inode.c 100.2 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28 29
#include <linux/ext4_jbd2.h>
#include <linux/jbd2.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/mpage.h>
#include <linux/uio.h>
#include <linux/bio.h>
#include "xattr.h"
#include "acl.h"

/*
 * Test whether an inode is a fast symlink.
 */
45
static int ext4_inode_is_fast_symlink(struct inode *inode)
46
{
47
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 49 50 51 52 53
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
54
 * The ext4 forget function must perform a revoke if we are freeing data
55 56 57 58 59 60 61
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
 */
62 63
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

81 82
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
83
		if (bh) {
84
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
85
			return ext4_journal_forget(handle, bh);
86 87 88 89 90 91 92
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
93 94
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
95
	if (err)
96
		ext4_abort(inode->i_sb, __FUNCTION__,
97 98 99 100 101 102 103 104 105 106 107
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
108
	ext4_lblk_t needed;
109 110 111 112 113 114

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
115
	 * like a regular file for ext4 to try to delete it.  Things
116 117 118 119 120 121 122
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
123 124
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
125

126
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

143
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 145 146
	if (!IS_ERR(result))
		return result;

147
	ext4_std_error(inode->i_sb, PTR_ERR(result));
148 149 150 151 152 153 154 155 156 157 158
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
159
	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160
		return 0;
161
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 163 164 165 166 167 168 169 170
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
171
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 173
{
	jbd_debug(2, "restarting handle %p\n", handle);
174
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 176 177 178 179
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
180
void ext4_delete_inode (struct inode * inode)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	handle_t *handle;

	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
196
		ext4_orphan_del(NULL, inode);
197 198 199 200 201 202 203
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
	if (inode->i_blocks)
204
		ext4_truncate(inode);
205
	/*
206
	 * Kill off the orphan record which ext4_truncate created.
207
	 * AKPM: I think this can be inside the above `if'.
208
	 * Note that ext4_orphan_del() has to be able to cope with the
209
	 * deletion of a non-existent orphan - this is because we don't
210
	 * know if ext4_truncate() actually created an orphan record.
211 212
	 * (Well, we could do this if we need to, but heck - it works)
	 */
213 214
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
215 216 217 218 219 220 221 222

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
223
	if (ext4_mark_inode_dirty(handle, inode))
224 225 226
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
227 228
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
247
 *	ext4_block_to_path - parse the block number into array of offsets
248 249 250
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
251 252
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
253
 *
254
 *	To store the locations of file's data ext4 uses a data structure common
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

277
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
278 279
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
280
{
281 282 283
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
284 285 286 287 288 289
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
290
		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 292 293 294
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
295
		offsets[n++] = EXT4_IND_BLOCK;
296 297 298
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
299
		offsets[n++] = EXT4_DIND_BLOCK;
300 301 302 303
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304
		offsets[n++] = EXT4_TIND_BLOCK;
305 306 307 308 309
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
310
		ext4_warning(inode->i_sb, "ext4_block_to_path",
311
				"block %lu > max",
312 313
				i_block + direct_blocks +
				indirect_blocks + double_blocks);
314 315 316 317 318 319 320
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
321
 *	ext4_get_branch - read the chain of indirect blocks leading to data
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
346 347
 *
 *      Need to be called with
348
 *      down_read(&EXT4_I(inode)->i_data_sem)
349
 */
A
Aneesh Kumar K.V 已提交
350 351
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
352 353 354 355 356 357 358 359
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
360
	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
381
 *	ext4_find_near - find a place for allocation with sufficient locality
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
 *	This function returns the prefered place for block allocation.
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
400
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401
{
402
	struct ext4_inode_info *ei = EXT4_I(inode);
403 404
	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
	__le32 *p;
405 406
	ext4_fsblk_t bg_start;
	ext4_grpblk_t colour;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
422
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423
	colour = (current->pid % 16) *
424
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425 426 427 428
	return bg_start + colour;
}

/**
429
 *	ext4_find_goal - find a prefered place for allocation.
430 431 432 433 434
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
 *	Normally this function find the prefered place for block allocation,
435
 *	returns it.
436
 */
A
Aneesh Kumar K.V 已提交
437
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
438
		Indirect *partial)
439
{
440
	struct ext4_block_alloc_info *block_i;
441

442
	block_i =  EXT4_I(inode)->i_block_alloc_info;
443 444 445 446 447 448 449 450 451 452

	/*
	 * try the heuristic for sequential allocation,
	 * failing that at least try to get decent locality.
	 */
	if (block_i && (block == block_i->last_alloc_logical_block + 1)
		&& (block_i->last_alloc_physical_block != 0)) {
		return block_i->last_alloc_physical_block + 1;
	}

453
	return ext4_find_near(inode, partial);
454 455 456
}

/**
457
 *	ext4_blks_to_allocate: Look up the block map and count the number
458 459 460 461 462 463 464 465 466 467
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
468
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		int blocks_to_boundary)
{
	unsigned long count = 0;

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
495
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
496 497 498 499 500 501 502 503
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
504 505 506
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
			ext4_fsblk_t goal, int indirect_blks, int blks,
			ext4_fsblk_t new_blocks[4], int *err)
507 508 509 510
{
	int target, i;
	unsigned long count = 0;
	int index = 0;
511
	ext4_fsblk_t current_block = 0;
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
	target = blks + indirect_blks;

	while (1) {
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
527
		current_block = ext4_new_blocks(handle,inode,goal,&count,err);
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}

		if (count > 0)
			break;
	}

	/* save the new block number for the first direct block */
	new_blocks[index] = current_block;

	/* total number of blocks allocated for direct blocks */
	ret = count;
	*err = 0;
	return ret;
failed_out:
	for (i = 0; i <index; i++)
551
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
552 553 554 555
	return ret;
}

/**
556
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
557 558 559 560 561 562 563 564 565 566
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
567
 *	the same format as ext4_get_branch() would do. We are calling it after
568 569
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
570
 *	picture as after the successful ext4_get_block(), except that in one
571 572 573 574 575 576
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
577
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
578 579
 *	as described above and return 0.
 */
580 581
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
			int indirect_blks, int *blks, ext4_fsblk_t goal,
A
Aneesh Kumar K.V 已提交
582
			ext4_lblk_t *offsets, Indirect *branch)
583 584 585 586 587 588
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
589 590
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
591

592
	num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
611
		err = ext4_journal_get_create_access(handle, bh);
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
		if ( n == indirect_blks) {
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

636 637
		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh);
638 639 640 641 642 643 644 645
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
646
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
647
		ext4_journal_forget(handle, branch[i].bh);
648 649
	}
	for (i = 0; i <indirect_blks; i++)
650
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
651

652
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
653 654 655 656 657

	return err;
}

/**
658
 * ext4_splice_branch - splice the allocated branch onto inode.
659 660 661
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
662
 *	ext4_alloc_branch)
663 664 665 666 667 668 669 670
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
671
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
672
			ext4_lblk_t block, Indirect *where, int num, int blks)
673 674 675
{
	int i;
	int err = 0;
676 677
	struct ext4_block_alloc_info *block_i;
	ext4_fsblk_t current_block;
678

679
	block_i = EXT4_I(inode)->i_block_alloc_info;
680 681 682 683 684 685 686
	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
687
		err = ext4_journal_get_write_access(handle, where->bh);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
			*(where->p + i ) = cpu_to_le32(current_block++);
	}

	/*
	 * update the most recently allocated logical & physical block
	 * in i_block_alloc_info, to assist find the proper goal block for next
	 * allocation
	 */
	if (block_i) {
		block_i->last_alloc_logical_block = block + blks - 1;
		block_i->last_alloc_physical_block =
				le32_to_cpu(where[num].key) + blks - 1;
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
718
	inode->i_ctime = ext4_current_time(inode);
719
	ext4_mark_inode_dirty(handle, inode);
720 721 722 723 724 725 726 727 728

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
729
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
730 731
		 */
		jbd_debug(5, "splicing indirect only\n");
732 733
		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, where->bh);
734 735 736 737 738 739 740 741 742 743 744 745 746
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
747
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
748
		ext4_journal_forget(handle, where[i].bh);
749 750
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
751
	}
752
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * The BKL may not be held on entry here.  Be sure to take it early.
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
775 776 777
 *
 *
 * Need to be called with
778 779
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
780
 */
781
int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
782
		ext4_lblk_t iblock, unsigned long maxblocks,
783 784 785 786
		struct buffer_head *bh_result,
		int create, int extend_disksize)
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
787
	ext4_lblk_t offsets[4];
788 789
	Indirect chain[4];
	Indirect *partial;
790
	ext4_fsblk_t goal;
791 792 793
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
794
	struct ext4_inode_info *ei = EXT4_I(inode);
795
	int count = 0;
796
	ext4_fsblk_t first_block = 0;
797 798


A
Alex Tomas 已提交
799
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
800
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
801 802
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
803 804 805 806

	if (depth == 0)
		goto out;

807
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
808 809 810 811 812 813 814 815

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
816
			ext4_fsblk_t blk;
817 818 819 820 821 822 823 824

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
825
		goto got_it;
826 827 828 829 830 831 832 833 834 835 836
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
	 * Okay, we need to do block allocation.  Lazily initialize the block
	 * allocation info here if necessary
	*/
	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
837
		ext4_init_block_alloc_info(inode);
838

839
	goal = ext4_find_goal(inode, iblock, partial);
840 841 842 843 844 845 846 847

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
848
	count = ext4_blks_to_allocate(partial, indirect_blks,
849 850
					maxblocks, blocks_to_boundary);
	/*
851
	 * Block out ext4_truncate while we alter the tree
852
	 */
853
	err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
854 855 856
				offsets + (partial - chain), partial);

	/*
857
	 * The ext4_splice_branch call will free and forget any buffers
858 859 860 861 862 863
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
864
		err = ext4_splice_branch(handle, inode, iblock,
865 866
					partial, indirect_blks, count);
	/*
867
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
868
	 * protect it if you're about to implement concurrent
869
	 * ext4_get_block() -bzzz
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	*/
	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
		ei->i_disksize = inode->i_size;
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

J
Jan Kara 已提交
895 896 897 898 899 900 901 902 903 904
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096
/*
 * Number of credits we need for writing DIO_MAX_BLOCKS:
 * We need sb + group descriptor + bitmap + inode -> 4
 * For B blocks with A block pointers per block we need:
 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
 */
#define DIO_CREDITS 25
905

906 907 908 909 910
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
			unsigned long max_blocks, struct buffer_head *bh,
			int create, int extend_disksize)
{
	int retval;
911 912 913 914 915 916 917 918
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
919
	} else {
920 921
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
922
	}
923 924 925 926 927 928 929 930 931 932 933 934 935
	up_read((&EXT4_I(inode)->i_data_sem));
	if (!create || (retval > 0))
		return retval;

	/*
	 * We need to allocate new blocks which will result
	 * in i_data update
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
936 937 938 939 940 941 942
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
	}
943
	up_write((&EXT4_I(inode)->i_data_sem));
944 945 946
	return retval;
}

947
static int ext4_get_block(struct inode *inode, sector_t iblock,
948 949
			struct buffer_head *bh_result, int create)
{
950
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
951
	int ret = 0, started = 0;
952 953
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

J
Jan Kara 已提交
954 955 956 957 958 959 960
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
		handle = ext4_journal_start(inode, DIO_CREDITS +
			      2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
		if (IS_ERR(handle)) {
961
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
962
			goto out;
963
		}
J
Jan Kara 已提交
964
		started = 1;
965 966
	}

J
Jan Kara 已提交
967
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
968
					max_blocks, bh_result, create, 0);
J
Jan Kara 已提交
969 970 971
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
972
	}
J
Jan Kara 已提交
973 974 975
	if (started)
		ext4_journal_stop(handle);
out:
976 977 978 979 980 981
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
982
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
983
				ext4_lblk_t block, int create, int *errp)
984 985 986 987 988 989 990 991 992
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
993
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
994 995
					&dummy, create, 1);
	/*
996
	 * ext4_get_blocks_handle() returns number of blocks
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1014
			J_ASSERT(handle != NULL);
1015 1016 1017 1018 1019

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1020
			 * writes use ext4_get_block instead, so it's not a
1021 1022 1023 1024
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1025
			fatal = ext4_journal_get_create_access(handle, bh);
1026 1027 1028 1029 1030
			if (!fatal && !buffer_uptodate(bh)) {
				memset(bh->b_data,0,inode->i_sb->s_blocksize);
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1031 1032
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, bh);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1049
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1050
			       ext4_lblk_t block, int create, int *err)
1051 1052 1053
{
	struct buffer_head * bh;

1054
	bh = ext4_getblk(handle, inode, block, create, err);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

static int walk_page_buffers(	handle_t *handle,
				struct buffer_head *head,
				unsigned from,
				unsigned to,
				int *partial,
				int (*fn)(	handle_t *handle,
						struct buffer_head *bh))
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
		block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1103
 * close off a transaction and start a new one between the ext4_get_block()
1104
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1105 1106
 * prepare_write() is the right place.
 *
1107 1108
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1109 1110 1111 1112
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1113
 * By accident, ext4 can be reentered when a transaction is open via
1114 1115 1116 1117 1118 1119
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1120
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1121 1122 1123 1124 1125 1126 1127 1128 1129
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1130
	return ext4_journal_get_write_access(handle, bh);
1131 1132
}

N
Nick Piggin 已提交
1133 1134 1135
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1136
{
N
Nick Piggin 已提交
1137
 	struct inode *inode = mapping->host;
1138
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1139 1140
	handle_t *handle;
	int retries = 0;
N
Nick Piggin 已提交
1141 1142 1143 1144 1145 1146 1147
 	struct page *page;
 	pgoff_t index;
 	unsigned from, to;

 	index = pos >> PAGE_CACHE_SHIFT;
 	from = pos & (PAGE_CACHE_SIZE - 1);
 	to = from + len;
1148 1149

retry:
N
Nick Piggin 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
 	page = __grab_cache_page(mapping, index);
 	if (!page)
 		return -ENOMEM;
 	*pagep = page;

  	handle = ext4_journal_start(inode, needed_blocks);
  	if (IS_ERR(handle)) {
 		unlock_page(page);
 		page_cache_release(page);
  		ret = PTR_ERR(handle);
  		goto out;
1161
	}
1162

N
Nick Piggin 已提交
1163 1164 1165 1166
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1167 1168 1169
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1170 1171

	if (ret) {
1172
		ext4_journal_stop(handle);
N
Nick Piggin 已提交
1173 1174 1175 1176
 		unlock_page(page);
 		page_cache_release(page);
	}

1177
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1178
		goto retry;
1179
out:
1180 1181 1182
	return ret;
}

1183
int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1184
{
1185
	int err = jbd2_journal_dirty_data(handle, bh);
1186
	if (err)
1187
		ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
N
Nick Piggin 已提交
1188
						bh, handle, err);
1189 1190 1191
	return err;
}

N
Nick Piggin 已提交
1192 1193
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1194 1195 1196 1197
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1198
	return ext4_journal_dirty_metadata(handle, bh);
1199 1200
}

N
Nick Piggin 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/*
 * Generic write_end handler for ordered and writeback ext4 journal modes.
 * We can't use generic_write_end, because that unlocks the page and we need to
 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
 * after block_write_end.
 */
static int ext4_generic_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = file->f_mapping->host;

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	if (pos+copied > inode->i_size) {
		i_size_write(inode, pos+copied);
		mark_inode_dirty(inode);
	}

	return copied;
}

1224 1225 1226 1227
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1228
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1229 1230
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1231 1232 1233 1234
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1235
{
1236
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1237 1238
	struct inode *inode = file->f_mapping->host;
	unsigned from, to;
1239 1240
	int ret = 0, ret2;

N
Nick Piggin 已提交
1241 1242 1243
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1244
	ret = walk_page_buffers(handle, page_buffers(page),
1245
		from, to, NULL, ext4_journal_dirty_data);
1246 1247 1248

	if (ret == 0) {
		/*
N
Nick Piggin 已提交
1249
		 * generic_write_end() will run mark_inode_dirty() if i_size
1250 1251 1252 1253 1254
		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
		 * into that.
		 */
		loff_t new_i_size;

N
Nick Piggin 已提交
1255
		new_i_size = pos + copied;
1256 1257
		if (new_i_size > EXT4_I(inode)->i_disksize)
			EXT4_I(inode)->i_disksize = new_i_size;
N
Nick Piggin 已提交
1258 1259 1260 1261
		copied = ext4_generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
		if (copied < 0)
			ret = copied;
1262
	}
1263
	ret2 = ext4_journal_stop(handle);
1264 1265
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1266 1267 1268 1269
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1270 1271
}

N
Nick Piggin 已提交
1272 1273 1274 1275
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1276
{
1277
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1278
	struct inode *inode = file->f_mapping->host;
1279 1280 1281
	int ret = 0, ret2;
	loff_t new_i_size;

N
Nick Piggin 已提交
1282
	new_i_size = pos + copied;
1283 1284
	if (new_i_size > EXT4_I(inode)->i_disksize)
		EXT4_I(inode)->i_disksize = new_i_size;
1285

N
Nick Piggin 已提交
1286 1287 1288 1289
	copied = ext4_generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	if (copied < 0)
		ret = copied;
1290

1291
	ret2 = ext4_journal_stop(handle);
1292 1293
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1294 1295 1296 1297
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1298 1299
}

N
Nick Piggin 已提交
1300 1301 1302 1303
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1304
{
1305
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1306
	struct inode *inode = mapping->host;
1307 1308
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1309
	unsigned from, to;
1310

N
Nick Piggin 已提交
1311 1312 1313 1314 1315 1316 1317 1318
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1319 1320

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1321
				to, &partial, write_end_fn);
1322 1323
	if (!partial)
		SetPageUptodate(page);
N
Nick Piggin 已提交
1324 1325
	if (pos+copied > inode->i_size)
		i_size_write(inode, pos+copied);
1326 1327 1328 1329
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	if (inode->i_size > EXT4_I(inode)->i_disksize) {
		EXT4_I(inode)->i_disksize = inode->i_size;
		ret2 = ext4_mark_inode_dirty(handle, inode);
1330 1331 1332
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1333

1334
	ret2 = ext4_journal_stop(handle);
1335 1336
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1337 1338 1339 1340
	unlock_page(page);
	page_cache_release(page);

	return ret ? ret : copied;
1341 1342 1343 1344 1345 1346 1347
}

/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
1348
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
1349 1350 1351 1352 1353 1354 1355 1356
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
1357
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1358 1359 1360 1361 1362
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

1363
	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
1375
		 * NB. EXT4_STATE_JDATA is not set on files other than
1376 1377 1378 1379 1380 1381
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

1382 1383
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
1384 1385 1386
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
1387 1388 1389 1390 1391

		if (err)
			return 0;
	}

1392
	return generic_block_bmap(mapping,block,ext4_get_block);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

1407
static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1408 1409
{
	if (buffer_mapped(bh))
1410
		return ext4_journal_dirty_data(handle, bh);
1411 1412 1413 1414 1415 1416
	return 0;
}

/*
 * Note that we always start a transaction even if we're not journalling
 * data.  This is to preserve ordering: any hole instantiation within
1417
 * __block_write_full_page -> ext4_get_block() should be journalled
1418 1419 1420 1421 1422 1423 1424
 * along with the data so we don't crash and then get metadata which
 * refers to old data.
 *
 * In all journalling modes block_write_full_page() will start the I/O.
 *
 * Problem:
 *
1425 1426
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
1427 1428 1429
 *
 * Similar for:
 *
1430
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1431
 *
1432
 * Same applies to ext4_get_block().  We will deadlock on various things like
1433
 * lock_journal and i_data_sem
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
 * we don't need to open a transaction here.
 */
1466
static int ext4_ordered_writepage(struct page *page,
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	J_ASSERT(PageLocked(page));

	/*
	 * We give up here if we're reentered, because it might be for a
	 * different filesystem.
	 */
1481
	if (ext4_journal_current_handle())
1482 1483
		goto out_fail;

1484
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

	if (!page_has_buffers(page)) {
		create_empty_buffers(page, inode->i_sb->s_blocksize,
				(1 << BH_Dirty)|(1 << BH_Uptodate));
	}
	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bget_one);

1499
	ret = block_write_full_page(page, ext4_get_block, wbc);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

	/*
	 * The page can become unlocked at any point now, and
	 * truncate can then come in and change things.  So we
	 * can't touch *page from now on.  But *page_bufs is
	 * safe due to elevated refcount.
	 */

	/*
	 * And attach them to the current transaction.  But only if
	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
	 * and generally junk.
	 */
	if (ret == 0) {
		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1515
					NULL, jbd2_journal_dirty_data_fn);
1516 1517 1518 1519 1520
		if (!ret)
			ret = err;
	}
	walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, bput_one);
1521
	err = ext4_journal_stop(handle);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1532
static int ext4_writeback_writepage(struct page *page,
1533 1534 1535 1536 1537 1538 1539
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1540
	if (ext4_journal_current_handle())
1541 1542
		goto out_fail;

1543
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1544 1545 1546 1547 1548
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

1549 1550
	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
		ret = nobh_writepage(page, ext4_get_block, wbc);
1551
	else
1552
		ret = block_write_full_page(page, ext4_get_block, wbc);
1553

1554
	err = ext4_journal_stop(handle);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

1565
static int ext4_journalled_writepage(struct page *page,
1566 1567 1568 1569 1570 1571 1572
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1573
	if (ext4_journal_current_handle())
1574 1575
		goto no_write;

1576
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto no_write;
	}

	if (!page_has_buffers(page) || PageChecked(page)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1589
					ext4_get_block);
1590
		if (ret != 0) {
1591
			ext4_journal_stop(handle);
1592 1593 1594 1595 1596 1597
			goto out_unlock;
		}
		ret = walk_page_buffers(handle, page_buffers(page), 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);

		err = walk_page_buffers(handle, page_buffers(page), 0,
N
Nick Piggin 已提交
1598
				PAGE_CACHE_SIZE, NULL, write_end_fn);
1599 1600
		if (ret == 0)
			ret = err;
1601
		EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1602 1603 1604 1605 1606 1607 1608
		unlock_page(page);
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
1609
		ret = block_write_full_page(page, ext4_get_block, wbc);
1610
	}
1611
	err = ext4_journal_stop(handle);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	if (!ret)
		ret = err;
out:
	return ret;

no_write:
	redirty_page_for_writepage(wbc, page);
out_unlock:
	unlock_page(page);
	goto out;
}

1624
static int ext4_readpage(struct file *file, struct page *page)
1625
{
1626
	return mpage_readpage(page, ext4_get_block);
1627 1628 1629
}

static int
1630
ext4_readpages(struct file *file, struct address_space *mapping,
1631 1632
		struct list_head *pages, unsigned nr_pages)
{
1633
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1634 1635
}

1636
static void ext4_invalidatepage(struct page *page, unsigned long offset)
1637
{
1638
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1639 1640 1641 1642 1643 1644 1645

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

1646
	jbd2_journal_invalidatepage(journal, page, offset);
1647 1648
}

1649
static int ext4_releasepage(struct page *page, gfp_t wait)
1650
{
1651
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1652 1653 1654 1655

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
1656
	return jbd2_journal_try_to_free_buffers(journal, page, wait);
1657 1658 1659 1660 1661 1662 1663 1664
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
1665 1666
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
1667
 */
1668
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1669 1670 1671 1672 1673
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
1674
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
1675
	handle_t *handle;
1676 1677 1678 1679 1680 1681 1682 1683
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
1684 1685 1686 1687 1688 1689
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
1690
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
1691 1692 1693 1694
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
1695 1696
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
1697
			ext4_journal_stop(handle);
1698 1699 1700 1701 1702
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
1703
				 ext4_get_block, NULL);
1704

J
Jan Kara 已提交
1705
	if (orphan) {
1706 1707
		int err;

J
Jan Kara 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
1718
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
1719
		if (ret > 0) {
1720 1721 1722 1723 1724 1725 1726 1727
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
1728
				 * ext4_mark_inode_dirty() to userspace.  So
1729 1730
				 * ignore it.
				 */
1731
				ext4_mark_inode_dirty(handle, inode);
1732 1733
			}
		}
1734
		err = ext4_journal_stop(handle);
1735 1736 1737 1738 1739 1740 1741 1742
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
1743
 * Pages can be marked dirty completely asynchronously from ext4's journalling
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
1755
static int ext4_journalled_set_page_dirty(struct page *page)
1756 1757 1758 1759 1760
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

1761 1762 1763 1764
static const struct address_space_operations ext4_ordered_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_ordered_writepage,
1765
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1766 1767
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_ordered_write_end,
1768 1769 1770 1771
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1772 1773 1774
	.migratepage	= buffer_migrate_page,
};

1775 1776 1777 1778
static const struct address_space_operations ext4_writeback_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_writeback_writepage,
1779
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1780 1781
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_writeback_write_end,
1782 1783 1784 1785
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
1786 1787 1788
	.migratepage	= buffer_migrate_page,
};

1789 1790 1791 1792
static const struct address_space_operations ext4_journalled_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_journalled_writepage,
1793
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
1794 1795
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_journalled_write_end,
1796 1797 1798 1799
	.set_page_dirty	= ext4_journalled_set_page_dirty,
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
1800 1801
};

1802
void ext4_set_aops(struct inode *inode)
1803
{
1804 1805 1806 1807
	if (ext4_should_order_data(inode))
		inode->i_mapping->a_ops = &ext4_ordered_aops;
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
1808
	else
1809
		inode->i_mapping->a_ops = &ext4_journalled_aops;
1810 1811 1812
}

/*
1813
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1814 1815 1816 1817
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
A
Alex Tomas 已提交
1818
int ext4_block_truncate_page(handle_t *handle, struct page *page,
1819 1820
		struct address_space *mapping, loff_t from)
{
1821
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1822
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
1823 1824
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1838
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
1839
		zero_user(page, offset, length);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
1864
		ext4_get_block(inode, iblock, bh, 0);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

1885
	if (ext4_should_journal_data(inode)) {
1886
		BUFFER_TRACE(bh, "get write access");
1887
		err = ext4_journal_get_write_access(handle, bh);
1888 1889 1890 1891
		if (err)
			goto unlock;
	}

1892
	zero_user(page, offset, length);
1893 1894 1895 1896

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
1897 1898
	if (ext4_should_journal_data(inode)) {
		err = ext4_journal_dirty_metadata(handle, bh);
1899
	} else {
1900 1901
		if (ext4_should_order_data(inode))
			err = ext4_journal_dirty_data(handle, bh);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
1925
 *	ext4_find_shared - find the indirect blocks for partial truncation.
1926 1927
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
1928
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
1929 1930 1931
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
1932
 *	This is a helper function used by ext4_truncate().
1933 1934 1935 1936 1937 1938 1939
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
1940
 *	past the truncation point is possible until ext4_truncate()
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

1959
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
1960
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1961 1962 1963 1964 1965 1966 1967 1968
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
1969
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
1992
		/* Nope, don't do this in ext4.  Must leave the tree intact */
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

	while(partial > p) {
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
2015 2016
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
2017 2018 2019 2020 2021
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
2022 2023
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			ext4_journal_dirty_metadata(handle, bh);
2024
		}
2025 2026
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
2027 2028
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
2029
			ext4_journal_get_write_access(handle, bh);
2030 2031 2032 2033 2034
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
2035
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2036
	 * on them.  We've already detached each block from the file, so
2037
	 * bforget() in jbd2_journal_forget() should be safe.
2038
	 *
2039
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2040 2041 2042 2043
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
2044
			struct buffer_head *tbh;
2045 2046

			*p = 0;
A
Aneesh Kumar K.V 已提交
2047 2048
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
2049 2050 2051
		}
	}

2052
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
2053 2054 2055
}

/**
2056
 * ext4_free_data - free a list of data blocks
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
2074
static void ext4_free_data(handle_t *handle, struct inode *inode,
2075 2076 2077
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
2078
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2079 2080 2081 2082
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
2083
	ext4_fsblk_t nr;		    /* Current block # */
2084 2085 2086 2087 2088 2089
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
2090
		err = ext4_journal_get_write_access(handle, this_bh);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
2108
				ext4_clear_blocks(handle, inode, this_bh,
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
2119
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2120 2121 2122
				  count, block_to_free_p, p);

	if (this_bh) {
2123 2124
		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
		ext4_journal_dirty_metadata(handle, this_bh);
2125 2126 2127 2128
	}
}

/**
2129
 *	ext4_free_branches - free an array of branches
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
2141
static void ext4_free_branches(handle_t *handle, struct inode *inode,
2142 2143 2144
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
2145
	ext4_fsblk_t nr;
2146 2147 2148 2149 2150 2151 2152
	__le32 *p;

	if (is_handle_aborted(handle))
		return;

	if (depth--) {
		struct buffer_head *bh;
2153
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
2168
				ext4_error(inode->i_sb, "ext4_free_branches",
2169
					   "Read failure, inode=%lu, block=%llu",
2170 2171 2172 2173 2174 2175
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
2176
			ext4_free_branches(handle, inode, bh,
2177 2178 2179 2180 2181 2182 2183 2184
					   (__le32*)bh->b_data,
					   (__le32*)bh->b_data + addr_per_block,
					   depth);

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
2185
			 * jbd2_journal_revoke().
2186 2187 2188
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
2189
			 * transaction then jbd2_journal_forget() will simply
2190
			 * brelse() it.  That means that if the underlying
2191
			 * block is reallocated in ext4_get_block(),
2192 2193 2194 2195 2196 2197 2198 2199
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
2200
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
			if (is_handle_aborted(handle))
				return;
			if (try_to_extend_transaction(handle, inode)) {
2221 2222
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
2223 2224
			}

2225
			ext4_free_blocks(handle, inode, nr, 1, 1);
2226 2227 2228 2229 2230 2231 2232

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
2233
				if (!ext4_journal_get_write_access(handle,
2234 2235 2236
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
2237 2238
					"call ext4_journal_dirty_metadata");
					ext4_journal_dirty_metadata(handle,
2239 2240 2241 2242 2243 2244 2245
								    parent_bh);
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
2246
		ext4_free_data(handle, inode, parent_bh, first, last);
2247 2248 2249 2250
	}
}

/*
2251
 * ext4_truncate()
2252
 *
2253 2254
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
2271
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2272
 * that this inode's truncate did not complete and it will again call
2273 2274
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
2275
 * that's fine - as long as they are linked from the inode, the post-crash
2276
 * ext4_truncate() run will find them and release them.
2277
 */
2278
void ext4_truncate(struct inode *inode)
2279 2280
{
	handle_t *handle;
2281
	struct ext4_inode_info *ei = EXT4_I(inode);
2282
	__le32 *i_data = ei->i_data;
2283
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2284
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
2285
	ext4_lblk_t offsets[4];
2286 2287 2288 2289
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
2290
	ext4_lblk_t last_block;
2291 2292 2293 2294 2295 2296
	unsigned blocksize = inode->i_sb->s_blocksize;
	struct page *page;

	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
	    S_ISLNK(inode->i_mode)))
		return;
2297
	if (ext4_inode_is_fast_symlink(inode))
2298 2299 2300 2301 2302 2303
		return;
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return;

	/*
	 * We have to lock the EOF page here, because lock_page() nests
2304
	 * outside jbd2_journal_start().
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	 */
	if ((inode->i_size & (blocksize - 1)) == 0) {
		/* Block boundary? Nothing to do */
		page = NULL;
	} else {
		page = grab_cache_page(mapping,
				inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
	}

A
Aneesh Kumar K.V 已提交
2316 2317 2318 2319
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		ext4_ext_truncate(inode, page);
		return;
	}
A
Alex Tomas 已提交
2320

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		if (page) {
			clear_highpage(page);
			flush_dcache_page(page);
			unlock_page(page);
			page_cache_release(page);
		}
		return;		/* AKPM: return what? */
	}

	last_block = (inode->i_size + blocksize-1)
2333
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2334 2335

	if (page)
2336
		ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2337

2338
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
2351
	if (ext4_orphan_add(handle, inode))
2352 2353 2354 2355 2356 2357 2358
		goto out_stop;

	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
2359
	 * ext4 *really* writes onto the disk inode.
2360 2361 2362 2363
	 */
	ei->i_disksize = inode->i_size;

	/*
2364
	 * From here we block out all ext4_get_block() callers who want to
2365 2366
	 * modify the block allocation tree.
	 */
2367
	down_write(&ei->i_data_sem);
2368 2369

	if (n == 1) {		/* direct blocks */
2370 2371
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
2372 2373 2374
		goto do_indirects;
	}

2375
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2376 2377 2378 2379
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
2380
			ext4_free_branches(handle, inode, NULL,
2381 2382 2383 2384 2385 2386 2387 2388 2389
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
2390
			ext4_free_branches(handle, inode, partial->bh,
2391 2392 2393 2394 2395 2396
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
2397
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
2408
		nr = i_data[EXT4_IND_BLOCK];
2409
		if (nr) {
2410 2411
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
2412
		}
2413 2414
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
2415
		if (nr) {
2416 2417
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
2418
		}
2419 2420
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
2421
		if (nr) {
2422 2423
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
2424
		}
2425
	case EXT4_TIND_BLOCK:
2426 2427 2428
		;
	}

2429
	ext4_discard_reservation(inode);
2430

2431
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
2432
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2433
	ext4_mark_inode_dirty(handle, inode);
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
		handle->h_sync = 1;
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
2446
	 * ext4_delete_inode(), and we allow that function to clean up the
2447 2448 2449
	 * orphan info for us.
	 */
	if (inode->i_nlink)
2450
		ext4_orphan_del(handle, inode);
2451

2452
	ext4_journal_stop(handle);
2453 2454
}

2455 2456
static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
		unsigned long ino, struct ext4_iloc *iloc)
2457
{
2458 2459
	unsigned long desc, group_desc;
	ext4_group_t block_group;
2460
	unsigned long offset;
2461
	ext4_fsblk_t block;
2462
	struct buffer_head *bh;
2463
	struct ext4_group_desc * gdp;
2464

2465
	if (!ext4_valid_inum(sb, ino)) {
2466 2467 2468 2469 2470 2471 2472 2473
		/*
		 * This error is already checked for in namei.c unless we are
		 * looking at an NFS filehandle, in which case no error
		 * report is needed
		 */
		return 0;
	}

2474 2475 2476
	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
	if (block_group >= EXT4_SB(sb)->s_groups_count) {
		ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2477 2478 2479
		return 0;
	}
	smp_rmb();
2480 2481 2482
	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
	desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
	bh = EXT4_SB(sb)->s_group_desc[group_desc];
2483
	if (!bh) {
2484
		ext4_error (sb, "ext4_get_inode_block",
2485 2486 2487 2488
			    "Descriptor not loaded");
		return 0;
	}

2489 2490
	gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
		desc * EXT4_DESC_SIZE(sb));
2491 2492 2493
	/*
	 * Figure out the offset within the block group inode table
	 */
2494 2495
	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
		EXT4_INODE_SIZE(sb);
2496 2497
	block = ext4_inode_table(sb, gdp) +
		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
2498 2499

	iloc->block_group = block_group;
2500
	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2501 2502 2503 2504
	return block;
}

/*
2505
 * ext4_get_inode_loc returns with an extra refcount against the inode's
2506 2507 2508 2509
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
2510 2511
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
2512
{
2513
	ext4_fsblk_t block;
2514 2515
	struct buffer_head *bh;

2516
	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2517 2518 2519 2520 2521
	if (!block)
		return -EIO;

	bh = sb_getblk(inode->i_sb, block);
	if (!bh) {
2522
		ext4_error (inode->i_sb, "ext4_get_inode_loc",
2523
				"unable to read inode block - "
2524
				"inode=%lu, block=%llu",
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
				 inode->i_ino, block);
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
2543
			struct ext4_group_desc *desc;
2544 2545
			int inodes_per_buffer;
			int inode_offset, i;
2546
			ext4_group_t block_group;
2547 2548 2549
			int start;

			block_group = (inode->i_ino - 1) /
2550
					EXT4_INODES_PER_GROUP(inode->i_sb);
2551
			inodes_per_buffer = bh->b_size /
2552
				EXT4_INODE_SIZE(inode->i_sb);
2553
			inode_offset = ((inode->i_ino - 1) %
2554
					EXT4_INODES_PER_GROUP(inode->i_sb));
2555 2556 2557
			start = inode_offset & ~(inodes_per_buffer - 1);

			/* Is the inode bitmap in cache? */
2558
			desc = ext4_get_group_desc(inode->i_sb,
2559 2560 2561 2562 2563
						block_group, NULL);
			if (!desc)
				goto make_io;

			bitmap_bh = sb_getblk(inode->i_sb,
2564
				ext4_inode_bitmap(inode->i_sb, desc));
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
			for (i = start; i < start + inodes_per_buffer; i++) {
				if (i == inode_offset)
					continue;
2580
				if (ext4_test_bit(i, bitmap_bh->b_data))
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
					break;
			}
			brelse(bitmap_bh);
			if (i == start + inodes_per_buffer) {
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
2604
			ext4_error(inode->i_sb, "ext4_get_inode_loc",
2605
					"unable to read inode block - "
2606
					"inode=%lu, block=%llu",
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
					inode->i_ino, block);
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

2617
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2618 2619
{
	/* We have all inode data except xattrs in memory here. */
2620 2621
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2622 2623
}

2624
void ext4_set_inode_flags(struct inode *inode)
2625
{
2626
	unsigned int flags = EXT4_I(inode)->i_flags;
2627 2628

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2629
	if (flags & EXT4_SYNC_FL)
2630
		inode->i_flags |= S_SYNC;
2631
	if (flags & EXT4_APPEND_FL)
2632
		inode->i_flags |= S_APPEND;
2633
	if (flags & EXT4_IMMUTABLE_FL)
2634
		inode->i_flags |= S_IMMUTABLE;
2635
	if (flags & EXT4_NOATIME_FL)
2636
		inode->i_flags |= S_NOATIME;
2637
	if (flags & EXT4_DIRSYNC_FL)
2638 2639 2640
		inode->i_flags |= S_DIRSYNC;
}

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
2659 2660 2661 2662
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
2663 2664
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
2665 2666 2667 2668 2669 2670

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
2671 2672 2673 2674 2675 2676
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
2677 2678 2679 2680
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
2681

2682
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2683
{
2684 2685
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
2686
	struct ext4_inode_info *ei;
2687
	struct buffer_head *bh;
2688 2689
	struct inode *inode;
	long ret;
2690 2691
	int block;

2692 2693 2694 2695 2696 2697 2698
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
2699 2700 2701
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2702 2703 2704
#endif
	ei->i_block_alloc_info = NULL;

2705 2706
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
2707 2708
		goto bad_inode;
	bh = iloc.bh;
2709
	raw_inode = ext4_raw_inode(&iloc);
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
	if(!(test_opt (inode->i_sb, NO_UID32))) {
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
2729
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2730 2731
			/* this inode is deleted */
			brelse (bh);
2732
			ret = -ESTALE;
2733 2734 2735 2736 2737 2738 2739 2740
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2741
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2742
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2743
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2744
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
2745 2746
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2747
	}
2748
	inode->i_size = ext4_isize(raw_inode);
2749 2750 2751 2752 2753 2754 2755
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
2756
	for (block = 0; block < EXT4_N_BLOCKS; block++)
2757 2758 2759
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

2760
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2761
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2762
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2763 2764
		    EXT4_INODE_SIZE(inode->i_sb)) {
			brelse (bh);
2765
			ret = -EIO;
2766
			goto bad_inode;
2767
		}
2768 2769
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
2770 2771
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
2772 2773
		} else {
			__le32 *magic = (void *)raw_inode +
2774
					EXT4_GOOD_OLD_INODE_SIZE +
2775
					ei->i_extra_isize;
2776 2777
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
2778 2779 2780 2781
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
2782 2783 2784 2785 2786
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

2787 2788 2789 2790 2791 2792 2793
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

2794
	if (S_ISREG(inode->i_mode)) {
2795 2796 2797
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
2798
	} else if (S_ISDIR(inode->i_mode)) {
2799 2800
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
2801
	} else if (S_ISLNK(inode->i_mode)) {
2802 2803
		if (ext4_inode_is_fast_symlink(inode))
			inode->i_op = &ext4_fast_symlink_inode_operations;
2804
		else {
2805 2806
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
2807 2808
		}
	} else {
2809
		inode->i_op = &ext4_special_inode_operations;
2810 2811 2812 2813 2814 2815 2816 2817
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
	brelse (iloc.bh);
2818
	ext4_set_inode_flags(inode);
2819 2820
	unlock_new_inode(inode);
	return inode;
2821 2822

bad_inode:
2823 2824
	iget_failed(inode);
	return ERR_PTR(ret);
2825 2826
}

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;
	int err = 0;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
2841
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2842
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
2843
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	} else if (i_blocks <= 0xffffffffffffULL) {
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		/* i_block is stored in the split  48 bit fields */
A
Aneesh Kumar K.V 已提交
2854
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
2855
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
2856
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2857
	} else {
A
Aneesh Kumar K.V 已提交
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
		/*
		 * i_blocks should be represented in a 48 bit variable
		 * as multiple of  file system block size
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2871 2872 2873 2874 2875
	}
err_out:
	return err;
}

2876 2877 2878 2879 2880 2881 2882
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
2883
static int ext4_do_update_inode(handle_t *handle,
2884
				struct inode *inode,
2885
				struct ext4_iloc *iloc)
2886
{
2887 2888
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
2889 2890 2891 2892 2893
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
2894 2895
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2896

2897
	ext4_get_inode_flags(ei);
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
	if(!(test_opt(inode->i_sb, NO_UID32))) {
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
		if(!ei->i_dtime) {
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
2924 2925 2926 2927 2928 2929

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

2930 2931
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
2932 2933
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2934 2935
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
2936 2937
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
2938
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
2955
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2956 2957 2958 2959
			sb->s_dirt = 1;
			handle->h_sync = 1;
			err = ext4_journal_dirty_metadata(handle,
					EXT4_SB(sb)->s_sbh);
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
2974
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
2975 2976
		raw_inode->i_block[block] = ei->i_data[block];

2977 2978 2979 2980 2981
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
2982
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2983 2984
	}

2985

2986 2987
	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
	rc = ext4_journal_dirty_metadata(handle, bh);
2988 2989
	if (!err)
		err = rc;
2990
	ei->i_state &= ~EXT4_STATE_NEW;
2991 2992 2993

out_brelse:
	brelse (bh);
2994
	ext4_std_error(inode->i_sb, err);
2995 2996 2997 2998
	return err;
}

/*
2999
 * ext4_write_inode()
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
3016
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
3033
int ext4_write_inode(struct inode *inode, int wait)
3034 3035 3036 3037
{
	if (current->flags & PF_MEMALLOC)
		return 0;

3038
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
3039
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3040 3041 3042 3043 3044 3045 3046
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

3047
	return ext4_force_commit(inode->i_sb);
3048 3049 3050
}

/*
3051
 * ext4_setattr()
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
 * Called with inode->sem down.
 */
3067
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
3083 3084
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3085 3086 3087 3088 3089 3090
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
3091
			ext4_journal_stop(handle);
3092 3093 3094 3095 3096 3097 3098 3099
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
3100 3101
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
3102 3103
	}

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

3115 3116 3117 3118
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

3119
		handle = ext4_journal_start(inode, 3);
3120 3121 3122 3123 3124
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

3125 3126 3127
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
3128 3129
		if (!error)
			error = rc;
3130
		ext4_journal_stop(handle);
3131 3132 3133 3134
	}

	rc = inode_setattr(inode, attr);

3135
	/* If inode_setattr's call to ext4_truncate failed to get a
3136 3137 3138
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
3139
		ext4_orphan_del(NULL, inode);
3140 3141

	if (!rc && (ia_valid & ATTR_MODE))
3142
		rc = ext4_acl_chmod(inode);
3143 3144

err_out:
3145
	ext4_std_error(inode->i_sb, error);
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	if (!error)
		error = rc;
	return error;
}


/*
 * How many blocks doth make a writepage()?
 *
 * With N blocks per page, it may be:
 * N data blocks
 * 2 indirect block
 * 2 dindirect
 * 1 tindirect
 * N+5 bitmap blocks (from the above)
 * N+5 group descriptor summary blocks
 * 1 inode block
 * 1 superblock.
3164
 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3165
 *
3166
 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
 *
 * With ordered or writeback data it's the same, less the N data blocks.
 *
 * If the inode's direct blocks can hold an integral number of pages then a
 * page cannot straddle two indirect blocks, and we can only touch one indirect
 * and dindirect block, and the "5" above becomes "3".
 *
 * This still overestimates under most circumstances.  If we were to pass the
 * start and end offsets in here as well we could do block_to_path() on each
 * block and work out the exact number of indirects which are touched.  Pah.
 */

A
Alex Tomas 已提交
3179
int ext4_writepage_trans_blocks(struct inode *inode)
3180
{
3181 3182
	int bpp = ext4_journal_blocks_per_page(inode);
	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3183 3184
	int ret;

A
Alex Tomas 已提交
3185 3186 3187
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_writepage_trans_blocks(inode, bpp);

3188
	if (ext4_should_journal_data(inode))
3189 3190 3191 3192 3193 3194 3195
		ret = 3 * (bpp + indirects) + 2;
	else
		ret = 2 * (bpp + indirects) + 2;

#ifdef CONFIG_QUOTA
	/* We know that structure was already allocated during DQUOT_INIT so
	 * we will be updating only the data blocks + inodes */
3196
	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3197 3198 3199 3200 3201 3202
#endif

	return ret;
}

/*
3203
 * The caller must have previously called ext4_reserve_inode_write().
3204 3205
 * Give this, we know that the caller already has write access to iloc->bh.
 */
3206 3207
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
3208 3209 3210
{
	int err = 0;

3211 3212 3213
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

3214 3215 3216
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

3217
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3218
	err = ext4_do_update_inode(handle, inode, iloc);
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
3229 3230
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
3231 3232 3233
{
	int err = 0;
	if (handle) {
3234
		err = ext4_get_inode_loc(inode, iloc);
3235 3236
		if (!err) {
			BUFFER_TRACE(iloc->bh, "get_write_access");
3237
			err = ext4_journal_get_write_access(handle, iloc->bh);
3238 3239 3240 3241 3242 3243
			if (err) {
				brelse(iloc->bh);
				iloc->bh = NULL;
			}
		}
	}
3244
	ext4_std_error(inode->i_sb, err);
3245 3246 3247
	return err;
}

3248 3249 3250 3251
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
3252 3253 3254 3255
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
3304
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3305
{
3306
	struct ext4_iloc iloc;
3307 3308 3309
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
3310 3311

	might_sleep();
3312
	err = ext4_reserve_inode_write(handle, inode, &iloc);
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
3329 3330
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
3331 3332 3333 3334
					ext4_warning(inode->i_sb, __FUNCTION__,
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
3335 3336
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
3337 3338 3339 3340
				}
			}
		}
	}
3341
	if (!err)
3342
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3343 3344 3345 3346
	return err;
}

/*
3347
 * ext4_dirty_inode() is called from __mark_inode_dirty()
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
3360
void ext4_dirty_inode(struct inode *inode)
3361
{
3362
	handle_t *current_handle = ext4_journal_current_handle();
3363 3364
	handle_t *handle;

3365
	handle = ext4_journal_start(inode, 2);
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
		       __FUNCTION__);
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
3376
		ext4_mark_inode_dirty(handle, inode);
3377
	}
3378
	ext4_journal_stop(handle);
3379 3380 3381 3382 3383 3384 3385 3386
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
3387
 * ext4_reserve_inode_write, this leaves behind no bh reference and
3388 3389 3390
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
3391
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3392
{
3393
	struct ext4_iloc iloc;
3394 3395 3396

	int err = 0;
	if (handle) {
3397
		err = ext4_get_inode_loc(inode, &iloc);
3398 3399
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
3400
			err = jbd2_journal_get_write_access(handle, iloc.bh);
3401
			if (!err)
3402
				err = ext4_journal_dirty_metadata(handle,
3403 3404 3405 3406
								  iloc.bh);
			brelse(iloc.bh);
		}
	}
3407
	ext4_std_error(inode->i_sb, err);
3408 3409 3410 3411
	return err;
}
#endif

3412
int ext4_change_inode_journal_flag(struct inode *inode, int val)
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

3428
	journal = EXT4_JOURNAL(inode);
3429
	if (is_journal_aborted(journal))
3430 3431
		return -EROFS;

3432 3433
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
3444
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3445
	else
3446 3447
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
3448

3449
	jbd2_journal_unlock_updates(journal);
3450 3451 3452

	/* Finally we can mark the inode as dirty. */

3453
	handle = ext4_journal_start(inode, 1);
3454 3455 3456
	if (IS_ERR(handle))
		return PTR_ERR(handle);

3457
	err = ext4_mark_inode_dirty(handle, inode);
3458
	handle->h_sync = 1;
3459 3460
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
3461 3462 3463

	return err;
}