hv_balloon.c 38.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2012, Microsoft Corporation.
 *
 * Author:
 *   K. Y. Srinivasan <kys@microsoft.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 * NON INFRINGEMENT.  See the GNU General Public License for more
 * details.
 *
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
22
#include <linux/jiffies.h>
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
#include <linux/mman.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kthread.h>
#include <linux/completion.h>
#include <linux/memory_hotplug.h>
#include <linux/memory.h>
#include <linux/notifier.h>
#include <linux/percpu_counter.h>

#include <linux/hyperv.h>

/*
 * We begin with definitions supporting the Dynamic Memory protocol
 * with the host.
 *
 * Begin protocol definitions.
 */



/*
 * Protocol versions. The low word is the minor version, the high word the major
 * version.
 *
 * History:
 * Initial version 1.0
 * Changed to 0.1 on 2009/03/25
 * Changes to 0.2 on 2009/05/14
 * Changes to 0.3 on 2009/12/03
 * Changed to 1.0 on 2011/04/05
 */

#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)

enum {
	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),

	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,

	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN8
};



/*
 * Message Types
 */

enum dm_message_type {
	/*
	 * Version 0.3
	 */
	DM_ERROR			= 0,
	DM_VERSION_REQUEST		= 1,
	DM_VERSION_RESPONSE		= 2,
	DM_CAPABILITIES_REPORT		= 3,
	DM_CAPABILITIES_RESPONSE	= 4,
	DM_STATUS_REPORT		= 5,
	DM_BALLOON_REQUEST		= 6,
	DM_BALLOON_RESPONSE		= 7,
	DM_UNBALLOON_REQUEST		= 8,
	DM_UNBALLOON_RESPONSE		= 9,
	DM_MEM_HOT_ADD_REQUEST		= 10,
	DM_MEM_HOT_ADD_RESPONSE		= 11,
	DM_VERSION_03_MAX		= 11,
	/*
	 * Version 1.0.
	 */
	DM_INFO_MESSAGE			= 12,
	DM_VERSION_1_MAX		= 12
};


/*
 * Structures defining the dynamic memory management
 * protocol.
 */

union dm_version {
	struct {
		__u16 minor_version;
		__u16 major_version;
	};
	__u32 version;
} __packed;


union dm_caps {
	struct {
		__u64 balloon:1;
		__u64 hot_add:1;
121 122 123 124 125 126 127 128
		/*
		 * To support guests that may have alignment
		 * limitations on hot-add, the guest can specify
		 * its alignment requirements; a value of n
		 * represents an alignment of 2^n in mega bytes.
		 */
		__u64 hot_add_alignment:4;
		__u64 reservedz:58;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	} cap_bits;
	__u64 caps;
} __packed;

union dm_mem_page_range {
	struct  {
		/*
		 * The PFN number of the first page in the range.
		 * 40 bits is the architectural limit of a PFN
		 * number for AMD64.
		 */
		__u64 start_page:40;
		/*
		 * The number of pages in the range.
		 */
		__u64 page_cnt:24;
	} finfo;
	__u64  page_range;
} __packed;



/*
 * The header for all dynamic memory messages:
 *
 * type: Type of the message.
 * size: Size of the message in bytes; including the header.
 * trans_id: The guest is responsible for manufacturing this ID.
 */

struct dm_header {
	__u16 type;
	__u16 size;
	__u32 trans_id;
} __packed;

/*
 * A generic message format for dynamic memory.
 * Specific message formats are defined later in the file.
 */

struct dm_message {
	struct dm_header hdr;
	__u8 data[]; /* enclosed message */
} __packed;


/*
 * Specific message types supporting the dynamic memory protocol.
 */

/*
 * Version negotiation message. Sent from the guest to the host.
 * The guest is free to try different versions until the host
 * accepts the version.
 *
 * dm_version: The protocol version requested.
 * is_last_attempt: If TRUE, this is the last version guest will request.
 * reservedz: Reserved field, set to zero.
 */

struct dm_version_request {
	struct dm_header hdr;
	union dm_version version;
	__u32 is_last_attempt:1;
	__u32 reservedz:31;
} __packed;

/*
 * Version response message; Host to Guest and indicates
 * if the host has accepted the version sent by the guest.
 *
 * is_accepted: If TRUE, host has accepted the version and the guest
 * should proceed to the next stage of the protocol. FALSE indicates that
 * guest should re-try with a different version.
 *
 * reservedz: Reserved field, set to zero.
 */

struct dm_version_response {
	struct dm_header hdr;
	__u64 is_accepted:1;
	__u64 reservedz:63;
} __packed;

/*
 * Message reporting capabilities. This is sent from the guest to the
 * host.
 */

struct dm_capabilities {
	struct dm_header hdr;
	union dm_caps caps;
	__u64 min_page_cnt;
	__u64 max_page_number;
} __packed;

/*
 * Response to the capabilities message. This is sent from the host to the
 * guest. This message notifies if the host has accepted the guest's
 * capabilities. If the host has not accepted, the guest must shutdown
 * the service.
 *
 * is_accepted: Indicates if the host has accepted guest's capabilities.
 * reservedz: Must be 0.
 */

struct dm_capabilities_resp_msg {
	struct dm_header hdr;
	__u64 is_accepted:1;
	__u64 reservedz:63;
} __packed;

/*
 * This message is used to report memory pressure from the guest.
 * This message is not part of any transaction and there is no
 * response to this message.
 *
 * num_avail: Available memory in pages.
 * num_committed: Committed memory in pages.
 * page_file_size: The accumulated size of all page files
 *		   in the system in pages.
 * zero_free: The nunber of zero and free pages.
 * page_file_writes: The writes to the page file in pages.
 * io_diff: An indicator of file cache efficiency or page file activity,
 *	    calculated as File Cache Page Fault Count - Page Read Count.
 *	    This value is in pages.
 *
 * Some of these metrics are Windows specific and fortunately
 * the algorithm on the host side that computes the guest memory
 * pressure only uses num_committed value.
 */

struct dm_status {
	struct dm_header hdr;
	__u64 num_avail;
	__u64 num_committed;
	__u64 page_file_size;
	__u64 zero_free;
	__u32 page_file_writes;
	__u32 io_diff;
} __packed;


/*
 * Message to ask the guest to allocate memory - balloon up message.
 * This message is sent from the host to the guest. The guest may not be
 * able to allocate as much memory as requested.
 *
 * num_pages: number of pages to allocate.
 */

struct dm_balloon {
	struct dm_header hdr;
	__u32 num_pages;
	__u32 reservedz;
} __packed;


/*
 * Balloon response message; this message is sent from the guest
 * to the host in response to the balloon message.
 *
 * reservedz: Reserved; must be set to zero.
 * more_pages: If FALSE, this is the last message of the transaction.
 * if TRUE there will atleast one more message from the guest.
 *
 * range_count: The number of ranges in the range array.
 *
 * range_array: An array of page ranges returned to the host.
 *
 */

struct dm_balloon_response {
	struct dm_header hdr;
	__u32 reservedz;
	__u32 more_pages:1;
	__u32 range_count:31;
	union dm_mem_page_range range_array[];
} __packed;

/*
 * Un-balloon message; this message is sent from the host
 * to the guest to give guest more memory.
 *
 * more_pages: If FALSE, this is the last message of the transaction.
 * if TRUE there will atleast one more message from the guest.
 *
 * reservedz: Reserved; must be set to zero.
 *
 * range_count: The number of ranges in the range array.
 *
 * range_array: An array of page ranges returned to the host.
 *
 */

struct dm_unballoon_request {
	struct dm_header hdr;
	__u32 more_pages:1;
	__u32 reservedz:31;
	__u32 range_count;
	union dm_mem_page_range range_array[];
} __packed;

/*
 * Un-balloon response message; this message is sent from the guest
 * to the host in response to an unballoon request.
 *
 */

struct dm_unballoon_response {
	struct dm_header hdr;
} __packed;


/*
 * Hot add request message. Message sent from the host to the guest.
 *
 * mem_range: Memory range to hot add.
 *
 * On Linux we currently don't support this since we cannot hot add
 * arbitrary granularity of memory.
 */

struct dm_hot_add {
	struct dm_header hdr;
	union dm_mem_page_range range;
} __packed;

/*
 * Hot add response message.
 * This message is sent by the guest to report the status of a hot add request.
 * If page_count is less than the requested page count, then the host should
 * assume all further hot add requests will fail, since this indicates that
 * the guest has hit an upper physical memory barrier.
 *
 * Hot adds may also fail due to low resources; in this case, the guest must
 * not complete this message until the hot add can succeed, and the host must
 * not send a new hot add request until the response is sent.
 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
 * times it fails the request.
 *
 *
 * page_count: number of pages that were successfully hot added.
 *
 * result: result of the operation 1: success, 0: failure.
 *
 */

struct dm_hot_add_response {
	struct dm_header hdr;
	__u32 page_count;
	__u32 result;
} __packed;

/*
 * Types of information sent from host to the guest.
 */

enum dm_info_type {
	INFO_TYPE_MAX_PAGE_CNT = 0,
	MAX_INFO_TYPE
};


/*
 * Header for the information message.
 */

struct dm_info_header {
	enum dm_info_type type;
	__u32 data_size;
} __packed;

/*
 * This message is sent from the host to the guest to pass
 * some relevant information (win8 addition).
 *
 * reserved: no used.
 * info_size: size of the information blob.
 * info: information blob.
 */

struct dm_info_msg {
413
	struct dm_header hdr;
414 415 416 417 418 419 420 421 422
	__u32 reserved;
	__u32 info_size;
	__u8  info[];
};

/*
 * End protocol definitions.
 */

423 424 425 426 427 428 429 430
/*
 * State to manage hot adding memory into the guest.
 * The range start_pfn : end_pfn specifies the range
 * that the host has asked us to hot add. The range
 * start_pfn : ha_end_pfn specifies the range that we have
 * currently hot added. We hot add in multiples of 128M
 * chunks; it is possible that we may not be able to bring
 * online all the pages in the region. The range
431
 * covered_end_pfn defines the pages that can
432 433 434 435 436 437 438 439 440 441 442
 * be brough online.
 */

struct hv_hotadd_state {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long covered_end_pfn;
	unsigned long ha_end_pfn;
	unsigned long end_pfn;
};

443 444 445 446 447
struct balloon_state {
	__u32 num_pages;
	struct work_struct wrk;
};

448 449
struct hot_add_wrk {
	union dm_mem_page_range ha_page_range;
450
	union dm_mem_page_range ha_region_range;
451 452 453
	struct work_struct wrk;
};

454
static bool hot_add = true;
455
static bool do_hot_add;
456 457 458 459
/*
 * Delay reporting memory pressure by
 * the specified number of seconds.
 */
460
static uint pressure_report_delay = 45;
461

462 463 464 465 466
/*
 * The last time we posted a pressure report to host.
 */
static unsigned long last_post_time;

467 468 469
module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");

470 471
module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static atomic_t trans_id = ATOMIC_INIT(0);

static int dm_ring_size = (5 * PAGE_SIZE);

/*
 * Driver specific state.
 */

enum hv_dm_state {
	DM_INITIALIZING = 0,
	DM_INITIALIZED,
	DM_BALLOON_UP,
	DM_BALLOON_DOWN,
	DM_HOT_ADD,
	DM_INIT_ERROR
};


static __u8 recv_buffer[PAGE_SIZE];
static __u8 *send_buffer;
#define PAGES_IN_2M	512
493
#define HA_CHUNK (32 * 1024)
494 495 496 497 498 499 500 501 502 503 504

struct hv_dynmem_device {
	struct hv_device *dev;
	enum hv_dm_state state;
	struct completion host_event;
	struct completion config_event;

	/*
	 * Number of pages we have currently ballooned out.
	 */
	unsigned int num_pages_ballooned;
505 506
	unsigned int num_pages_onlined;
	unsigned int num_pages_added;
507 508

	/*
509 510 511 512
	 * State to manage the ballooning (up) operation.
	 */
	struct balloon_state balloon_wrk;

513 514 515 516 517
	/*
	 * State to execute the "hot-add" operation.
	 */
	struct hot_add_wrk ha_wrk;

518 519 520 521 522 523 524 525 526 527 528
	/*
	 * This state tracks if the host has specified a hot-add
	 * region.
	 */
	bool host_specified_ha_region;

	/*
	 * State to synchronize hot-add.
	 */
	struct completion  ol_waitevent;
	bool ha_waiting;
529 530
	/*
	 * This thread handles hot-add
531 532 533 534 535 536
	 * requests from the host as well as notifying
	 * the host with regards to memory pressure in
	 * the guest.
	 */
	struct task_struct *thread;

537 538
	struct mutex ha_region_mutex;

539 540 541 542 543
	/*
	 * A list of hot-add regions.
	 */
	struct list_head ha_region_list;

544 545 546 547 548 549 550 551 552 553
	/*
	 * We start with the highest version we can support
	 * and downgrade based on the host; we save here the
	 * next version to try.
	 */
	__u32 next_version;
};

static struct hv_dynmem_device dm_device;

554
static void post_status(struct hv_dynmem_device *dm);
555

556
#ifdef CONFIG_MEMORY_HOTPLUG
557 558 559
static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
			      void *v)
{
560 561
	struct memory_notify *mem = (struct memory_notify *)v;

562 563
	switch (val) {
	case MEM_GOING_ONLINE:
564
		mutex_lock(&dm_device.ha_region_mutex);
565 566 567
		break;

	case MEM_ONLINE:
568
		dm_device.num_pages_onlined += mem->nr_pages;
569
	case MEM_CANCEL_ONLINE:
570
		mutex_unlock(&dm_device.ha_region_mutex);
571 572 573 574 575 576 577
		if (dm_device.ha_waiting) {
			dm_device.ha_waiting = false;
			complete(&dm_device.ol_waitevent);
		}
		break;

	case MEM_OFFLINE:
578 579 580 581 582
		mutex_lock(&dm_device.ha_region_mutex);
		dm_device.num_pages_onlined -= mem->nr_pages;
		mutex_unlock(&dm_device.ha_region_mutex);
		break;
	case MEM_GOING_OFFLINE:
583 584 585 586 587 588 589 590 591 592 593
	case MEM_CANCEL_OFFLINE:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block hv_memory_nb = {
	.notifier_call = hv_memory_notifier,
	.priority = 0
};

594

595
static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
596
{
597
	int i;
598

599 600 601 602 603 604 605 606 607 608 609 610 611 612
	for (i = 0; i < size; i++) {
		struct page *pg;
		pg = pfn_to_page(start_pfn + i);
		__online_page_set_limits(pg);
		__online_page_increment_counters(pg);
		__online_page_free(pg);
	}
}

static void hv_mem_hot_add(unsigned long start, unsigned long size,
				unsigned long pfn_count,
				struct hv_hotadd_state *has)
{
	int ret = 0;
613
	int i, nid;
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	unsigned long start_pfn;
	unsigned long processed_pfn;
	unsigned long total_pfn = pfn_count;

	for (i = 0; i < (size/HA_CHUNK); i++) {
		start_pfn = start + (i * HA_CHUNK);
		has->ha_end_pfn +=  HA_CHUNK;

		if (total_pfn > HA_CHUNK) {
			processed_pfn = HA_CHUNK;
			total_pfn -= HA_CHUNK;
		} else {
			processed_pfn = total_pfn;
			total_pfn = 0;
		}

		has->covered_end_pfn +=  processed_pfn;
631

632 633
		init_completion(&dm_device.ol_waitevent);
		dm_device.ha_waiting = true;
634

635
		mutex_unlock(&dm_device.ha_region_mutex);
636 637 638 639 640 641
		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
		ret = add_memory(nid, PFN_PHYS((start_pfn)),
				(HA_CHUNK << PAGE_SHIFT));

		if (ret) {
			pr_info("hot_add memory failed error is %d\n", ret);
642 643 644 645 646 647 648 649 650 651
			if (ret == -EEXIST) {
				/*
				 * This error indicates that the error
				 * is not a transient failure. This is the
				 * case where the guest's physical address map
				 * precludes hot adding memory. Stop all further
				 * memory hot-add.
				 */
				do_hot_add = false;
			}
652 653
			has->ha_end_pfn -= HA_CHUNK;
			has->covered_end_pfn -=  processed_pfn;
654
			mutex_lock(&dm_device.ha_region_mutex);
655 656
			break;
		}
657 658

		/*
659
		 * Wait for the memory block to be onlined.
660 661 662
		 * Since the hot add has succeeded, it is ok to
		 * proceed even if the pages in the hot added region
		 * have not been "onlined" within the allowed time.
663
		 */
664
		wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
665
		mutex_lock(&dm_device.ha_region_mutex);
666
		post_status(&dm_device);
667 668
	}

669 670 671 672 673 674 675 676 677 678 679 680
	return;
}

static void hv_online_page(struct page *pg)
{
	struct list_head *cur;
	struct hv_hotadd_state *has;
	unsigned long cur_start_pgp;
	unsigned long cur_end_pgp;

	list_for_each(cur, &dm_device.ha_region_list) {
		has = list_entry(cur, struct hv_hotadd_state, list);
681
		cur_start_pgp = (unsigned long)pfn_to_page(has->start_pfn);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
		cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);

		if (((unsigned long)pg >= cur_start_pgp) &&
			((unsigned long)pg < cur_end_pgp)) {
			/*
			 * This frame is currently backed; online the
			 * page.
			 */
			__online_page_set_limits(pg);
			__online_page_increment_counters(pg);
			__online_page_free(pg);
		}
	}
}

static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
{
	struct list_head *cur;
	struct hv_hotadd_state *has;
	unsigned long residual, new_inc;

	if (list_empty(&dm_device.ha_region_list))
		return false;

	list_for_each(cur, &dm_device.ha_region_list) {
		has = list_entry(cur, struct hv_hotadd_state, list);

		/*
		 * If the pfn range we are dealing with is not in the current
		 * "hot add block", move on.
		 */
		if ((start_pfn >= has->end_pfn))
			continue;
		/*
		 * If the current hot add-request extends beyond
		 * our current limit; extend it.
		 */
		if ((start_pfn + pfn_cnt) > has->end_pfn) {
			residual = (start_pfn + pfn_cnt - has->end_pfn);
			/*
			 * Extend the region by multiples of HA_CHUNK.
			 */
			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
			if (residual % HA_CHUNK)
				new_inc += HA_CHUNK;

			has->end_pfn += new_inc;
		}

		/*
		 * If the current start pfn is not where the covered_end
		 * is, update it.
		 */

736
		if (has->covered_end_pfn != start_pfn)
737
			has->covered_end_pfn = start_pfn;
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		return true;

	}

	return false;
}

static unsigned long handle_pg_range(unsigned long pg_start,
					unsigned long pg_count)
{
	unsigned long start_pfn = pg_start;
	unsigned long pfn_cnt = pg_count;
	unsigned long size;
	struct list_head *cur;
	struct hv_hotadd_state *has;
	unsigned long pgs_ol = 0;
	unsigned long old_covered_state;

	if (list_empty(&dm_device.ha_region_list))
		return 0;

	list_for_each(cur, &dm_device.ha_region_list) {
		has = list_entry(cur, struct hv_hotadd_state, list);

		/*
		 * If the pfn range we are dealing with is not in the current
		 * "hot add block", move on.
		 */
		if ((start_pfn >= has->end_pfn))
			continue;

		old_covered_state = has->covered_end_pfn;

		if (start_pfn < has->ha_end_pfn) {
			/*
			 * This is the case where we are backing pages
			 * in an already hot added region. Bring
			 * these pages online first.
			 */
			pgs_ol = has->ha_end_pfn - start_pfn;
			if (pgs_ol > pfn_cnt)
				pgs_ol = pfn_cnt;
781 782 783 784 785 786 787 788 789 790 791

			/*
			 * Check if the corresponding memory block is already
			 * online by checking its last previously backed page.
			 * In case it is we need to bring rest (which was not
			 * backed previously) online too.
			 */
			if (start_pfn > has->start_pfn &&
			    !PageReserved(pfn_to_page(start_pfn - 1)))
				hv_bring_pgs_online(start_pfn, pgs_ol);

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
			has->covered_end_pfn +=  pgs_ol;
			pfn_cnt -= pgs_ol;
		}

		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
			/*
			 * We have some residual hot add range
			 * that needs to be hot added; hot add
			 * it now. Hot add a multiple of
			 * of HA_CHUNK that fully covers the pages
			 * we have.
			 */
			size = (has->end_pfn - has->ha_end_pfn);
			if (pfn_cnt <= size) {
				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
				if (pfn_cnt % HA_CHUNK)
					size += HA_CHUNK;
			} else {
				pfn_cnt = size;
			}
			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
		}
		/*
		 * If we managed to online any pages that were given to us,
		 * we declare success.
		 */
		return has->covered_end_pfn - old_covered_state;

	}

	return 0;
}

static unsigned long process_hot_add(unsigned long pg_start,
					unsigned long pfn_cnt,
					unsigned long rg_start,
					unsigned long rg_size)
{
	struct hv_hotadd_state *ha_region = NULL;

	if (pfn_cnt == 0)
		return 0;

	if (!dm_device.host_specified_ha_region)
		if (pfn_covered(pg_start, pfn_cnt))
			goto do_pg_range;

	/*
	 * If the host has specified a hot-add range; deal with it first.
	 */

843
	if (rg_size != 0) {
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
		if (!ha_region)
			return 0;

		INIT_LIST_HEAD(&ha_region->list);

		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
		ha_region->start_pfn = rg_start;
		ha_region->ha_end_pfn = rg_start;
		ha_region->covered_end_pfn = pg_start;
		ha_region->end_pfn = rg_start + rg_size;
	}

do_pg_range:
	/*
	 * Process the page range specified; bringing them
	 * online if possible.
	 */
	return handle_pg_range(pg_start, pfn_cnt);
}

#endif

static void hot_add_req(struct work_struct *dummy)
{
	struct dm_hot_add_response resp;
#ifdef CONFIG_MEMORY_HOTPLUG
	unsigned long pg_start, pfn_cnt;
	unsigned long rg_start, rg_sz;
#endif
	struct hv_dynmem_device *dm = &dm_device;

876 877 878 879
	memset(&resp, 0, sizeof(struct dm_hot_add_response));
	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
	resp.hdr.size = sizeof(struct dm_hot_add_response);

880
#ifdef CONFIG_MEMORY_HOTPLUG
881
	mutex_lock(&dm_device.ha_region_mutex);
882 883
	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
884

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;

	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
		unsigned long region_size;
		unsigned long region_start;

		/*
		 * The host has not specified the hot-add region.
		 * Based on the hot-add page range being specified,
		 * compute a hot-add region that can cover the pages
		 * that need to be hot-added while ensuring the alignment
		 * and size requirements of Linux as it relates to hot-add.
		 */
		region_start = pg_start;
		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
		if (pfn_cnt % HA_CHUNK)
			region_size += HA_CHUNK;

		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;

		rg_start = region_start;
		rg_sz = region_size;
	}

910 911 912
	if (do_hot_add)
		resp.page_count = process_hot_add(pg_start, pfn_cnt,
						rg_start, rg_sz);
913 914

	dm->num_pages_added += resp.page_count;
915
	mutex_unlock(&dm_device.ha_region_mutex);
916
#endif
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
	/*
	 * The result field of the response structure has the
	 * following semantics:
	 *
	 * 1. If all or some pages hot-added: Guest should return success.
	 *
	 * 2. If no pages could be hot-added:
	 *
	 * If the guest returns success, then the host
	 * will not attempt any further hot-add operations. This
	 * signifies a permanent failure.
	 *
	 * If the guest returns failure, then this failure will be
	 * treated as a transient failure and the host may retry the
	 * hot-add operation after some delay.
	 */
933 934
	if (resp.page_count > 0)
		resp.result = 1;
935 936
	else if (!do_hot_add)
		resp.result = 1;
937 938 939 940 941 942 943
	else
		resp.result = 0;

	if (!do_hot_add || (resp.page_count == 0))
		pr_info("Memory hot add failed\n");

	dm->state = DM_INITIALIZED;
944
	resp.hdr.trans_id = atomic_inc_return(&trans_id);
945
	vmbus_sendpacket(dm->dev->channel, &resp,
946 947 948 949 950 951 952
			sizeof(struct dm_hot_add_response),
			(unsigned long)NULL,
			VM_PKT_DATA_INBAND, 0);
}

static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
{
953 954 955 956 957
	struct dm_info_header *info_hdr;

	info_hdr = (struct dm_info_header *)msg->info;

	switch (info_hdr->type) {
958 959
	case INFO_TYPE_MAX_PAGE_CNT:
		pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
960
		pr_info("Data Size is %d\n", info_hdr->data_size);
961 962
		break;
	default:
963
		pr_info("Received Unknown type: %d\n", info_hdr->type);
964 965 966
	}
}

967
static unsigned long compute_balloon_floor(void)
968 969 970 971 972 973 974 975 976 977 978
{
	unsigned long min_pages;
#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
	/* Simple continuous piecewiese linear function:
	 *  max MiB -> min MiB  gradient
	 *       0         0
	 *      16        16
	 *      32        24
	 *     128        72    (1/2)
	 *     512       168    (1/4)
	 *    2048       360    (1/8)
979 980
	 *    8192       744    (1/16)
	 *   32768      1512	(1/32)
981 982 983 984 985 986 987
	 */
	if (totalram_pages < MB2PAGES(128))
		min_pages = MB2PAGES(8) + (totalram_pages >> 1);
	else if (totalram_pages < MB2PAGES(512))
		min_pages = MB2PAGES(40) + (totalram_pages >> 2);
	else if (totalram_pages < MB2PAGES(2048))
		min_pages = MB2PAGES(104) + (totalram_pages >> 3);
988
	else if (totalram_pages < MB2PAGES(8192))
989
		min_pages = MB2PAGES(232) + (totalram_pages >> 4);
990
	else
991
		min_pages = MB2PAGES(488) + (totalram_pages >> 5);
992 993 994 995
#undef MB2PAGES
	return min_pages;
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/*
 * Post our status as it relates memory pressure to the
 * host. Host expects the guests to post this status
 * periodically at 1 second intervals.
 *
 * The metrics specified in this protocol are very Windows
 * specific and so we cook up numbers here to convey our memory
 * pressure.
 */

static void post_status(struct hv_dynmem_device *dm)
{
	struct dm_status status;
1009
	struct sysinfo val;
1010 1011
	unsigned long now = jiffies;
	unsigned long last_post = last_post_time;
1012

1013 1014 1015 1016
	if (pressure_report_delay > 0) {
		--pressure_report_delay;
		return;
	}
1017 1018 1019 1020

	if (!time_after(now, (last_post_time + HZ)))
		return;

1021
	si_meminfo(&val);
1022 1023 1024 1025 1026
	memset(&status, 0, sizeof(struct dm_status));
	status.hdr.type = DM_STATUS_REPORT;
	status.hdr.size = sizeof(struct dm_status);
	status.hdr.trans_id = atomic_inc_return(&trans_id);

1027
	/*
1028 1029 1030 1031 1032 1033 1034 1035
	 * The host expects the guest to report free and committed memory.
	 * Furthermore, the host expects the pressure information to include
	 * the ballooned out pages. For a given amount of memory that we are
	 * managing we need to compute a floor below which we should not
	 * balloon. Compute this and add it to the pressure report.
	 * We also need to report all offline pages (num_pages_added -
	 * num_pages_onlined) as committed to the host, otherwise it can try
	 * asking us to balloon them out.
1036 1037
	 */
	status.num_avail = val.freeram;
1038
	status.num_committed = vm_memory_committed() +
1039 1040 1041 1042
		dm->num_pages_ballooned +
		(dm->num_pages_added > dm->num_pages_onlined ?
		 dm->num_pages_added - dm->num_pages_onlined : 0) +
		compute_balloon_floor();
1043

1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * If our transaction ID is no longer current, just don't
	 * send the status. This can happen if we were interrupted
	 * after we picked our transaction ID.
	 */
	if (status.hdr.trans_id != atomic_read(&trans_id))
		return;

1052 1053 1054 1055 1056 1057 1058 1059
	/*
	 * If the last post time that we sampled has changed,
	 * we have raced, don't post the status.
	 */
	if (last_post != last_post_time)
		return;

	last_post_time = jiffies;
1060 1061 1062 1063 1064 1065 1066
	vmbus_sendpacket(dm->dev->channel, &status,
				sizeof(struct dm_status),
				(unsigned long)NULL,
				VM_PKT_DATA_INBAND, 0);

}

1067
static void free_balloon_pages(struct hv_dynmem_device *dm,
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
			 union dm_mem_page_range *range_array)
{
	int num_pages = range_array->finfo.page_cnt;
	__u64 start_frame = range_array->finfo.start_page;
	struct page *pg;
	int i;

	for (i = 0; i < num_pages; i++) {
		pg = pfn_to_page(i + start_frame);
		__free_page(pg);
		dm->num_pages_ballooned--;
	}
}



static int  alloc_balloon_pages(struct hv_dynmem_device *dm, int num_pages,
			 struct dm_balloon_response *bl_resp, int alloc_unit,
			 bool *alloc_error)
{
	int i = 0;
	struct page *pg;

	if (num_pages < alloc_unit)
		return 0;

	for (i = 0; (i * alloc_unit) < num_pages; i++) {
		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
			PAGE_SIZE)
			return i * alloc_unit;

		/*
		 * We execute this code in a thread context. Furthermore,
		 * we don't want the kernel to try too hard.
		 */
		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
				__GFP_NOMEMALLOC | __GFP_NOWARN,
				get_order(alloc_unit << PAGE_SHIFT));

		if (!pg) {
			*alloc_error = true;
			return i * alloc_unit;
		}


		dm->num_pages_ballooned += alloc_unit;

1115 1116 1117 1118 1119 1120 1121 1122
		/*
		 * If we allocatted 2M pages; split them so we
		 * can free them in any order we get.
		 */

		if (alloc_unit != 1)
			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
		bl_resp->range_count++;
		bl_resp->range_array[i].finfo.start_page =
			page_to_pfn(pg);
		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
		bl_resp->hdr.size += sizeof(union dm_mem_page_range);

	}

	return num_pages;
}



1136
static void balloon_up(struct work_struct *dummy)
1137
{
1138
	int num_pages = dm_device.balloon_wrk.num_pages;
1139 1140 1141 1142
	int num_ballooned = 0;
	struct dm_balloon_response *bl_resp;
	int alloc_unit;
	int ret;
1143
	bool alloc_error;
1144 1145
	bool done = false;
	int i;
1146 1147
	struct sysinfo val;
	unsigned long floor;
1148

1149 1150
	/* The host balloons pages in 2M granularity. */
	WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1151 1152

	/*
1153 1154
	 * We will attempt 2M allocations. However, if we fail to
	 * allocate 2M chunks, we will go back to 4k allocations.
1155
	 */
1156
	alloc_unit = 512;
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166
	si_meminfo(&val);
	floor = compute_balloon_floor();

	/* Refuse to balloon below the floor, keep the 2M granularity. */
	if (val.freeram - num_pages < floor) {
		num_pages = val.freeram > floor ? (val.freeram - floor) : 0;
		num_pages -= num_pages % PAGES_IN_2M;
	}

1167 1168 1169 1170 1171 1172 1173 1174 1175
	while (!done) {
		bl_resp = (struct dm_balloon_response *)send_buffer;
		memset(send_buffer, 0, PAGE_SIZE);
		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
		bl_resp->more_pages = 1;


		num_pages -= num_ballooned;
1176
		alloc_error = false;
1177
		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1178 1179 1180
						bl_resp, alloc_unit,
						 &alloc_error);

1181
		if (alloc_unit != 1 && num_ballooned == 0) {
1182 1183 1184 1185
			alloc_unit = 1;
			continue;
		}

1186 1187
		if ((alloc_unit == 1 && alloc_error) ||
			(num_ballooned == num_pages)) {
1188 1189
			bl_resp->more_pages = 0;
			done = true;
1190
			dm_device.state = DM_INITIALIZED;
1191 1192 1193 1194 1195 1196 1197 1198 1199
		}

		/*
		 * We are pushing a lot of data through the channel;
		 * deal with transient failures caused because of the
		 * lack of space in the ring buffer.
		 */

		do {
1200
			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1201 1202 1203 1204 1205 1206 1207 1208
			ret = vmbus_sendpacket(dm_device.dev->channel,
						bl_resp,
						bl_resp->hdr.size,
						(unsigned long)NULL,
						VM_PKT_DATA_INBAND, 0);

			if (ret == -EAGAIN)
				msleep(20);
1209
			post_status(&dm_device);
1210 1211 1212 1213 1214 1215 1216 1217 1218
		} while (ret == -EAGAIN);

		if (ret) {
			/*
			 * Free up the memory we allocatted.
			 */
			pr_info("Balloon response failed\n");

			for (i = 0; i < bl_resp->range_count; i++)
1219
				free_balloon_pages(&dm_device,
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
						 &bl_resp->range_array[i]);

			done = true;
		}
	}

}

static void balloon_down(struct hv_dynmem_device *dm,
			struct dm_unballoon_request *req)
{
	union dm_mem_page_range *range_array = req->range_array;
	int range_count = req->range_count;
	struct dm_unballoon_response resp;
	int i;

1236
	for (i = 0; i < range_count; i++) {
1237
		free_balloon_pages(dm, &range_array[i]);
1238
		complete(&dm_device.config_event);
1239
	}
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	if (req->more_pages == 1)
		return;

	memset(&resp, 0, sizeof(struct dm_unballoon_response));
	resp.hdr.type = DM_UNBALLOON_RESPONSE;
	resp.hdr.trans_id = atomic_inc_return(&trans_id);
	resp.hdr.size = sizeof(struct dm_unballoon_response);

	vmbus_sendpacket(dm_device.dev->channel, &resp,
				sizeof(struct dm_unballoon_response),
				(unsigned long)NULL,
				VM_PKT_DATA_INBAND, 0);

	dm->state = DM_INITIALIZED;
}

static void balloon_onchannelcallback(void *context);

static int dm_thread_func(void *dm_dev)
{
	struct hv_dynmem_device *dm = dm_dev;

	while (!kthread_should_stop()) {
1264
		wait_for_completion_interruptible_timeout(
1265
						&dm_device.config_event, 1*HZ);
1266 1267 1268 1269
		/*
		 * The host expects us to post information on the memory
		 * pressure every second.
		 */
1270 1271
		reinit_completion(&dm_device.config_event);
		post_status(dm);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	}

	return 0;
}


static void version_resp(struct hv_dynmem_device *dm,
			struct dm_version_response *vresp)
{
	struct dm_version_request version_req;
	int ret;

	if (vresp->is_accepted) {
		/*
		 * We are done; wakeup the
		 * context waiting for version
		 * negotiation.
		 */
		complete(&dm->host_event);
		return;
	}
	/*
	 * If there are more versions to try, continue
	 * with negotiations; if not
	 * shutdown the service since we are not able
	 * to negotiate a suitable version number
	 * with the host.
	 */
	if (dm->next_version == 0)
		goto version_error;

	dm->next_version = 0;
	memset(&version_req, 0, sizeof(struct dm_version_request));
	version_req.hdr.type = DM_VERSION_REQUEST;
	version_req.hdr.size = sizeof(struct dm_version_request);
	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN7;
	version_req.is_last_attempt = 1;

	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
				sizeof(struct dm_version_request),
				(unsigned long)NULL,
				VM_PKT_DATA_INBAND, 0);

	if (ret)
		goto version_error;

	return;

version_error:
	dm->state = DM_INIT_ERROR;
	complete(&dm->host_event);
}

static void cap_resp(struct hv_dynmem_device *dm,
			struct dm_capabilities_resp_msg *cap_resp)
{
	if (!cap_resp->is_accepted) {
		pr_info("Capabilities not accepted by host\n");
		dm->state = DM_INIT_ERROR;
	}
	complete(&dm->host_event);
}

static void balloon_onchannelcallback(void *context)
{
	struct hv_device *dev = context;
	u32 recvlen;
	u64 requestid;
	struct dm_message *dm_msg;
	struct dm_header *dm_hdr;
	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1344
	struct dm_balloon *bal_msg;
1345 1346
	struct dm_hot_add *ha_msg;
	union dm_mem_page_range *ha_pg_range;
1347
	union dm_mem_page_range *ha_region;
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

	memset(recv_buffer, 0, sizeof(recv_buffer));
	vmbus_recvpacket(dev->channel, recv_buffer,
			 PAGE_SIZE, &recvlen, &requestid);

	if (recvlen > 0) {
		dm_msg = (struct dm_message *)recv_buffer;
		dm_hdr = &dm_msg->hdr;

		switch (dm_hdr->type) {
		case DM_VERSION_RESPONSE:
			version_resp(dm,
				 (struct dm_version_response *)dm_msg);
			break;

		case DM_CAPABILITIES_RESPONSE:
			cap_resp(dm,
				 (struct dm_capabilities_resp_msg *)dm_msg);
			break;

		case DM_BALLOON_REQUEST:
1369 1370 1371
			if (dm->state == DM_BALLOON_UP)
				pr_warn("Currently ballooning\n");
			bal_msg = (struct dm_balloon *)recv_buffer;
1372
			dm->state = DM_BALLOON_UP;
1373 1374
			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
			schedule_work(&dm_device.balloon_wrk.wrk);
1375 1376 1377 1378 1379 1380 1381 1382 1383
			break;

		case DM_UNBALLOON_REQUEST:
			dm->state = DM_BALLOON_DOWN;
			balloon_down(dm,
				 (struct dm_unballoon_request *)recv_buffer);
			break;

		case DM_MEM_HOT_ADD_REQUEST:
1384 1385
			if (dm->state == DM_HOT_ADD)
				pr_warn("Currently hot-adding\n");
1386
			dm->state = DM_HOT_ADD;
1387
			ha_msg = (struct dm_hot_add *)recv_buffer;
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
				/*
				 * This is a normal hot-add request specifying
				 * hot-add memory.
				 */
				ha_pg_range = &ha_msg->range;
				dm->ha_wrk.ha_page_range = *ha_pg_range;
				dm->ha_wrk.ha_region_range.page_range = 0;
			} else {
				/*
				 * Host is specifying that we first hot-add
				 * a region and then partially populate this
				 * region.
				 */
				dm->host_specified_ha_region = true;
				ha_pg_range = &ha_msg->range;
				ha_region = &ha_pg_range[1];
				dm->ha_wrk.ha_page_range = *ha_pg_range;
				dm->ha_wrk.ha_region_range = *ha_region;
			}
1408
			schedule_work(&dm_device.ha_wrk.wrk);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
			break;

		case DM_INFO_MESSAGE:
			process_info(dm, (struct dm_info_msg *)dm_msg);
			break;

		default:
			pr_err("Unhandled message: type: %d\n", dm_hdr->type);

		}
	}

}

static int balloon_probe(struct hv_device *dev,
			const struct hv_vmbus_device_id *dev_id)
{
1426 1427
	int ret;
	unsigned long t;
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	struct dm_version_request version_req;
	struct dm_capabilities cap_msg;

	do_hot_add = hot_add;

	/*
	 * First allocate a send buffer.
	 */

	send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!send_buffer)
		return -ENOMEM;

	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
			balloon_onchannelcallback, dev);

	if (ret)
1445
		goto probe_error0;
1446 1447 1448 1449 1450 1451

	dm_device.dev = dev;
	dm_device.state = DM_INITIALIZING;
	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
	init_completion(&dm_device.host_event);
	init_completion(&dm_device.config_event);
1452
	INIT_LIST_HEAD(&dm_device.ha_region_list);
1453
	mutex_init(&dm_device.ha_region_mutex);
1454
	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1455
	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1456
	dm_device.host_specified_ha_region = false;
1457 1458 1459 1460 1461

	dm_device.thread =
		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
	if (IS_ERR(dm_device.thread)) {
		ret = PTR_ERR(dm_device.thread);
1462
		goto probe_error1;
1463 1464
	}

1465 1466
#ifdef CONFIG_MEMORY_HOTPLUG
	set_online_page_callback(&hv_online_page);
1467
	register_memory_notifier(&hv_memory_nb);
1468 1469
#endif

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	hv_set_drvdata(dev, &dm_device);
	/*
	 * Initiate the hand shake with the host and negotiate
	 * a version that the host can support. We start with the
	 * highest version number and go down if the host cannot
	 * support it.
	 */
	memset(&version_req, 0, sizeof(struct dm_version_request));
	version_req.hdr.type = DM_VERSION_REQUEST;
	version_req.hdr.size = sizeof(struct dm_version_request);
	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN8;
	version_req.is_last_attempt = 0;

	ret = vmbus_sendpacket(dev->channel, &version_req,
				sizeof(struct dm_version_request),
				(unsigned long)NULL,
1487
				VM_PKT_DATA_INBAND, 0);
1488
	if (ret)
1489
		goto probe_error2;
1490 1491 1492 1493

	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
1494
		goto probe_error2;
1495 1496 1497 1498 1499 1500 1501 1502
	}

	/*
	 * If we could not negotiate a compatible version with the host
	 * fail the probe function.
	 */
	if (dm_device.state == DM_INIT_ERROR) {
		ret = -ETIMEDOUT;
1503
		goto probe_error2;
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	}
	/*
	 * Now submit our capabilities to the host.
	 */
	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
	cap_msg.hdr.size = sizeof(struct dm_capabilities);
	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);

	cap_msg.caps.cap_bits.balloon = 1;
	cap_msg.caps.cap_bits.hot_add = 1;

1516 1517 1518 1519 1520 1521
	/*
	 * Specify our alignment requirements as it relates
	 * memory hot-add. Specify 128MB alignment.
	 */
	cap_msg.caps.cap_bits.hot_add_alignment = 7;

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	/*
	 * Currently the host does not use these
	 * values and we set them to what is done in the
	 * Windows driver.
	 */
	cap_msg.min_page_cnt = 0;
	cap_msg.max_page_number = -1;

	ret = vmbus_sendpacket(dev->channel, &cap_msg,
				sizeof(struct dm_capabilities),
				(unsigned long)NULL,
1533
				VM_PKT_DATA_INBAND, 0);
1534
	if (ret)
1535
		goto probe_error2;
1536 1537 1538 1539

	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
1540
		goto probe_error2;
1541 1542 1543 1544 1545 1546 1547 1548
	}

	/*
	 * If the host does not like our capabilities,
	 * fail the probe function.
	 */
	if (dm_device.state == DM_INIT_ERROR) {
		ret = -ETIMEDOUT;
1549
		goto probe_error2;
1550 1551 1552 1553 1554 1555
	}

	dm_device.state = DM_INITIALIZED;

	return 0;

1556
probe_error2:
1557 1558 1559
#ifdef CONFIG_MEMORY_HOTPLUG
	restore_online_page_callback(&hv_online_page);
#endif
1560 1561
	kthread_stop(dm_device.thread);

1562
probe_error1:
1563
	vmbus_close(dev->channel);
1564 1565
probe_error0:
	kfree(send_buffer);
1566 1567 1568 1569 1570 1571
	return ret;
}

static int balloon_remove(struct hv_device *dev)
{
	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1572 1573
	struct list_head *cur, *tmp;
	struct hv_hotadd_state *has;
1574 1575 1576 1577

	if (dm->num_pages_ballooned != 0)
		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);

1578
	cancel_work_sync(&dm->balloon_wrk.wrk);
1579
	cancel_work_sync(&dm->ha_wrk.wrk);
1580

1581 1582
	vmbus_close(dev->channel);
	kthread_stop(dm->thread);
1583
	kfree(send_buffer);
1584 1585
#ifdef CONFIG_MEMORY_HOTPLUG
	restore_online_page_callback(&hv_online_page);
1586
	unregister_memory_notifier(&hv_memory_nb);
1587 1588 1589 1590 1591 1592
#endif
	list_for_each_safe(cur, tmp, &dm->ha_region_list) {
		has = list_entry(cur, struct hv_hotadd_state, list);
		list_del(&has->list);
		kfree(has);
	}
1593 1594 1595 1596 1597 1598 1599

	return 0;
}

static const struct hv_vmbus_device_id id_table[] = {
	/* Dynamic Memory Class ID */
	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1600
	{ HV_DM_GUID, },
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	{ },
};

MODULE_DEVICE_TABLE(vmbus, id_table);

static  struct hv_driver balloon_drv = {
	.name = "hv_balloon",
	.id_table = id_table,
	.probe =  balloon_probe,
	.remove =  balloon_remove,
};

static int __init init_balloon_drv(void)
{

	return vmbus_driver_register(&balloon_drv);
}

module_init(init_balloon_drv);

MODULE_DESCRIPTION("Hyper-V Balloon");
MODULE_LICENSE("GPL");