pmu.c 20.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2015 Linaro Ltd.
 * Author: Shannon Zhao <shannon.zhao@linaro.org>
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/perf_event.h>
11
#include <linux/uaccess.h>
12 13
#include <asm/kvm_emulate.h>
#include <kvm/arm_pmu.h>
14
#include <kvm/arm_vgic.h>
15

16
static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx);
17

18 19
#define PERF_ATTR_CFG1_KVM_PMU_CHAINED 0x1

20 21 22 23 24 25 26 27 28 29 30
/**
 * kvm_pmu_idx_is_64bit - determine if select_idx is a 64bit counter
 * @vcpu: The vcpu pointer
 * @select_idx: The counter index
 */
static bool kvm_pmu_idx_is_64bit(struct kvm_vcpu *vcpu, u64 select_idx)
{
	return (select_idx == ARMV8_PMU_CYCLE_IDX &&
		__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_LC);
}

31 32 33 34 35 36 37 38 39 40 41
static struct kvm_vcpu *kvm_pmc_to_vcpu(struct kvm_pmc *pmc)
{
	struct kvm_pmu *pmu;
	struct kvm_vcpu_arch *vcpu_arch;

	pmc -= pmc->idx;
	pmu = container_of(pmc, struct kvm_pmu, pmc[0]);
	vcpu_arch = container_of(pmu, struct kvm_vcpu_arch, pmu);
	return container_of(vcpu_arch, struct kvm_vcpu, arch);
}

42
/**
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
 * kvm_pmu_pmc_is_chained - determine if the pmc is chained
 * @pmc: The PMU counter pointer
 */
static bool kvm_pmu_pmc_is_chained(struct kvm_pmc *pmc)
{
	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);

	return test_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
}

/**
 * kvm_pmu_idx_is_high_counter - determine if select_idx is a high/low counter
 * @select_idx: The counter index
 */
static bool kvm_pmu_idx_is_high_counter(u64 select_idx)
{
	return select_idx & 0x1;
}

/**
 * kvm_pmu_get_canonical_pmc - obtain the canonical pmc
 * @pmc: The PMU counter pointer
 *
 * When a pair of PMCs are chained together we use the low counter (canonical)
 * to hold the underlying perf event.
 */
static struct kvm_pmc *kvm_pmu_get_canonical_pmc(struct kvm_pmc *pmc)
{
	if (kvm_pmu_pmc_is_chained(pmc) &&
	    kvm_pmu_idx_is_high_counter(pmc->idx))
		return pmc - 1;

	return pmc;
}

/**
 * kvm_pmu_idx_has_chain_evtype - determine if the event type is chain
80 81 82
 * @vcpu: The vcpu pointer
 * @select_idx: The counter index
 */
83
static bool kvm_pmu_idx_has_chain_evtype(struct kvm_vcpu *vcpu, u64 select_idx)
84
{
85
	u64 eventsel, reg;
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	select_idx |= 0x1;

	if (select_idx == ARMV8_PMU_CYCLE_IDX)
		return false;

	reg = PMEVTYPER0_EL0 + select_idx;
	eventsel = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_EVENT;

	return eventsel == ARMV8_PMUV3_PERFCTR_CHAIN;
}

/**
 * kvm_pmu_get_pair_counter_value - get PMU counter value
 * @vcpu: The vcpu pointer
 * @pmc: The PMU counter pointer
 */
static u64 kvm_pmu_get_pair_counter_value(struct kvm_vcpu *vcpu,
					  struct kvm_pmc *pmc)
{
	u64 counter, counter_high, reg, enabled, running;
107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
	if (kvm_pmu_pmc_is_chained(pmc)) {
		pmc = kvm_pmu_get_canonical_pmc(pmc);
		reg = PMEVCNTR0_EL0 + pmc->idx;

		counter = __vcpu_sys_reg(vcpu, reg);
		counter_high = __vcpu_sys_reg(vcpu, reg + 1);

		counter = lower_32_bits(counter) | (counter_high << 32);
	} else {
		reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
		      ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx;
		counter = __vcpu_sys_reg(vcpu, reg);
	}

	/*
	 * The real counter value is equal to the value of counter register plus
124 125 126 127 128 129
	 * the value perf event counts.
	 */
	if (pmc->perf_event)
		counter += perf_event_read_value(pmc->perf_event, &enabled,
						 &running);

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	return counter;
}

/**
 * kvm_pmu_get_counter_value - get PMU counter value
 * @vcpu: The vcpu pointer
 * @select_idx: The counter index
 */
u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
{
	u64 counter;
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	struct kvm_pmc *pmc = &pmu->pmc[select_idx];

	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);

	if (kvm_pmu_pmc_is_chained(pmc) &&
	    kvm_pmu_idx_is_high_counter(select_idx))
		counter = upper_32_bits(counter);

	else if (!kvm_pmu_idx_is_64bit(vcpu, select_idx))
151 152 153
		counter = lower_32_bits(counter);

	return counter;
154 155 156 157 158 159 160 161 162 163 164 165 166 167
}

/**
 * kvm_pmu_set_counter_value - set PMU counter value
 * @vcpu: The vcpu pointer
 * @select_idx: The counter index
 * @val: The counter value
 */
void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
{
	u64 reg;

	reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
	      ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx;
168
	__vcpu_sys_reg(vcpu, reg) += (s64)val - kvm_pmu_get_counter_value(vcpu, select_idx);
169 170 171

	/* Recreate the perf event to reflect the updated sample_period */
	kvm_pmu_create_perf_event(vcpu, select_idx);
172
}
173

174 175 176 177 178 179
/**
 * kvm_pmu_release_perf_event - remove the perf event
 * @pmc: The PMU counter pointer
 */
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
{
180
	pmc = kvm_pmu_get_canonical_pmc(pmc);
181 182 183 184 185 186 187
	if (pmc->perf_event) {
		perf_event_disable(pmc->perf_event);
		perf_event_release_kernel(pmc->perf_event);
		pmc->perf_event = NULL;
	}
}

188 189 190 191 192 193 194 195 196 197
/**
 * kvm_pmu_stop_counter - stop PMU counter
 * @pmc: The PMU counter pointer
 *
 * If this counter has been configured to monitor some event, release it here.
 */
static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc)
{
	u64 counter, reg;

198 199 200 201 202 203 204 205 206 207 208
	pmc = kvm_pmu_get_canonical_pmc(pmc);
	if (!pmc->perf_event)
		return;

	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);

	if (kvm_pmu_pmc_is_chained(pmc)) {
		reg = PMEVCNTR0_EL0 + pmc->idx;
		__vcpu_sys_reg(vcpu, reg) = lower_32_bits(counter);
		__vcpu_sys_reg(vcpu, reg + 1) = upper_32_bits(counter);
	} else {
209 210
		reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
		       ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx;
211
		__vcpu_sys_reg(vcpu, reg) = lower_32_bits(counter);
212
	}
213 214

	kvm_pmu_release_perf_event(pmc);
215 216
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230
/**
 * kvm_pmu_vcpu_reset - reset pmu state for cpu
 * @vcpu: The vcpu pointer
 *
 */
void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_pmu *pmu = &vcpu->arch.pmu;

	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
		kvm_pmu_stop_counter(vcpu, &pmu->pmc[i]);
		pmu->pmc[i].idx = i;
	}
231 232

	bitmap_zero(vcpu->arch.pmu.chained, ARMV8_PMU_MAX_COUNTER_PAIRS);
233 234
}

235 236 237 238 239 240 241 242 243 244
/**
 * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
 * @vcpu: The vcpu pointer
 *
 */
void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_pmu *pmu = &vcpu->arch.pmu;

245 246
	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
		kvm_pmu_release_perf_event(&pmu->pmc[i]);
247 248
}

249 250
u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
{
251
	u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
252 253 254 255 256 257 258 259 260

	val &= ARMV8_PMU_PMCR_N_MASK;
	if (val == 0)
		return BIT(ARMV8_PMU_CYCLE_IDX);
	else
		return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
}

/**
261
 * kvm_pmu_enable_counter_mask - enable selected PMU counters
262 263 264 265 266
 * @vcpu: The vcpu pointer
 * @val: the value guest writes to PMCNTENSET register
 *
 * Call perf_event_enable to start counting the perf event
 */
267
void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
268 269 270 271 272
{
	int i;
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	struct kvm_pmc *pmc;

273
	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
274 275 276 277 278 279 280
		return;

	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
		if (!(val & BIT(i)))
			continue;

		pmc = &pmu->pmc[i];
281 282 283 284 285 286 287 288 289 290 291 292

		/*
		 * For high counters of chained events we must recreate the
		 * perf event with the long (64bit) attribute set.
		 */
		if (kvm_pmu_pmc_is_chained(pmc) &&
		    kvm_pmu_idx_is_high_counter(i)) {
			kvm_pmu_create_perf_event(vcpu, i);
			continue;
		}

		/* At this point, pmc must be the canonical */
293 294 295 296 297 298 299 300 301
		if (pmc->perf_event) {
			perf_event_enable(pmc->perf_event);
			if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
				kvm_debug("fail to enable perf event\n");
		}
	}
}

/**
302
 * kvm_pmu_disable_counter_mask - disable selected PMU counters
303 304 305 306 307
 * @vcpu: The vcpu pointer
 * @val: the value guest writes to PMCNTENCLR register
 *
 * Call perf_event_disable to stop counting the perf event
 */
308
void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
309 310 311 312 313 314 315 316 317 318 319 320 321
{
	int i;
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	struct kvm_pmc *pmc;

	if (!val)
		return;

	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
		if (!(val & BIT(i)))
			continue;

		pmc = &pmu->pmc[i];
322 323 324 325 326 327 328 329 330 331 332 333

		/*
		 * For high counters of chained events we must recreate the
		 * perf event with the long (64bit) attribute unset.
		 */
		if (kvm_pmu_pmc_is_chained(pmc) &&
		    kvm_pmu_idx_is_high_counter(i)) {
			kvm_pmu_create_perf_event(vcpu, i);
			continue;
		}

		/* At this point, pmc must be the canonical */
334 335 336 337
		if (pmc->perf_event)
			perf_event_disable(pmc->perf_event);
	}
}
338

339 340 341 342
static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
{
	u64 reg = 0;

343 344 345 346
	if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
		reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
		reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
		reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
347
		reg &= kvm_pmu_valid_counter_mask(vcpu);
348
	}
349 350 351 352

	return reg;
}

353
static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
354 355
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
356 357 358 359
	bool overflow;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return;
360

361
	overflow = !!kvm_pmu_overflow_status(vcpu);
362 363 364 365 366 367 368
	if (pmu->irq_level == overflow)
		return;

	pmu->irq_level = overflow;

	if (likely(irqchip_in_kernel(vcpu->kvm))) {
		int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
369
					      pmu->irq_num, overflow, pmu);
370 371 372 373
		WARN_ON(ret);
	}
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
	bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;

	if (likely(irqchip_in_kernel(vcpu->kvm)))
		return false;

	return pmu->irq_level != run_level;
}

/*
 * Reflect the PMU overflow interrupt output level into the kvm_run structure
 */
void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
{
	struct kvm_sync_regs *regs = &vcpu->run->s.regs;

	/* Populate the timer bitmap for user space */
	regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
	if (vcpu->arch.pmu.irq_level)
		regs->device_irq_level |= KVM_ARM_DEV_PMU;
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/**
 * kvm_pmu_flush_hwstate - flush pmu state to cpu
 * @vcpu: The vcpu pointer
 *
 * Check if the PMU has overflowed while we were running in the host, and inject
 * an interrupt if that was the case.
 */
void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
{
	kvm_pmu_update_state(vcpu);
}

/**
 * kvm_pmu_sync_hwstate - sync pmu state from cpu
 * @vcpu: The vcpu pointer
 *
 * Check if the PMU has overflowed while we were running in the guest, and
 * inject an interrupt if that was the case.
 */
void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
{
	kvm_pmu_update_state(vcpu);
}

/**
424
 * When the perf event overflows, set the overflow status and inform the vcpu.
425 426 427 428 429 430 431 432 433
 */
static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
				  struct perf_sample_data *data,
				  struct pt_regs *regs)
{
	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
	int idx = pmc->idx;

434
	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
435 436 437 438 439

	if (kvm_pmu_overflow_status(vcpu)) {
		kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
		kvm_vcpu_kick(vcpu);
	}
440 441
}

442 443 444 445 446 447 448 449 450 451 452 453 454
/**
 * kvm_pmu_software_increment - do software increment
 * @vcpu: The vcpu pointer
 * @val: the value guest writes to PMSWINC register
 */
void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
{
	int i;
	u64 type, enable, reg;

	if (val == 0)
		return;

455
	enable = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
456 457 458
	for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++) {
		if (!(val & BIT(i)))
			continue;
459
		type = __vcpu_sys_reg(vcpu, PMEVTYPER0_EL0 + i)
460
		       & ARMV8_PMU_EVTYPE_EVENT;
461
		if ((type == ARMV8_PMUV3_PERFCTR_SW_INCR)
462
		    && (enable & BIT(i))) {
463
			reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) + 1;
464
			reg = lower_32_bits(reg);
465
			__vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) = reg;
466
			if (!reg)
467
				__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
468 469 470 471
		}
	}
}

472 473 474 475 476 477 478 479 480 481 482 483
/**
 * kvm_pmu_handle_pmcr - handle PMCR register
 * @vcpu: The vcpu pointer
 * @val: the value guest writes to PMCR register
 */
void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
{
	u64 mask;
	int i;

	mask = kvm_pmu_valid_counter_mask(vcpu);
	if (val & ARMV8_PMU_PMCR_E) {
484
		kvm_pmu_enable_counter_mask(vcpu,
485
		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask);
486
	} else {
487
		kvm_pmu_disable_counter_mask(vcpu, mask);
488 489 490 491 492 493 494 495 496 497 498
	}

	if (val & ARMV8_PMU_PMCR_C)
		kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);

	if (val & ARMV8_PMU_PMCR_P) {
		for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++)
			kvm_pmu_set_counter_value(vcpu, i, 0);
	}
}

499 500
static bool kvm_pmu_counter_is_enabled(struct kvm_vcpu *vcpu, u64 select_idx)
{
501 502
	return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
	       (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(select_idx));
503 504 505
}

/**
506
 * kvm_pmu_create_perf_event - create a perf event for a counter
507 508 509
 * @vcpu: The vcpu pointer
 * @select_idx: The number of selected counter
 */
510
static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx)
511 512
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
513
	struct kvm_pmc *pmc;
514 515
	struct perf_event *event;
	struct perf_event_attr attr;
516 517
	u64 eventsel, counter, reg, data;

518 519 520 521 522 523 524 525 526
	/*
	 * For chained counters the event type and filtering attributes are
	 * obtained from the low/even counter. We also use this counter to
	 * determine if the event is enabled/disabled.
	 */
	pmc = kvm_pmu_get_canonical_pmc(&pmu->pmc[select_idx]);

	reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
	      ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + pmc->idx;
527
	data = __vcpu_sys_reg(vcpu, reg);
528 529 530 531

	kvm_pmu_stop_counter(vcpu, pmc);
	eventsel = data & ARMV8_PMU_EVTYPE_EVENT;

532
	/* Software increment event does't need to be backed by a perf event */
533
	if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR &&
534
	    pmc->idx != ARMV8_PMU_CYCLE_IDX)
535 536
		return;

537 538 539 540
	memset(&attr, 0, sizeof(struct perf_event_attr));
	attr.type = PERF_TYPE_RAW;
	attr.size = sizeof(attr);
	attr.pinned = 1;
541
	attr.disabled = !kvm_pmu_counter_is_enabled(vcpu, pmc->idx);
542 543 544 545
	attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
	attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
	attr.exclude_hv = 1; /* Don't count EL2 events */
	attr.exclude_host = 1; /* Don't count host events */
546
	attr.config = (pmc->idx == ARMV8_PMU_CYCLE_IDX) ?
547
		ARMV8_PMUV3_PERFCTR_CPU_CYCLES : eventsel;
548

549 550 551 552 553 554 555 556
	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);

	if (kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx)) {
		/**
		 * The initial sample period (overflow count) of an event. For
		 * chained counters we only support overflow interrupts on the
		 * high counter.
		 */
557
		attr.sample_period = (-counter) & GENMASK(63, 0);
558 559 560 561 562 563 564 565 566 567 568 569
		event = perf_event_create_kernel_counter(&attr, -1, current,
							 kvm_pmu_perf_overflow,
							 pmc + 1);

		if (kvm_pmu_counter_is_enabled(vcpu, pmc->idx + 1))
			attr.config1 |= PERF_ATTR_CFG1_KVM_PMU_CHAINED;
	} else {
		/* The initial sample period (overflow count) of an event. */
		if (kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
			attr.sample_period = (-counter) & GENMASK(63, 0);
		else
			attr.sample_period = (-counter) & GENMASK(31, 0);
570

571
		event = perf_event_create_kernel_counter(&attr, -1, current,
572
						 kvm_pmu_perf_overflow, pmc);
573 574
	}

575 576 577 578 579 580 581 582
	if (IS_ERR(event)) {
		pr_err_once("kvm: pmu event creation failed %ld\n",
			    PTR_ERR(event));
		return;
	}

	pmc->perf_event = event;
}
583

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
/**
 * kvm_pmu_update_pmc_chained - update chained bitmap
 * @vcpu: The vcpu pointer
 * @select_idx: The number of selected counter
 *
 * Update the chained bitmap based on the event type written in the
 * typer register.
 */
static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx)
{
	struct kvm_pmu *pmu = &vcpu->arch.pmu;
	struct kvm_pmc *pmc = &pmu->pmc[select_idx];

	if (kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx)) {
		/*
		 * During promotion from !chained to chained we must ensure
		 * the adjacent counter is stopped and its event destroyed
		 */
		if (!kvm_pmu_pmc_is_chained(pmc))
			kvm_pmu_stop_counter(vcpu, pmc);

		set_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
	} else {
		clear_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
	}
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/**
 * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
 * @vcpu: The vcpu pointer
 * @data: The data guest writes to PMXEVTYPER_EL0
 * @select_idx: The number of selected counter
 *
 * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
 * event with given hardware event number. Here we call perf_event API to
 * emulate this action and create a kernel perf event for it.
 */
void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
				    u64 select_idx)
{
	u64 reg, event_type = data & ARMV8_PMU_EVTYPE_MASK;

	reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
	      ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + select_idx;

	__vcpu_sys_reg(vcpu, reg) = event_type;
630 631

	kvm_pmu_update_pmc_chained(vcpu, select_idx);
632 633 634
	kvm_pmu_create_perf_event(vcpu, select_idx);
}

635 636 637 638 639 640 641 642 643
bool kvm_arm_support_pmu_v3(void)
{
	/*
	 * Check if HW_PERF_EVENTS are supported by checking the number of
	 * hardware performance counters. This could ensure the presence of
	 * a physical PMU and CONFIG_PERF_EVENT is selected.
	 */
	return (perf_num_counters() > 0);
}
644

645
int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
646
{
647 648
	if (!vcpu->arch.pmu.created)
		return 0;
649

650
	/*
651 652
	 * A valid interrupt configuration for the PMU is either to have a
	 * properly configured interrupt number and using an in-kernel
653
	 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
654
	 */
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	if (irqchip_in_kernel(vcpu->kvm)) {
		int irq = vcpu->arch.pmu.irq_num;
		if (!kvm_arm_pmu_irq_initialized(vcpu))
			return -EINVAL;

		/*
		 * If we are using an in-kernel vgic, at this point we know
		 * the vgic will be initialized, so we can check the PMU irq
		 * number against the dimensions of the vgic and make sure
		 * it's valid.
		 */
		if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
			return -EINVAL;
	} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
		   return -EINVAL;
	}
671 672 673 674 675 676 677 678 679 680

	kvm_pmu_vcpu_reset(vcpu);
	vcpu->arch.pmu.ready = true;

	return 0;
}

static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
{
	if (!kvm_arm_support_pmu_v3())
681 682
		return -ENODEV;

683
	if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
684 685
		return -ENXIO;

686
	if (vcpu->arch.pmu.created)
687 688
		return -EBUSY;

689
	if (irqchip_in_kernel(vcpu->kvm)) {
690 691
		int ret;

692 693 694 695 696 697 698 699 700 701
		/*
		 * If using the PMU with an in-kernel virtual GIC
		 * implementation, we require the GIC to be already
		 * initialized when initializing the PMU.
		 */
		if (!vgic_initialized(vcpu->kvm))
			return -ENODEV;

		if (!kvm_arm_pmu_irq_initialized(vcpu))
			return -ENXIO;
702 703 704 705 706

		ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
					 &vcpu->arch.pmu);
		if (ret)
			return ret;
707
	}
708

709
	vcpu->arch.pmu.created = true;
710 711 712
	return 0;
}

713 714 715 716 717 718
/*
 * For one VM the interrupt type must be same for each vcpu.
 * As a PPI, the interrupt number is the same for all vcpus,
 * while as an SPI it must be a separate number per vcpu.
 */
static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
719 720 721 722 723 724 725 726
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (!kvm_arm_pmu_irq_initialized(vcpu))
			continue;

727
		if (irq_is_ppi(irq)) {
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
			if (vcpu->arch.pmu.irq_num != irq)
				return false;
		} else {
			if (vcpu->arch.pmu.irq_num == irq)
				return false;
		}
	}

	return true;
}

int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_PMU_V3_IRQ: {
		int __user *uaddr = (int __user *)(long)attr->addr;
		int irq;

746 747 748
		if (!irqchip_in_kernel(vcpu->kvm))
			return -EINVAL;

749 750 751 752 753 754
		if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
			return -ENODEV;

		if (get_user(irq, uaddr))
			return -EFAULT;

755
		/* The PMU overflow interrupt can be a PPI or a valid SPI. */
756
		if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
757 758 759
			return -EINVAL;

		if (!pmu_irq_is_valid(vcpu->kvm, irq))
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
			return -EINVAL;

		if (kvm_arm_pmu_irq_initialized(vcpu))
			return -EBUSY;

		kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
		vcpu->arch.pmu.irq_num = irq;
		return 0;
	}
	case KVM_ARM_VCPU_PMU_V3_INIT:
		return kvm_arm_pmu_v3_init(vcpu);
	}

	return -ENXIO;
}

int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_PMU_V3_IRQ: {
		int __user *uaddr = (int __user *)(long)attr->addr;
		int irq;

783 784 785
		if (!irqchip_in_kernel(vcpu->kvm))
			return -EINVAL;

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
			return -ENODEV;

		if (!kvm_arm_pmu_irq_initialized(vcpu))
			return -ENXIO;

		irq = vcpu->arch.pmu.irq_num;
		return put_user(irq, uaddr);
	}
	}

	return -ENXIO;
}

int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_PMU_V3_IRQ:
	case KVM_ARM_VCPU_PMU_V3_INIT:
		if (kvm_arm_support_pmu_v3() &&
		    test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
			return 0;
	}

	return -ENXIO;
}