX_PAD_HDMI_PORT_A:
2075 2076
		state->spa_port_a[0] = edid->edid[spa_loc];
		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2077
		break;
2078
	case ADV7604_PAD_HDMI_PORT_B:
2079 2080
		rep_write(sd, 0x70, edid->edid[spa_loc]);
		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2081
		break;
2082
	case ADV7604_PAD_HDMI_PORT_C:
2083 2084
		rep_write(sd, 0x72, edid->edid[spa_loc]);
		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2085
		break;
2086
	case ADV7604_PAD_HDMI_PORT_D:
2087 2088
		rep_write(sd, 0x74, edid->edid[spa_loc]);
		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2089
		break;
2090 2091
	default:
		return -EINVAL;
2092
	}
2093 2094 2095

	if (info->type == ADV7604) {
		rep_write(sd, 0x76, spa_loc & 0xff);
2096
		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2097
	} else {
2098 2099
		/* ADV7612 Software Manual Rev. A, p. 15 */
		rep_write(sd, 0x70, spa_loc & 0xff);
2100
		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2101
	}
2102

2103 2104
	edid->edid[spa_loc] = state->spa_port_a[0];
	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2105 2106 2107

	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
	state->edid.blocks = edid->blocks;
2108 2109
	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
			edid->edid[0x16]);
2110
	state->edid.present |= 1 << edid->pad;
2111 2112 2113

	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
	if (err < 0) {
2114
		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2115 2116 2117
		return err;
	}

2118
	/* adv76xx calculates the checksums and enables I2C access to internal
2119
	   EDID RAM from DDC port. */
2120
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2121 2122

	for (i = 0; i < 1000; i++) {
2123
		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2124 2125 2126 2127 2128 2129 2130 2131
			break;
		mdelay(1);
	}
	if (i == 1000) {
		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
		return -EIO;
	}

2132 2133 2134 2135
	/* enable hotplug after 100 ms */
	queue_delayed_work(state->work_queues,
			&state->delayed_work_enable_hotplug, HZ / 10);
	return 0;
2136 2137 2138 2139
}

/*********** avi info frame CEA-861-E **************/

2140 2141 2142 2143 2144 2145 2146 2147 2148
static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
	{ "AVI", 0x01, 0xe0, 0x00 },
	{ "Audio", 0x02, 0xe3, 0x1c },
	{ "SDP", 0x04, 0xe6, 0x2a },
	{ "Vendor", 0x10, 0xec, 0x54 }
};

static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
				  union hdmi_infoframe *frame)
2149
{
2150 2151
	uint8_t buffer[32];
	u8 len;
2152 2153
	int i;

2154 2155 2156 2157
	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
		v4l2_info(sd, "%s infoframe not received\n",
			  adv76xx_cri[index].desc);
		return -ENOENT;
2158
	}
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

	for (i = 0; i < 3; i++)
		buffer[i] = infoframe_read(sd,
					   adv76xx_cri[index].head_addr + i);

	len = buffer[2] + 1;

	if (len + 3 > sizeof(buffer)) {
		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
			 adv76xx_cri[index].desc, len);
		return -ENOENT;
2170 2171
	}

2172 2173 2174 2175 2176 2177 2178 2179
	for (i = 0; i < len; i++)
		buffer[i + 3] = infoframe_read(sd,
				       adv76xx_cri[index].payload_addr + i);

	if (hdmi_infoframe_unpack(frame, buffer) < 0) {
		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
			 adv76xx_cri[index].desc);
		return -ENOENT;
2180
	}
2181 2182
	return 0;
}
2183

2184 2185 2186
static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
{
	int i;
2187

2188 2189
	if (!is_hdmi(sd)) {
		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2190
		return;
2191
	}
2192

2193 2194 2195
	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
		union hdmi_infoframe frame;
		struct i2c_client *client = v4l2_get_subdevdata(sd);
2196

2197 2198 2199 2200
		if (adv76xx_read_infoframe(sd, i, &frame))
			return;
		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
	}
2201 2202
}

2203
static int adv76xx_log_status(struct v4l2_subdev *sd)
2204
{
2205 2206
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2207 2208 2209
	struct v4l2_dv_timings timings;
	struct stdi_readback stdi;
	u8 reg_io_0x02 = io_read(sd, 0x02);
2210 2211
	u8 edid_enabled;
	u8 cable_det;
2212

2213
	static const char * const csc_coeff_sel_rb[16] = {
2214 2215 2216 2217 2218
		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
		"reserved", "reserved", "reserved", "reserved", "manual"
	};
2219
	static const char * const input_color_space_txt[16] = {
2220 2221
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2222
		"xvYCC Bt.601", "xvYCC Bt.709",
2223 2224 2225 2226
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"invalid", "invalid", "invalid", "invalid", "invalid",
		"invalid", "invalid", "automatic"
	};
2227 2228 2229 2230 2231 2232 2233 2234
	static const char * const hdmi_color_space_txt[16] = {
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
		"xvYCC Bt.601", "xvYCC Bt.709",
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
		"invalid", "invalid", "invalid"
	};
2235
	static const char * const rgb_quantization_range_txt[] = {
2236 2237 2238 2239
		"Automatic",
		"RGB limited range (16-235)",
		"RGB full range (0-255)",
	};
2240
	static const char * const deep_color_mode_txt[4] = {
2241 2242 2243 2244 2245
		"8-bits per channel",
		"10-bits per channel",
		"12-bits per channel",
		"16-bits per channel (not supported)"
	};
2246 2247 2248

	v4l2_info(sd, "-----Chip status-----\n");
	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2249
	edid_enabled = rep_read(sd, info->edid_status_reg);
2250
	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2251 2252 2253 2254
			((edid_enabled & 0x01) ? "Yes" : "No"),
			((edid_enabled & 0x02) ? "Yes" : "No"),
			((edid_enabled & 0x04) ? "Yes" : "No"),
			((edid_enabled & 0x08) ? "Yes" : "No"));
2255 2256 2257 2258
	v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
			"enabled" : "disabled");

	v4l2_info(sd, "-----Signal status-----\n");
2259
	cable_det = info->read_cable_det(sd);
2260
	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2261 2262
			((cable_det & 0x01) ? "Yes" : "No"),
			((cable_det & 0x02) ? "Yes" : "No"),
2263
			((cable_det & 0x04) ? "Yes" : "No"),
2264
			((cable_det & 0x08) ? "Yes" : "No"));
2265 2266 2267 2268 2269 2270 2271 2272
	v4l2_info(sd, "TMDS signal detected: %s\n",
			no_signal_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "TMDS signal locked: %s\n",
			no_lock_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
	v4l2_info(sd, "CP free run: %s\n",
2273
			(in_free_run(sd)) ? "on" : "off");
2274 2275 2276
	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
			(io_read(sd, 0x01) & 0x70) >> 4);
2277 2278 2279 2280 2281 2282 2283 2284 2285

	v4l2_info(sd, "-----Video Timings-----\n");
	if (read_stdi(sd, &stdi))
		v4l2_info(sd, "STDI: not locked\n");
	else
		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
				stdi.lcf, stdi.bl, stdi.lcvs,
				stdi.interlaced ? "interlaced" : "progressive",
				stdi.hs_pol, stdi.vs_pol);
2286
	if (adv76xx_query_dv_timings(sd, &timings))
2287 2288
		v4l2_info(sd, "No video detected\n");
	else
2289 2290 2291 2292
		v4l2_print_dv_timings(sd->name, "Detected format: ",
				      &timings, true);
	v4l2_print_dv_timings(sd->name, "Configured format: ",
			      &state->timings, true);
2293

2294 2295 2296
	if (no_signal(sd))
		return 0;

2297 2298 2299 2300 2301
	v4l2_info(sd, "-----Color space-----\n");
	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
			rgb_quantization_range_txt[state->rgb_quantization_range]);
	v4l2_info(sd, "Input color space: %s\n",
			input_color_space_txt[reg_io_0x02 >> 4]);
2302
	v4l2_info(sd, "Output color space: %s %s, saturator %s, alt-gamma %s\n",
2303 2304
			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
			(reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
2305
			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2306 2307
				"enabled" : "disabled",
			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2308
	v4l2_info(sd, "Color space conversion: %s\n",
2309
			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2310

2311
	if (!is_digital_input(sd))
2312 2313 2314
		return 0;

	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2315 2316 2317 2318
	v4l2_info(sd, "Digital video port selected: %c\n",
			(hdmi_read(sd, 0x00) & 0x03) + 'A');
	v4l2_info(sd, "HDCP encrypted content: %s\n",
			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2319 2320 2321
	v4l2_info(sd, "HDCP keys read: %s%s\n",
			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2322
	if (is_hdmi(sd)) {
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
		bool audio_mute = io_read(sd, 0x65) & 0x40;

		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
				audio_pll_locked ? "locked" : "not locked",
				audio_sample_packet_detect ? "detected" : "not detected",
				audio_mute ? "muted" : "enabled");
		if (audio_pll_locked && audio_sample_packet_detect) {
			v4l2_info(sd, "Audio format: %s\n",
					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
		}
		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
				(hdmi_read(sd, 0x5c) << 8) +
				(hdmi_read(sd, 0x5d) & 0xf0));
		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
				(hdmi_read(sd, 0x5e) << 8) +
				hdmi_read(sd, 0x5f));
		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");

		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2344
		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2345

2346
		adv76xx_log_infoframes(sd);
2347 2348 2349 2350 2351
	}

	return 0;
}

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
				   struct v4l2_fh *fh,
				   struct v4l2_event_subscription *sub)
{
	switch (sub->type) {
	case V4L2_EVENT_SOURCE_CHANGE:
		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
	case V4L2_EVENT_CTRL:
		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
	default:
		return -EINVAL;
	}
}

2366 2367
/* ----------------------------------------------------------------------- */

2368 2369
static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
	.s_ctrl = adv76xx_s_ctrl,
2370
	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2371 2372
};

2373 2374 2375
static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
	.log_status = adv76xx_log_status,
	.interrupt_service_routine = adv76xx_isr,
2376
	.subscribe_event = adv76xx_subscribe_event,
2377
	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2378
#ifdef CONFIG_VIDEO_ADV_DEBUG
2379 2380
	.g_register = adv76xx_g_register,
	.s_register = adv76xx_s_register,
2381 2382 2383
#endif
};

2384 2385 2386 2387 2388 2389
static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
	.s_routing = adv76xx_s_routing,
	.g_input_status = adv76xx_g_input_status,
	.s_dv_timings = adv76xx_s_dv_timings,
	.g_dv_timings = adv76xx_g_dv_timings,
	.query_dv_timings = adv76xx_query_dv_timings,
2390 2391
};

2392 2393
static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
	.enum_mbus_code = adv76xx_enum_mbus_code,
2394
	.get_selection = adv76xx_get_selection,
2395 2396 2397 2398 2399 2400
	.get_fmt = adv76xx_get_format,
	.set_fmt = adv76xx_set_format,
	.get_edid = adv76xx_get_edid,
	.set_edid = adv76xx_set_edid,
	.dv_timings_cap = adv76xx_dv_timings_cap,
	.enum_dv_timings = adv76xx_enum_dv_timings,
2401 2402
};

2403 2404 2405 2406
static const struct v4l2_subdev_ops adv76xx_ops = {
	.core = &adv76xx_core_ops,
	.video = &adv76xx_video_ops,
	.pad = &adv76xx_pad_ops,
2407 2408 2409 2410 2411
};

/* -------------------------- custom ctrls ---------------------------------- */

static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2412
	.ops = &adv76xx_ctrl_ops,
2413 2414 2415 2416 2417 2418 2419 2420 2421
	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
	.name = "Analog Sampling Phase",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0,
	.max = 0x1f,
	.step = 1,
	.def = 0,
};

2422 2423
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
	.ops = &adv76xx_ctrl_ops,
2424 2425 2426 2427 2428 2429 2430 2431 2432
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
	.name = "Free Running Color, Manual",
	.type = V4L2_CTRL_TYPE_BOOLEAN,
	.min = false,
	.max = true,
	.step = 1,
	.def = false,
};

2433 2434
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
	.ops = &adv76xx_ctrl_ops,
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
	.name = "Free Running Color",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0x0,
	.max = 0xffffff,
	.step = 0x1,
	.def = 0x0,
};

/* ----------------------------------------------------------------------- */

2446
static int adv76xx_core_init(struct v4l2_subdev *sd)
2447
{
2448 2449 2450
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
	struct adv76xx_platform_data *pdata = &state->pdata;
2451 2452 2453 2454 2455 2456 2457

	hdmi_write(sd, 0x48,
		(pdata->disable_pwrdnb ? 0x80 : 0) |
		(pdata->disable_cable_det_rst ? 0x40 : 0));

	disable_input(sd);

2458 2459 2460 2461 2462 2463 2464
	if (pdata->default_input >= 0 &&
	    pdata->default_input < state->source_pad) {
		state->selected_input = pdata->default_input;
		select_input(sd);
		enable_input(sd);
	}

2465 2466 2467 2468 2469 2470
	/* power */
	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */

	/* video format */
2471
	io_write_clr_set(sd, 0x02, 0x0f,
2472 2473 2474
			pdata->alt_gamma << 3 |
			pdata->op_656_range << 2 |
			pdata->alt_data_sat << 0);
2475
	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2476 2477
			pdata->insert_av_codes << 2 |
			pdata->replicate_av_codes << 1);
2478
	adv76xx_setup_format(state);
2479 2480

	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2481 2482

	/* VS, HS polarities */
2483 2484
	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2485 2486 2487 2488 2489 2490

	/* Adjust drive strength */
	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
				pdata->dr_str_clk << 2 |
				pdata->dr_str_sync);

2491 2492 2493
	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2494
				      ADI recommended setting [REF_01, c. 2.3.3] */
2495
	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2496
				      ADI recommended setting [REF_01, c. 2.3.3] */
2497 2498 2499
	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
				     for digital formats */

2500
	/* HDMI audio */
2501 2502 2503
	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2504

2505 2506 2507
	/* TODO from platform data */
	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */

2508
	if (adv76xx_has_afe(state)) {
2509
		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2510
		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2511
	}
2512 2513

	/* interrupts */
2514
	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2515
	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2516 2517 2518
	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
	info->setup_irqs(sd);
2519 2520 2521 2522

	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
}

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
static void adv7604_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
}

static void adv7611_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
}

2533 2534 2535 2536 2537
static void adv7612_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* disable INT2 */
}

2538
static void adv76xx_unregister_clients(struct adv76xx_state *state)
2539
{
2540 2541 2542 2543 2544 2545
	unsigned int i;

	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
		if (state->i2c_clients[i])
			i2c_unregister_device(state->i2c_clients[i]);
	}
2546 2547
}

2548
static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2549 2550 2551 2552 2553 2554 2555 2556 2557
							u8 addr, u8 io_reg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	if (addr)
		io_write(sd, io_reg, addr << 1);
	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
}

2558
static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2559 2560
	/* reset ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2573 2574 2575

	/* set ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2576 2577 2578 2579 2580
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2581

2582
	{ ADV76XX_REG_SEQ_TERM, 0 },
2583 2584
};

2585
static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2586 2587
	/* set ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2599 2600 2601

	/* reset ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2602 2603
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2604

2605
	{ ADV76XX_REG_SEQ_TERM, 0 },
2606 2607
};

2608
static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2609
	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },

	{ ADV76XX_REG_SEQ_TERM, 0 },
2623 2624
};

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG_SEQ_TERM, 0 },
};

2638
static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2639 2640 2641
	[ADV7604] = {
		.type = ADV7604,
		.has_afe = true,
2642
		.max_port = ADV7604_PAD_VGA_COMP,
2643 2644 2645 2646 2647 2648 2649
		.num_dv_ports = 4,
		.edid_enable_reg = 0x77,
		.edid_status_reg = 0x7d,
		.lcf_reg = 0xb3,
		.tdms_lock_mask = 0xe0,
		.cable_det_mask = 0x1e,
		.fmt_change_digital_mask = 0xc1,
2650
		.cp_csc = 0xfc,
2651 2652
		.formats = adv7604_formats,
		.nformats = ARRAY_SIZE(adv7604_formats),
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
		.set_termination = adv7604_set_termination,
		.setup_irqs = adv7604_setup_irqs,
		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
		.read_cable_det = adv7604_read_cable_det,
		.recommended_settings = {
		    [0] = adv7604_recommended_settings_afe,
		    [1] = adv7604_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
		},
2665 2666
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2667
			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2668 2669 2670
			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2671
			BIT(ADV7604_PAGE_VDP),
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
		.linewidth_mask = 0xfff,
		.field0_height_mask = 0xfff,
		.field1_height_mask = 0xfff,
		.hfrontporch_mask = 0x3ff,
		.hsync_mask = 0x3ff,
		.hbackporch_mask = 0x3ff,
		.field0_vfrontporch_mask = 0x1fff,
		.field0_vsync_mask = 0x1fff,
		.field0_vbackporch_mask = 0x1fff,
		.field1_vfrontporch_mask = 0x1fff,
		.field1_vsync_mask = 0x1fff,
		.field1_vbackporch_mask = 0x1fff,
2684 2685 2686 2687
	},
	[ADV7611] = {
		.type = ADV7611,
		.has_afe = false,
2688
		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2689 2690 2691 2692 2693 2694 2695
		.num_dv_ports = 1,
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
2696
		.cp_csc = 0xf4,
2697 2698
		.formats = adv7611_formats,
		.nformats = ARRAY_SIZE(adv7611_formats),
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7611_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
		.read_cable_det = adv7611_read_cable_det,
		.recommended_settings = {
		    [1] = adv7611_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
		},
2709 2710 2711 2712
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
2725
	},
2726 2727 2728
	[ADV7612] = {
		.type = ADV7612,
		.has_afe = false,
2729 2730
		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
		.num_dv_ports = 1,			/* normally 2 */
2731 2732 2733 2734 2735 2736
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
2737
		.cp_csc = 0xf4,
2738 2739 2740 2741 2742
		.formats = adv7612_formats,
		.nformats = ARRAY_SIZE(adv7612_formats),
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7612_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2743
		.read_cable_det = adv7612_read_cable_det,
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
		.recommended_settings = {
		    [1] = adv7612_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
		},
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
	},
2767 2768
};

2769
static const struct i2c_device_id adv76xx_i2c_id[] = {
2770 2771
	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2772
	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
2773 2774
	{ }
};
2775
MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2776

2777
static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
2778
	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2779
	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
2780 2781
	{ }
};
2782
MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2783

2784
static int adv76xx_parse_dt(struct adv76xx_state *state)
2785
{
2786 2787 2788 2789
	struct v4l2_of_endpoint bus_cfg;
	struct device_node *endpoint;
	struct device_node *np;
	unsigned int flags;
2790
	int ret;
2791
	u32 v;
2792

2793
	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2794 2795 2796 2797 2798 2799

	/* Parse the endpoint. */
	endpoint = of_graph_get_next_endpoint(np, NULL);
	if (!endpoint)
		return -EINVAL;

2800 2801 2802 2803 2804
	ret = v4l2_of_parse_endpoint(endpoint, &bus_cfg);
	if (ret) {
		of_node_put(endpoint);
		return ret;
	}
2805 2806 2807 2808 2809 2810

	if (!of_property_read_u32(endpoint, "default-input", &v))
		state->pdata.default_input = v;
	else
		state->pdata.default_input = -1;

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	of_node_put(endpoint);

	flags = bus_cfg.bus.parallel.flags;

	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
		state->pdata.inv_hs_pol = 1;

	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
		state->pdata.inv_vs_pol = 1;

	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
		state->pdata.inv_llc_pol = 1;

	if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
		state->pdata.insert_av_codes = 1;
		state->pdata.op_656_range = 1;
	}

2829
	/* Disable the interrupt for now as no DT-based board uses it. */
2830
	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2831 2832 2833

	/* Use the default I2C addresses. */
	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2834 2835
	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2836 2837
	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2838 2839 2840 2841 2842 2843
	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;

	/* Hardcode the remaining platform data fields. */
	state->pdata.disable_pwrdnb = 0;
	state->pdata.disable_cable_det_rst = 0;
	state->pdata.blank_data = 1;
	state->pdata.alt_data_sat = 1;
	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;

	return 0;
}

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
static const struct regmap_config adv76xx_regmap_cnf[] = {
	{
		.name			= "io",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "avlink",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "cec",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "infoframe",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "esdp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "epp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "afe",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "rep",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "edid",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},

	{
		.name			= "hdmi",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "test",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "cp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "vdp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
};

static int configure_regmap(struct adv76xx_state *state, int region)
{
	int err;

	if (!state->i2c_clients[region])
		return -ENODEV;

	state->regmap[region] =
		devm_regmap_init_i2c(state->i2c_clients[region],
				     &adv76xx_regmap_cnf[region]);

	if (IS_ERR(state->regmap[region])) {
		err = PTR_ERR(state->regmap[region]);
		v4l_err(state->i2c_clients[region],
			"Error initializing regmap %d with error %d\n",
			region, err);
		return -EINVAL;
	}

	return 0;
}

static int configure_regmaps(struct adv76xx_state *state)
{
	int i, err;

	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
		err = configure_regmap(state, i);
		if (err && (err != -ENODEV))
			return err;
	}
	return 0;
}

2999
static int adv76xx_probe(struct i2c_client *client,
3000 3001
			 const struct i2c_device_id *id)
{
3002 3003
	static const struct v4l2_dv_timings cea640x480 =
		V4L2_DV_BT_CEA_640X480P59_94;
3004
	struct adv76xx_state *state;
3005
	struct v4l2_ctrl_handler *hdl;
3006
	struct v4l2_ctrl *ctrl;
3007
	struct v4l2_subdev *sd;
3008
	unsigned int i;
3009
	unsigned int val, val2;
3010 3011 3012 3013 3014
	int err;

	/* Check if the adapter supports the needed features */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -EIO;
3015
	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3016 3017
			client->addr << 1);

3018
	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3019
	if (!state) {
3020
		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
3021 3022 3023
		return -ENOMEM;
	}

3024
	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3025

3026 3027
	/* initialize variables */
	state->restart_stdi_once = true;
3028
	state->selected_input = ~0;
3029

3030 3031 3032
	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
		const struct of_device_id *oid;

3033
		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3034 3035
		state->info = oid->data;

3036
		err = adv76xx_parse_dt(state);
3037 3038 3039 3040 3041
		if (err < 0) {
			v4l_err(client, "DT parsing error\n");
			return err;
		}
	} else if (client->dev.platform_data) {
3042
		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3043

3044
		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3045 3046
		state->pdata = *pdata;
	} else {
3047
		v4l_err(client, "No platform data!\n");
3048
		return -ENODEV;
3049
	}
3050 3051 3052 3053

	/* Request GPIOs. */
	for (i = 0; i < state->info->num_dv_ports; ++i) {
		state->hpd_gpio[i] =
3054 3055
			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
						      GPIOD_OUT_LOW);
3056
		if (IS_ERR(state->hpd_gpio[i]))
3057
			return PTR_ERR(state->hpd_gpio[i]);
3058

3059 3060
		if (state->hpd_gpio[i])
			v4l_info(client, "Handling HPD %u GPIO\n", i);
3061 3062
	}

3063
	state->timings = cea640x480;
3064
	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3065 3066

	sd = &state->sd;
3067
	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3068 3069 3070
	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
		id->name, i2c_adapter_id(client->adapter),
		client->addr);
3071
	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3072

3073 3074 3075 3076 3077 3078 3079 3080
	/* Configure IO Regmap region */
	err = configure_regmap(state, ADV76XX_PAGE_IO);

	if (err) {
		v4l2_err(sd, "Error configuring IO regmap region\n");
		return -ENODEV;
	}

3081 3082 3083 3084 3085
	/*
	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
	 * identifies the revision, while on ADV7611 it identifies the model as
	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
	 */
3086 3087
	switch (state->info->type) {
	case ADV7604:
3088 3089 3090 3091 3092
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
3093
		if (val != 0x68) {
3094
			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3095 3096 3097
					client->addr << 1);
			return -ENODEV;
		}
3098 3099 3100
		break;
	case ADV7611:
	case ADV7612:
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
				0xea,
				&val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
		val2 = val << 8;
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
			    0xeb,
			    &val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
3116
		val |= val2;
3117 3118 3119
		if ((state->info->type == ADV7611 && val != 0x2051) ||
			(state->info->type == ADV7612 && val != 0x2041)) {
			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3120 3121 3122
					client->addr << 1);
			return -ENODEV;
		}
3123
		break;
3124 3125 3126 3127
	}

	/* control handlers */
	hdl = &state->hdl;
3128
	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3129

3130
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3131
			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3132
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3133
			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3134
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3135
			V4L2_CID_SATURATION, 0, 255, 1, 128);
3136
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3137
			V4L2_CID_HUE, 0, 128, 1, 0);
3138 3139 3140 3141 3142
	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
	if (ctrl)
		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3143 3144

	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3145 3146
			V4L2_CID_DV_RX_POWER_PRESENT, 0,
			(1 << state->info->num_dv_ports) - 1, 0, 0);
3147
	state->rgb_quantization_range_ctrl =
3148
		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3149 3150 3151 3152
			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
			0, V4L2_DV_RGB_RANGE_AUTO);

	/* custom controls */
3153
	if (adv76xx_has_afe(state))
3154 3155
		state->analog_sampling_phase_ctrl =
			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3156
	state->free_run_color_manual_ctrl =
3157
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3158
	state->free_run_color_ctrl =
3159
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3160 3161 3162 3163 3164 3165

	sd->ctrl_handler = hdl;
	if (hdl->error) {
		err = hdl->error;
		goto err_hdl;
	}
3166
	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3167 3168 3169 3170
		err = -ENODEV;
		goto err_hdl;
	}

3171
	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3172 3173
		if (!(BIT(i) & state->info->page_mask))
			continue;
3174

3175
		state->i2c_clients[i] =
3176
			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3177 3178
					     0xf2 + i);
		if (state->i2c_clients[i] == NULL) {
3179
			err = -ENOMEM;
3180
			v4l2_err(sd, "failed to create i2c client %u\n", i);
3181 3182 3183
			goto err_i2c;
		}
	}
3184

3185 3186 3187 3188 3189 3190 3191 3192 3193
	/* work queues */
	state->work_queues = create_singlethread_workqueue(client->name);
	if (!state->work_queues) {
		v4l2_err(sd, "Could not create work queue\n");
		err = -ENOMEM;
		goto err_i2c;
	}

	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3194
			adv76xx_delayed_work_enable_hotplug);
3195

3196 3197 3198 3199 3200 3201
	state->source_pad = state->info->num_dv_ports
			  + (state->info->has_afe ? 2 : 0);
	for (i = 0; i < state->source_pad; ++i)
		state->pads[i].flags = MEDIA_PAD_FL_SINK;
	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;

3202
	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3203
				state->pads);
3204 3205 3206
	if (err)
		goto err_work_queues;

3207 3208 3209 3210 3211
	/* Configure regmaps */
	err = configure_regmaps(state);
	if (err)
		goto err_entity;

3212
	err = adv76xx_core_init(sd);
3213 3214 3215 3216
	if (err)
		goto err_entity;
	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
			client->addr << 1, client->adapter->name);
3217 3218 3219 3220 3221

	err = v4l2_async_register_subdev(sd);
	if (err)
		goto err_entity;

3222 3223 3224 3225 3226 3227 3228 3229
	return 0;

err_entity:
	media_entity_cleanup(&sd->entity);
err_work_queues:
	cancel_delayed_work(&state->delayed_work_enable_hotplug);
	destroy_workqueue(state->work_queues);
err_i2c:
3230
	adv76xx_unregister_clients(state);
3231 3232 3233 3234 3235 3236 3237
err_hdl:
	v4l2_ctrl_handler_free(hdl);
	return err;
}

/* ----------------------------------------------------------------------- */

3238
static int adv76xx_remove(struct i2c_client *client)
3239 3240
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3241
	struct adv76xx_state *state = to_state(sd);
3242 3243 3244

	cancel_delayed_work(&state->delayed_work_enable_hotplug);
	destroy_workqueue(state->work_queues);
3245
	v4l2_async_unregister_subdev(sd);
3246
	media_entity_cleanup(&sd->entity);
3247
	adv76xx_unregister_clients(to_state(sd));
3248 3249 3250 3251 3252 3253
	v4l2_ctrl_handler_free(sd->ctrl_handler);
	return 0;
}

/* ----------------------------------------------------------------------- */

3254
static struct i2c_driver adv76xx_driver = {
3255 3256
	.driver = {
		.name = "adv7604",
3257
		.of_match_table = of_match_ptr(adv76xx_of_id),
3258
	},
3259 3260 3261
	.probe = adv76xx_probe,
	.remove = adv76xx_remove,
	.id_table = adv76xx_i2c_id,
3262 3263
};

3264
module_i2c_driver(adv76xx_driver);
反馈
建议
客服 返回
顶部