uv_hub.h 11.7 KB
Newer Older
1 2 3 4 5 6 7
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * SGI UV architectural definitions
 *
8
 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9 10
 */

11 12
#ifndef _ASM_X86_UV_UV_HUB_H
#define _ASM_X86_UV_UV_HUB_H
13 14 15 16 17 18 19 20 21 22

#include <linux/numa.h>
#include <linux/percpu.h>
#include <asm/types.h>
#include <asm/percpu.h>


/*
 * Addressing Terminology
 *
23 24 25 26
 *	M       - The low M bits of a physical address represent the offset
 *		  into the blade local memory. RAM memory on a blade is physically
 *		  contiguous (although various IO spaces may punch holes in
 *		  it)..
27
 *
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 * 	N	- Number of bits in the node portion of a socket physical
 * 		  address.
 *
 * 	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
 * 	 	  routers always have low bit of 1, C/MBricks have low bit
 * 		  equal to 0. Most addressing macros that target UV hub chips
 * 		  right shift the NASID by 1 to exclude the always-zero bit.
 * 		  NASIDs contain up to 15 bits.
 *
 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
 *		  of nasids.
 *
 * 	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
 * 		  of the nasid for socket usage.
 *
 *
 *  NumaLink Global Physical Address Format:
 *  +--------------------------------+---------------------+
 *  |00..000|      GNODE             |      NodeOffset     |
 *  +--------------------------------+---------------------+
 *          |<-------53 - M bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
51 52 53
 *
 *
 *  Memory/UV-HUB Processor Socket Address Format:
54 55 56 57
 *  +----------------+---------------+---------------------+
 *  |00..000000000000|   PNODE       |      NodeOffset     |
 *  +----------------+---------------+---------------------+
 *                   <--- N bits --->|<--------M bits ----->
58
 *
59 60
 *	M - number of node offset bits (35 .. 40)
 *	N - number of PNODE bits (0 .. 10)
61 62 63
 *
 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
 *		The actual values are configuration dependent and are set at
64 65
 *		boot time. M & N values are set by the hardware/BIOS at boot.
 *
66 67 68 69 70 71 72 73
 *
 * APICID format
 * 	NOTE!!!!!! This is the current format of the APICID. However, code
 * 	should assume that this will change in the future. Use functions
 * 	in this file for all APICID bit manipulations and conversion.
 *
 * 		1111110000000000
 * 		5432109876543210
74
 *		pppppppppplc0cch
75 76
 *		sssssssssss
 *
77
 *			p  = pnode bits
78 79 80
 *			l =  socket number on board
 *			c  = core
 *			h  = hyperthread
81
 *			s  = bits that are in the SOCKET_ID CSR
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 *
 *	Note: Processor only supports 12 bits in the APICID register. The ACPI
 *	      tables hold all 16 bits. Software needs to be aware of this.
 *
 * 	      Unless otherwise specified, all references to APICID refer to
 * 	      the FULL value contained in ACPI tables, not the subset in the
 * 	      processor APICID register.
 */


/*
 * Maximum number of bricks in all partitions and in all coherency domains.
 * This is the total number of bricks accessible in the numalink fabric. It
 * includes all C & M bricks. Routers are NOT included.
 *
 * This value is also the value of the maximum number of non-router NASIDs
 * in the numalink fabric.
 *
100
 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
101 102 103 104 105 106 107 108 109 110 111 112 113 114
 */
#define UV_MAX_NUMALINK_BLADES	16384

/*
 * Maximum number of C/Mbricks within a software SSI (hardware may support
 * more).
 */
#define UV_MAX_SSI_BLADES	256

/*
 * The largest possible NASID of a C or M brick (+ 2)
 */
#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_NODES * 2)

115 116 117 118 119 120 121 122 123 124
struct uv_scir_s {
	struct timer_list timer;
	unsigned long	offset;
	unsigned long	last;
	unsigned long	idle_on;
	unsigned long	idle_off;
	unsigned char	state;
	unsigned char	enabled;
};

125 126 127 128 129 130 131
/*
 * The following defines attributes of the HUB chip. These attributes are
 * frequently referenced and are kept in the per-cpu data areas of each cpu.
 * They are kept together in a struct to minimize cache misses.
 */
struct uv_hub_info_s {
	unsigned long	global_mmr_base;
132 133 134 135 136 137
	unsigned long	gpa_mask;
	unsigned long	gnode_upper;
	unsigned long	lowmem_remap_top;
	unsigned long	lowmem_remap_base;
	unsigned short	pnode;
	unsigned short	pnode_mask;
138 139 140 141 142
	unsigned short	coherency_domain_number;
	unsigned short	numa_blade_id;
	unsigned char	blade_processor_id;
	unsigned char	m_val;
	unsigned char	n_val;
143
	struct uv_scir_s scir;
144
};
145

146 147 148 149 150 151 152 153
DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
#define uv_hub_info 		(&__get_cpu_var(__uv_hub_info))
#define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))

/*
 * Local & Global MMR space macros.
 * 	Note: macros are intended to be used ONLY by inline functions
 * 	in this file - not by other kernel code.
154 155 156
 * 		n -  NASID (full 15-bit global nasid)
 * 		g -  GNODE (full 15-bit global nasid, right shifted 1)
 * 		p -  PNODE (local part of nsids, right shifted 1)
157
 */
158 159
#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
#define UV_PNODE_TO_NASID(p)		(((p) << 1) | uv_hub_info->gnode_upper)
160 161 162 163

#define UV_LOCAL_MMR_BASE		0xf4000000UL
#define UV_GLOBAL_MMR32_BASE		0xf8000000UL
#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
164 165
#define UV_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
#define UV_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
166

167 168
#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
#define UV_GLOBAL_MMR64_PNODE_SHIFT	26
169

170
#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
171

172 173 174 175 176
#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
	((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)

#define UV_APIC_PNODE_SHIFT	6

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/* Local Bus from cpu's perspective */
#define LOCAL_BUS_BASE		0x1c00000
#define LOCAL_BUS_SIZE		(4 * 1024 * 1024)

/*
 * System Controller Interface Reg
 *
 * Note there are NO leds on a UV system.  This register is only
 * used by the system controller to monitor system-wide operation.
 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
 * a node.
 *
 * The window is located at top of ACPI MMR space
 */
#define SCIR_WINDOW_COUNT	64
#define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
				 LOCAL_BUS_SIZE - \
				 SCIR_WINDOW_COUNT)

#define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
#define SCIR_CPU_ACTIVITY	0x02	/* not idle */
#define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * Macros for converting between kernel virtual addresses, socket local physical
 * addresses, and UV global physical addresses.
 * 	Note: use the standard __pa() & __va() macros for converting
 * 	      between socket virtual and socket physical addresses.
 */

/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{
	if (paddr < uv_hub_info->lowmem_remap_top)
		paddr += uv_hub_info->lowmem_remap_base;
	return paddr | uv_hub_info->gnode_upper;
}


/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{
	return __pa(v) | uv_hub_info->gnode_upper;
}

/* socket virtual --> UV global physical address */
static inline void *uv_vgpa(void *v)
{
	return (void *)uv_gpa(v);
}

/* UV global physical address --> socket virtual */
static inline void *uv_va(unsigned long gpa)
{
	return __va(gpa & uv_hub_info->gpa_mask);
}

/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{
	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
}
240 241 242


/*
243
 * Extract a PNODE from an APICID (full apicid, not processor subset)
244
 */
245
static inline int uv_apicid_to_pnode(int apicid)
246
{
247
	return (apicid >> UV_APIC_PNODE_SHIFT);
248 249 250 251 252 253
}

/*
 * Access global MMRs using the low memory MMR32 space. This region supports
 * faster MMR access but not all MMRs are accessible in this space.
 */
254
static inline unsigned long *uv_global_mmr32_address(int pnode,
255 256 257
				unsigned long offset)
{
	return __va(UV_GLOBAL_MMR32_BASE |
258
		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
259 260
}

261
static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
262 263
				 unsigned long val)
{
264
	*uv_global_mmr32_address(pnode, offset) = val;
265 266
}

267
static inline unsigned long uv_read_global_mmr32(int pnode,
268 269
						 unsigned long offset)
{
270
	return *uv_global_mmr32_address(pnode, offset);
271 272 273 274 275 276
}

/*
 * Access Global MMR space using the MMR space located at the top of physical
 * memory.
 */
277
static inline unsigned long *uv_global_mmr64_address(int pnode,
278 279 280
				unsigned long offset)
{
	return __va(UV_GLOBAL_MMR64_BASE |
281
		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
282 283
}

284
static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
285 286
				unsigned long val)
{
287
	*uv_global_mmr64_address(pnode, offset) = val;
288 289
}

290
static inline unsigned long uv_read_global_mmr64(int pnode,
291 292
						 unsigned long offset)
{
293
	return *uv_global_mmr64_address(pnode, offset);
294 295 296
}

/*
297
 * Access hub local MMRs. Faster than using global space but only local MMRs
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
 * are accessible.
 */
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
	return __va(UV_LOCAL_MMR_BASE | offset);
}

static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
	return *uv_local_mmr_address(offset);
}

static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
	*uv_local_mmr_address(offset) = val;
}

315 316 317 318 319 320 321 322 323 324
static inline unsigned char uv_read_local_mmr8(unsigned long offset)
{
	return *((unsigned char *)uv_local_mmr_address(offset));
}

static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
{
	*((unsigned char *)uv_local_mmr_address(offset)) = val;
}

325
/*
326
 * Structures and definitions for converting between cpu, node, pnode, and blade
327 328 329
 * numbers.
 */
struct uv_blade_info {
330
	unsigned short	nr_possible_cpus;
331
	unsigned short	nr_online_cpus;
332
	unsigned short	pnode;
333
};
334
extern struct uv_blade_info *uv_blade_info;
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
extern short *uv_node_to_blade;
extern short *uv_cpu_to_blade;
extern short uv_possible_blades;

/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
	return uv_hub_info->blade_processor_id;
}

/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
	return uv_hub_info->numa_blade_id;
}

/* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
{
	return uv_cpu_to_blade[cpu];
}

/* Convert linux node number to the UV blade number */
static inline int uv_node_to_blade_id(int nid)
{
	return uv_node_to_blade[nid];
}

363 364
/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
365
{
366
	return uv_blade_info[bid].pnode;
367 368 369 370 371
}

/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
372
	return uv_blade_info[bid].nr_possible_cpus;
373 374 375 376 377 378 379 380
}

/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
	return uv_blade_info[bid].nr_online_cpus;
}

381 382
/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
383
{
384
	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
385 386
}

387 388
/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
389
{
390
	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
391 392 393 394 395 396 397 398
}

/* Maximum possible number of blades */
static inline int uv_num_possible_blades(void)
{
	return uv_possible_blades;
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
/* Update SCIR state */
static inline void uv_set_scir_bits(unsigned char value)
{
	if (uv_hub_info->scir.state != value) {
		uv_hub_info->scir.state = value;
		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
	}
}
static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
{
	if (uv_cpu_hub_info(cpu)->scir.state != value) {
		uv_cpu_hub_info(cpu)->scir.state = value;
		uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
	}
}
414

415
#endif /* _ASM_X86_UV_UV_HUB_H */