igb_main.c 208.0 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
C
Carolyn Wyborny 已提交
60
#include <linux/i2c.h>
61 62
#include "igb.h"

C
Carolyn Wyborny 已提交
63 64 65
#define MAJ 5
#define MIN 0
#define BUILD 3
C
Carolyn Wyborny 已提交
66
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67
__stringify(BUILD) "-k"
68 69 70 71
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
72 73
static const char igb_copyright[] =
				"Copyright (c) 2007-2013 Intel Corporation.";
74 75 76 77 78

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

79
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 81 82
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 84 85 86 87
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 89 90 91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92 93
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95 96 97
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98 99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
100 101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
102
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
105 106
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110 111 112 113 114 115 116 117 118 119 120 121 122 123
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
124
static void igb_setup_mrqc(struct igb_adapter *);
125
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126
static void igb_remove(struct pci_dev *pdev);
127 128 129
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
130
static void igb_configure(struct igb_adapter *);
131 132 133 134
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
135 136
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
137
static void igb_set_rx_mode(struct net_device *);
138 139 140
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
141
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
142 143
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
144 145
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
146
static void igb_set_uta(struct igb_adapter *adapter);
147 148 149
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
150
static irqreturn_t igb_msix_ring(int irq, void *);
151
#ifdef CONFIG_IGB_DCA
152
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
153
static void igb_setup_dca(struct igb_adapter *);
154
#endif /* CONFIG_IGB_DCA */
155
static int igb_poll(struct napi_struct *, int);
156
static bool igb_clean_tx_irq(struct igb_q_vector *);
157
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158 159 160
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
161
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162 163
static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
164
static void igb_restore_vlan(struct igb_adapter *);
165
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166 167 168
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
169
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171 172 173 174
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
L
Lior Levy 已提交
175 176
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting);
177 178
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
179
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
180 181

#ifdef CONFIG_PCI_IOV
182
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
R
RongQing Li 已提交
183
#endif
184 185

#ifdef CONFIG_PM
186
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
187
static int igb_suspend(struct device *);
188
#endif
Y
Yan, Zheng 已提交
189 190 191 192 193 194 195 196 197 198 199
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
200 201
#endif
static void igb_shutdown(struct pci_dev *);
202
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
204 205 206 207 208 209 210
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
211 212 213 214
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
215
#ifdef CONFIG_PCI_IOV
216 217 218 219 220 221
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

222 223 224 225 226
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

227
static const struct pci_error_handlers igb_err_handler = {
228 229 230 231 232
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

233
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
234 235 236 237 238

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
239
	.remove   = igb_remove,
240
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
241
	.driver.pm = &igb_pm_ops,
242 243
#endif
	.shutdown = igb_shutdown,
244
	.sriov_configure = igb_pci_sriov_configure,
245 246 247 248 249 250 251 252
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

253 254 255 256 257
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

299
/* igb_regdump - register printout routine */
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
356
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
357 358 359 360
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
361 362
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
363 364
}

365
/* igb_dump - Print registers, Tx-rings and Rx-rings */
366 367 368 369 370 371 372 373 374 375 376
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
377
	u16 i, n;
378 379 380 381 382 383 384

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
385 386 387 388
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
389 390 391 392
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
393
	pr_info(" Register Name   Value\n");
394 395 396 397 398 399 400 401 402 403
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
404
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405
	for (n = 0; n < adapter->num_tx_queues; n++) {
406
		struct igb_tx_buffer *buffer_info;
407
		tx_ring = adapter->tx_ring[n];
408
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
409 410
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 412
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
413 414
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
436 437 438 439 440 441
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
442 443

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
444
			const char *next_desc;
445
			struct igb_tx_buffer *buffer_info;
446
			tx_desc = IGB_TX_DESC(tx_ring, i);
447
			buffer_info = &tx_ring->tx_buffer_info[i];
448
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
449 450 451 452 453 454 455 456 457 458 459 460
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
461 462
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
463 464
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
465 466
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
467
				buffer_info->skb, next_desc);
468

469
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470 471
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
472
					16, 1, buffer_info->skb->data,
473 474
					dma_unmap_len(buffer_info, len),
					true);
475 476 477 478 479 480
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
481
	pr_info("Queue [NTU] [NTC]\n");
482 483
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
484 485
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
517 518 519 520 521 522 523
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524 525

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
526
			const char *next_desc;
527 528
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
529
			rx_desc = IGB_RX_DESC(rx_ring, i);
530 531
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
532 533 534 535 536 537 538 539

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

540 541
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
542 543
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
544 545
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
546
					next_desc);
547
			} else {
548 549
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
550 551 552
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
553
					next_desc);
554

555
				if (netif_msg_pktdata(adapter) &&
556
				    buffer_info->dma && buffer_info->page) {
557 558 559
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
560 561
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
562
					  IGB_RX_BUFSZ, true);
563 564 565 566 567 568 569 570 571
				}
			}
		}
	}

exit:
	return;
}

572 573
/**
 *  igb_get_i2c_data - Reads the I2C SDA data bit
C
Carolyn Wyborny 已提交
574 575 576 577
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
578
 **/
C
Carolyn Wyborny 已提交
579 580 581 582 583 584 585 586 587
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
}

588 589
/**
 *  igb_set_i2c_data - Sets the I2C data bit
C
Carolyn Wyborny 已提交
590 591 592 593
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
594
 **/
C
Carolyn Wyborny 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

613 614
/**
 *  igb_set_i2c_clk - Sets the I2C SCL clock
C
Carolyn Wyborny 已提交
615 616 617 618
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
619
 **/
C
Carolyn Wyborny 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

637 638
/**
 *  igb_get_i2c_clk - Gets the I2C SCL clock state
C
Carolyn Wyborny 已提交
639 640 641
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
642
 **/
C
Carolyn Wyborny 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

661
/**
662 663 664 665
 *  igb_get_hw_dev - return device
 *  @hw: pointer to hardware structure
 *
 *  used by hardware layer to print debugging information
666
 **/
667
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
668 669
{
	struct igb_adapter *adapter = hw->back;
670
	return adapter->netdev;
671
}
P
Patrick Ohly 已提交
672

673
/**
674
 *  igb_init_module - Driver Registration Routine
675
 *
676 677
 *  igb_init_module is the first routine called when the driver is
 *  loaded. All it does is register with the PCI subsystem.
678 679 680 681
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
682
	pr_info("%s - version %s\n",
683 684
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
685
	pr_info("%s\n", igb_copyright);
686

687
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
688 689
	dca_register_notify(&dca_notifier);
#endif
690
	ret = pci_register_driver(&igb_driver);
691 692 693 694 695 696
	return ret;
}

module_init(igb_init_module);

/**
697
 *  igb_exit_module - Driver Exit Cleanup Routine
698
 *
699 700
 *  igb_exit_module is called just before the driver is removed
 *  from memory.
701 702 703
 **/
static void __exit igb_exit_module(void)
{
704
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
705 706
	dca_unregister_notify(&dca_notifier);
#endif
707 708 709 710 711
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

712 713
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
714 715
 *  igb_cache_ring_register - Descriptor ring to register mapping
 *  @adapter: board private structure to initialize
716
 *
717 718
 *  Once we know the feature-set enabled for the device, we'll cache
 *  the register offset the descriptor ring is assigned to.
719 720 721
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
722
	int i = 0, j = 0;
723
	u32 rbase_offset = adapter->vfs_allocated_count;
724 725 726 727 728 729 730 731

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
732
		if (adapter->vfs_allocated_count) {
733
			for (; i < adapter->rss_queues; i++)
734
				adapter->rx_ring[i]->reg_idx = rbase_offset +
735
							       Q_IDX_82576(i);
736
		}
737
	case e1000_82575:
738
	case e1000_82580:
739
	case e1000_i350:
740
	case e1000_i354:
741 742
	case e1000_i210:
	case e1000_i211:
743
	default:
744
		for (; i < adapter->num_rx_queues; i++)
745
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
746
		for (; j < adapter->num_tx_queues; j++)
747
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
748 749 750 751
		break;
	}
}

A
Alexander Duyck 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

778
#define IGB_N0_QUEUE -1
779
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780
{
781
	struct igb_adapter *adapter = q_vector->adapter;
782
	struct e1000_hw *hw = &adapter->hw;
783 784
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
785
	u32 msixbm = 0;
786

787 788 789 790
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
791 792 793

	switch (hw->mac.type) {
	case e1000_82575:
794
		/* The 82575 assigns vectors using a bitmask, which matches the
795 796 797 798
		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
		 * or more queues to a vector, we write the appropriate bits
		 * into the MSIXBM register for that vector.
		 */
799
		if (rx_queue > IGB_N0_QUEUE)
800
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801
		if (tx_queue > IGB_N0_QUEUE)
802
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 804
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
805
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
807 808
		break;
	case e1000_82576:
809
		/* 82576 uses a table that essentially consists of 2 columns
A
Alexander Duyck 已提交
810 811 812 813 814 815 816 817 818 819 820 821
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
822
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
823
		break;
824
	case e1000_82580:
825
	case e1000_i350:
826
	case e1000_i354:
827 828
	case e1000_i210:
	case e1000_i211:
829
		/* On 82580 and newer adapters the scheme is similar to 82576
A
Alexander Duyck 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
843 844
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
845 846 847 848
	default:
		BUG();
		break;
	}
849 850 851 852 853 854

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
855 856 857
}

/**
858 859
 *  igb_configure_msix - Configure MSI-X hardware
 *  @adapter: board private structure to initialize
860
 *
861 862
 *  igb_configure_msix sets up the hardware to properly
 *  generate MSI-X interrupts.
863 864 865 866 867 868 869 870 871 872
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
873 874
	switch (hw->mac.type) {
	case e1000_82575:
875 876 877 878 879 880 881 882 883
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
884 885

		/* enable msix_other interrupt */
886
		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
887
		adapter->eims_other = E1000_EIMS_OTHER;
888

A
Alexander Duyck 已提交
889 890 891
		break;

	case e1000_82576:
892
	case e1000_82580:
893
	case e1000_i350:
894
	case e1000_i354:
895 896
	case e1000_i210:
	case e1000_i211:
897
		/* Turn on MSI-X capability first, or our settings
898 899
		 * won't stick.  And it will take days to debug.
		 */
900
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 902
		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
		     E1000_GPIE_NSICR);
903 904 905

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
906 907
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

908
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
909 910 911 912 913
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
914 915 916

	adapter->eims_enable_mask |= adapter->eims_other;

917 918
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
919

920 921 922 923
	wrfl();
}

/**
924 925
 *  igb_request_msix - Initialize MSI-X interrupts
 *  @adapter: board private structure to initialize
926
 *
927 928
 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 *  kernel.
929 930 931 932
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
933
	struct e1000_hw *hw = &adapter->hw;
934
	int i, err = 0, vector = 0, free_vector = 0;
935

936
	err = request_irq(adapter->msix_entries[vector].vector,
937
			  igb_msix_other, 0, netdev->name, adapter);
938
	if (err)
939
		goto err_out;
940 941 942 943

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

944 945
		vector++;

946 947
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

948
		if (q_vector->rx.ring && q_vector->tx.ring)
949
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950 951
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
952
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953 954
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
955
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956
				q_vector->rx.ring->queue_index);
957
		else
958 959
			sprintf(q_vector->name, "%s-unused", netdev->name);

960
		err = request_irq(adapter->msix_entries[vector].vector,
961 962
				  igb_msix_ring, 0, q_vector->name,
				  q_vector);
963
		if (err)
964
			goto err_free;
965 966 967 968
	}

	igb_configure_msix(adapter);
	return 0;
969 970 971 972 973 974 975 976 977 978 979

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
980 981 982 983 984 985 986 987 988
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
989
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
990
		pci_disable_msi(adapter->pdev);
991
	}
992 993
}

994
/**
995 996 997
 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be freed
998
 *
999 1000 1001
 *  This function frees the memory allocated to the q_vector.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	adapter->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);

1016
	/* ixgbe_get_stats64() might access the rings on this vector,
1017 1018 1019 1020 1021
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

1022
/**
1023 1024
 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 *  @adapter: board private structure to initialize
1025
 *
1026 1027 1028
 *  This function frees the memory allocated to the q_vectors.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1029 1030 1031
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
1032 1033 1034 1035
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
1036
	adapter->num_q_vectors = 0;
1037 1038 1039

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);
1040 1041 1042
}

/**
1043 1044
 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *  @adapter: board private structure to initialize
1045
 *
1046 1047
 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 *  MSI-X interrupts allocated.
1048 1049 1050 1051 1052 1053
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1054 1055

/**
1056 1057 1058
 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1059
 *
1060 1061
 *  Attempt to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1062
 **/
1063
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1064 1065 1066 1067
{
	int err;
	int numvecs, i;

1068 1069 1070
	if (!msix)
		goto msi_only;

1071
	/* Number of supported queues. */
1072
	adapter->num_rx_queues = adapter->rss_queues;
1073 1074 1075 1076
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1077

1078
	/* start with one vector for every Rx queue */
1079 1080
	numvecs = adapter->num_rx_queues;

1081
	/* if Tx handler is separate add 1 for every Tx queue */
1082 1083
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1084 1085 1086 1087 1088 1089

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1090 1091
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1103
		return;
1104 1105 1106 1107 1108

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1120
		wrfl();
1121 1122 1123 1124
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1125
	adapter->vfs_allocated_count = 0;
1126
	adapter->rss_queues = 1;
1127
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1128
	adapter->num_rx_queues = 1;
1129
	adapter->num_tx_queues = 1;
1130
	adapter->num_q_vectors = 1;
1131
	if (!pci_enable_msi(adapter->pdev))
1132
		adapter->flags |= IGB_FLAG_HAS_MSI;
1133 1134
}

1135 1136 1137 1138 1139 1140 1141
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1142
/**
1143 1144 1145 1146 1147 1148 1149 1150
 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 *  @v_idx: index of vector in adapter struct
 *  @txr_count: total number of Tx rings to allocate
 *  @txr_idx: index of first Tx ring to allocate
 *  @rxr_count: total number of Rx rings to allocate
 *  @rxr_idx: index of first Rx ring to allocate
1151
 *
1152
 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1153
 **/
1154 1155 1156 1157
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1158 1159
{
	struct igb_q_vector *q_vector;
1160 1161
	struct igb_ring *ring;
	int ring_count, size;
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = kzalloc(size, GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	/* intialize ITR */
	if (rxr_count) {
		/* rx or rx/tx vector */
		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
			q_vector->itr_val = adapter->rx_itr_setting;
	} else {
		/* tx only vector */
		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
			q_vector->itr_val = adapter->tx_itr_setting;
	}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1229
	}
1230

1231 1232 1233 1234
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1235

1236 1237
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1238

1239 1240
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1241

1242 1243 1244
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1245

1246 1247
		/*
		 * On i350, i354, i210, and i211, loopback VLAN packets
1248
		 * have the tag byte-swapped.
1249
		 */
1250 1251
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1262 1263
}

1264

1265
/**
1266 1267
 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 *  @adapter: board private structure to initialize
1268
 *
1269 1270
 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 *  return -ENOMEM.
1271
 **/
1272
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1273
{
1274 1275 1276 1277 1278
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1279

1280 1281 1282 1283
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1284

1285 1286 1287 1288 1289 1290
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1291 1292
		}
	}
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1310
	return 0;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1321 1322 1323
}

/**
1324 1325 1326
 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1327
 *
1328
 *  This function initializes the interrupts and allocates all of the queues.
1329
 **/
1330
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1331 1332 1333 1334
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1335
	igb_set_interrupt_capability(adapter, msix);
1336 1337 1338 1339 1340 1341 1342

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1343
	igb_cache_ring_register(adapter);
1344 1345

	return 0;
1346

1347 1348 1349 1350 1351
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1352
/**
1353 1354
 *  igb_request_irq - initialize interrupts
 *  @adapter: board private structure to initialize
1355
 *
1356 1357
 *  Attempts to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1358 1359 1360 1361
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1362
	struct pci_dev *pdev = adapter->pdev;
1363 1364 1365 1366
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1367
		if (!err)
1368 1369
			goto request_done;
		/* fall back to MSI */
1370 1371
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1372

1373
		igb_clear_interrupt_scheme(adapter);
1374 1375
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1376
			goto request_done;
1377

1378 1379
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1380
		igb_configure(adapter);
1381
	}
P
PJ Waskiewicz 已提交
1382

1383 1384
	igb_assign_vector(adapter->q_vector[0], 0);

1385
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1386
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1387
				  netdev->name, adapter);
1388 1389
		if (!err)
			goto request_done;
1390

1391 1392
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1393
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1394 1395
	}

1396
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1397
			  netdev->name, adapter);
1398

A
Andy Gospodarek 已提交
1399
	if (err)
1400
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1412
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1413

1414
		for (i = 0; i < adapter->num_q_vectors; i++)
1415
			free_irq(adapter->msix_entries[vector++].vector,
1416
				 adapter->q_vector[i]);
1417 1418
	} else {
		free_irq(adapter->pdev->irq, adapter);
1419 1420 1421 1422
	}
}

/**
1423 1424
 *  igb_irq_disable - Mask off interrupt generation on the NIC
 *  @adapter: board private structure
1425 1426 1427 1428 1429
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1430
	/* we need to be careful when disabling interrupts.  The VFs are also
1431 1432 1433
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1434
	if (adapter->msix_entries) {
1435 1436 1437 1438 1439
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1440
	}
P
PJ Waskiewicz 已提交
1441 1442

	wr32(E1000_IAM, 0);
1443 1444
	wr32(E1000_IMC, ~0);
	wrfl();
1445 1446 1447 1448 1449 1450 1451
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1452 1453 1454
}

/**
1455 1456
 *  igb_irq_enable - Enable default interrupt generation settings
 *  @adapter: board private structure
1457 1458 1459 1460 1461 1462
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1463
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1464 1465 1466 1467
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1468
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1469
		if (adapter->vfs_allocated_count) {
1470
			wr32(E1000_MBVFIMR, 0xFF);
1471 1472 1473
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1474
	} else {
1475 1476 1477 1478
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1479
	}
1480 1481 1482 1483
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1484
	struct e1000_hw *hw = &adapter->hw;
1485 1486
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1498
	    !test_bit(old_vid, adapter->active_vlans)) {
1499 1500
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1501 1502 1503 1504
	}
}

/**
1505 1506
 *  igb_release_hw_control - release control of the h/w to f/w
 *  @adapter: address of board private structure
1507
 *
1508 1509 1510
 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that the
 *  driver is no longer loaded.
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
1524 1525
 *  igb_get_hw_control - get control of the h/w from f/w
 *  @adapter: address of board private structure
1526
 *
1527 1528 1529
 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that
 *  the driver is loaded.
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
1543 1544
 *  igb_configure - configure the hardware for RX and TX
 *  @adapter: private board structure
1545 1546 1547 1548 1549 1550 1551
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1552
	igb_set_rx_mode(netdev);
1553 1554 1555

	igb_restore_vlan(adapter);

1556
	igb_setup_tctl(adapter);
1557
	igb_setup_mrqc(adapter);
1558
	igb_setup_rctl(adapter);
1559 1560

	igb_configure_tx(adapter);
1561
	igb_configure_rx(adapter);
1562 1563 1564

	igb_rx_fifo_flush_82575(&adapter->hw);

1565
	/* call igb_desc_unused which always leaves
1566
	 * at least 1 descriptor unused to make sure
1567 1568
	 * next_to_use != next_to_clean
	 */
1569
	for (i = 0; i < adapter->num_rx_queues; i++) {
1570
		struct igb_ring *ring = adapter->rx_ring[i];
1571
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1572 1573 1574
	}
}

1575
/**
1576 1577
 *  igb_power_up_link - Power up the phy/serdes link
 *  @adapter: address of board private structure
1578 1579 1580
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1581 1582
	igb_reset_phy(&adapter->hw);

1583 1584 1585 1586 1587 1588 1589
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
1590 1591
 *  igb_power_down_link - Power down the phy/serdes link
 *  @adapter: address of board private structure
1592 1593 1594 1595 1596 1597 1598 1599
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1600 1601

/**
1602 1603
 *  igb_up - Open the interface and prepare it to handle traffic
 *  @adapter: board private structure
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1615 1616 1617
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1618
	if (adapter->msix_entries)
1619
		igb_configure_msix(adapter);
1620 1621
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1622 1623 1624 1625 1626

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1627 1628 1629 1630 1631 1632 1633
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1634 1635
	netif_tx_start_all_queues(adapter->netdev);

1636 1637 1638 1639
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1640 1641 1642 1643 1644 1645
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1646
	struct e1000_hw *hw = &adapter->hw;
1647 1648 1649 1650
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
1651 1652
	 * reschedule our watchdog timer
	 */
1653 1654 1655 1656 1657 1658 1659
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1660
	netif_tx_stop_all_queues(netdev);
1661 1662 1663 1664 1665 1666 1667 1668 1669

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1670 1671 1672 1673
	igb_irq_disable(adapter);

	for (i = 0; i < adapter->num_q_vectors; i++) {
		napi_synchronize(&(adapter->q_vector[i]->napi));
1674
		napi_disable(&(adapter->q_vector[i]->napi));
1675
	}
1676 1677 1678 1679 1680 1681


	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1682 1683

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1684 1685 1686
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1687

1688 1689 1690
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1691 1692
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1693 1694
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1695 1696 1697 1698 1699
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1714
	struct pci_dev *pdev = adapter->pdev;
1715
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1716 1717
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1718
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1719 1720 1721 1722

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1723
	switch (mac->type) {
1724
	case e1000_i350:
1725
	case e1000_i354:
1726 1727 1728 1729
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1730
	case e1000_82576:
1731 1732
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1733 1734
		break;
	case e1000_82575:
1735 1736
	case e1000_i210:
	case e1000_i211:
1737 1738 1739
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1740
	}
1741

A
Alexander Duyck 已提交
1742 1743
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1744 1745 1746 1747 1748 1749 1750 1751
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
1752 1753
		 * expressed in KB.
		 */
1754 1755 1756 1757 1758
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
1759 1760 1761
		/* the Tx fifo also stores 16 bytes of information about the Tx
		 * but don't include ethernet FCS because hardware appends it
		 */
1762
		min_tx_space = (adapter->max_frame_size +
1763
				sizeof(union e1000_adv_tx_desc) -
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
1774 1775
		 * allocation, take space away from current Rx allocation
		 */
1776 1777 1778 1779
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

1780 1781 1782
			/* if short on Rx space, Rx wins and must trump Tx
			 * adjustment
			 */
1783 1784 1785
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1786
		wr32(E1000_PBA, pba);
1787 1788 1789 1790 1791 1792 1793
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
1794 1795
	 * - the full Rx FIFO size minus one full frame
	 */
1796
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1797
			((pba << 10) - 2 * adapter->max_frame_size));
1798

1799
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1800
	fc->low_water = fc->high_water - 16;
1801 1802
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1803
	fc->current_mode = fc->requested_mode;
1804

1805 1806 1807 1808
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1809
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1810 1811

		/* ping all the active vfs to let them know we are going down */
1812
		igb_ping_all_vfs(adapter);
1813 1814 1815 1816 1817 1818

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1819
	/* Allow time for pending master requests to run */
1820
	hw->mac.ops.reset_hw(hw);
1821 1822
	wr32(E1000_WUC, 0);

1823
	if (hw->mac.ops.init_hw(hw))
1824
		dev_err(&pdev->dev, "Hardware Error\n");
1825

1826
	/* Flow control settings reset on hardware reset, so guarantee flow
1827 1828 1829 1830 1831
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1832
	igb_init_dmac(adapter, pba);
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
1845 1846 1847
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1848 1849 1850 1851 1852
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1853 1854 1855
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

1856
	igb_get_phy_info(hw);
1857 1858
}

1859 1860
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1861
{
1862 1863
	/* Since there is no support for separate Rx/Tx vlan accel
	 * enable/disable make sure Tx flag is always in same state as Rx.
J
Jiri Pirko 已提交
1864
	 */
1865 1866
	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		features |= NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
1867
	else
1868
		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
1869 1870 1871 1872

	return features;
}

1873 1874
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1875
{
1876
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1877
	struct igb_adapter *adapter = netdev_priv(netdev);
1878

1879
	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
J
Jiri Pirko 已提交
1880 1881
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1892 1893 1894
	return 0;
}

S
Stephen Hemminger 已提交
1895
static const struct net_device_ops igb_netdev_ops = {
1896
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1897
	.ndo_stop		= igb_close,
1898
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1899
	.ndo_get_stats64	= igb_get_stats64,
1900
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1901 1902 1903 1904 1905 1906 1907
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1908 1909 1910
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
L
Lior Levy 已提交
1911
	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
1912
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1913 1914 1915
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1916 1917
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1918 1919
};

1920 1921 1922 1923 1924 1925 1926
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1927 1928 1929 1930 1931 1932
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
	case e1000_i211:
1933
		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
			 "%2d.%2d-%d",
			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
		break;

	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
		} else {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x",
				 fw.eep_major, fw.eep_minor, fw.etrack_id);
		}
		break;
1954 1955 1956 1957
	}
	return;
}

1958 1959
/**
 *  igb_init_i2c - Init I2C interface
C
Carolyn Wyborny 已提交
1960
 *  @adapter: pointer to adapter structure
1961
 **/
C
Carolyn Wyborny 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = E1000_SUCCESS;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return E1000_SUCCESS;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

1985
/**
1986 1987 1988
 *  igb_probe - Device Initialization Routine
 *  @pdev: PCI device information struct
 *  @ent: entry in igb_pci_tbl
1989
 *
1990
 *  Returns 0 on success, negative on failure
1991
 *
1992 1993 1994
 *  igb_probe initializes an adapter identified by a pci_dev structure.
 *  The OS initialization, configuring of the adapter private structure,
 *  and a hardware reset occur.
1995
 **/
1996
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1997 1998 1999 2000
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
2001
	u16 eeprom_data = 0;
2002
	s32 ret_val;
2003
	static int global_quad_port_a; /* global quad port a indication */
2004 2005
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
2006
	int err, pci_using_dac;
2007
	u8 part_str[E1000_PBANUM_LENGTH];
2008

2009 2010 2011 2012 2013
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2014
			pci_name(pdev), pdev->vendor, pdev->device);
2015 2016 2017
		return -EINVAL;
	}

2018
	err = pci_enable_device_mem(pdev);
2019 2020 2021 2022
	if (err)
		return err;

	pci_using_dac = 0;
2023
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2024
	if (!err) {
2025
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2026 2027 2028
		if (!err)
			pci_using_dac = 1;
	} else {
2029
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2030
		if (err) {
2031 2032
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
2033
			if (err) {
2034 2035
				dev_err(&pdev->dev,
					"No usable DMA configuration, aborting\n");
2036 2037 2038 2039 2040
				goto err_dma;
			}
		}
	}

2041
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2042 2043
					   IORESOURCE_MEM),
					   igb_driver_name);
2044 2045 2046
	if (err)
		goto err_pci_reg;

2047
	pci_enable_pcie_error_reporting(pdev);
2048

2049
	pci_set_master(pdev);
2050
	pci_save_state(pdev);
2051 2052

	err = -ENOMEM;
2053
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2054
				   IGB_MAX_TX_QUEUES);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
2066
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2067 2068 2069 2070 2071

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
2072 2073
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
2074 2075
		goto err_ioremap;

S
Stephen Hemminger 已提交
2076
	netdev->netdev_ops = &igb_netdev_ops;
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
2099
		goto err_sw_init;
2100

2101
	/* setup the private structure */
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

2121
	/* features is initialized to 0 in allocation, it might have bits
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
2132 2133
			    NETIF_F_HW_VLAN_CTAG_RX |
			    NETIF_F_HW_VLAN_CTAG_TX;
2134 2135 2136

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
2137
	netdev->hw_features |= NETIF_F_RXALL;
2138 2139

	/* set this bit last since it cannot be part of hw_features */
2140
	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2141 2142 2143 2144 2145 2146

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2147

2148 2149
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2150
	if (pci_using_dac) {
2151
		netdev->features |= NETIF_F_HIGHDMA;
2152 2153
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2154

2155 2156
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2157
		netdev->features |= NETIF_F_SCTP_CSUM;
2158
	}
2159

2160 2161
	netdev->priv_flags |= IFF_UNICAST_FLT;

2162
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2163 2164

	/* before reading the NVM, reset the controller to put the device in a
2165 2166
	 * known good starting state
	 */
2167 2168
	hw->mac.ops.reset_hw(hw);

2169
	/* make sure the NVM is good , i211 parts have special NVM that
2170 2171 2172 2173 2174 2175 2176 2177
	 * doesn't contain a checksum
	 */
	if (hw->mac.type != e1000_i211) {
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2178 2179 2180 2181 2182 2183 2184 2185
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2186
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2187 2188 2189 2190 2191
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2192 2193 2194
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2195
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2196
		    (unsigned long) adapter);
2197
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2198
		    (unsigned long) adapter);
2199 2200 2201 2202

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2203
	/* Initialize link properties that are user-changeable */
2204 2205 2206 2207
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2208 2209
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2210 2211 2212

	igb_validate_mdi_setting(hw);

2213
	/* By default, support wake on port A */
2214
	if (hw->bus.func == 0)
2215 2216 2217 2218
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2219
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2220 2221
				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				 &eeprom_data);
2222 2223
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2224

2225 2226
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2227 2228 2229

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
2230 2231
	 * lan on a particular port
	 */
2232 2233
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2234
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2235 2236
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2237 2238
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2239
		/* Wake events only supported on port A for dual fiber
2240 2241
		 * regardless of eeprom setting
		 */
2242
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2243
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2244
		break;
2245
	case E1000_DEV_ID_82576_QUAD_COPPER:
2246
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2247 2248
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2249
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2250 2251 2252 2253 2254 2255
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2256 2257 2258 2259
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2260 2261 2262
	}

	/* initialize the wol settings based on the eeprom settings */
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2275 2276 2277 2278

	/* reset the hardware with the new settings */
	igb_reset(adapter);

C
Carolyn Wyborny 已提交
2279 2280 2281 2282 2283 2284 2285
	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

2286 2287 2288 2289 2290 2291 2292 2293 2294
	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2295 2296 2297
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2298
#ifdef CONFIG_IGB_DCA
2299
	if (dca_add_requester(&pdev->dev) == 0) {
2300
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2301 2302 2303 2304
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2305
#endif
2306 2307 2308 2309
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;
2310

2311
		/* Read the NVM to determine if this i350 device supports an
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
A
Anders Berggren 已提交
2326
	/* do hw tstamp init after resetting */
2327
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2328

2329
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	/* print bus type/speed/width info, not applicable to i354 */
	if (hw->mac.type != e1000_i354) {
		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
			 netdev->name,
			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
			   "unknown"),
			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
			  "Width x4" :
			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
			  "Width x2" :
			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
			  "Width x1" : "unknown"), netdev->dev_addr);
	}
2344

2345 2346 2347 2348
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2349 2350 2351
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2352
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2353
		adapter->num_rx_queues, adapter->num_tx_queues);
2354 2355
	switch (hw->mac.type) {
	case e1000_i350:
2356 2357
	case e1000_i210:
	case e1000_i211:
2358 2359
		igb_set_eee_i350(hw);
		break;
2360 2361 2362 2363 2364 2365 2366
	case e1000_i354:
		if (hw->phy.media_type == e1000_media_type_copper) {
			if ((rd32(E1000_CTRL_EXT) &
			    E1000_CTRL_EXT_LINK_MODE_SGMII))
				igb_set_eee_i354(hw);
		}
		break;
2367 2368 2369
	default:
		break;
	}
Y
Yan, Zheng 已提交
2370 2371

	pm_runtime_put_noidle(&pdev->dev);
2372 2373 2374 2375
	return 0;

err_register:
	igb_release_hw_control(adapter);
C
Carolyn Wyborny 已提交
2376
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2377 2378
err_eeprom:
	if (!igb_check_reset_block(hw))
2379
		igb_reset_phy(hw);
2380 2381 2382 2383

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2384
	igb_clear_interrupt_scheme(adapter);
2385 2386 2387 2388
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2389
	pci_release_selected_regions(pdev,
2390
				     pci_select_bars(pdev, IORESOURCE_MEM));
2391 2392 2393 2394 2395 2396
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
#ifdef CONFIG_PCI_IOV
static int  igb_disable_sriov(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
2407
		if (pci_vfs_assigned(pdev)) {
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

	if (!num_vfs)
		goto out;
	else if (old_vfs && old_vfs == num_vfs)
		goto out;
	else if (old_vfs && old_vfs != num_vfs)
		err = igb_disable_sriov(pdev);

	if (err)
		goto out;

	if (num_vfs > 7) {
		err = -EPERM;
		goto out;
	}

	adapter->vfs_allocated_count = num_vfs;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
	if (err)
		goto err_out;

	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
2490
/**
C
Carolyn Wyborny 已提交
2491 2492
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
2493
 **/
C
Carolyn Wyborny 已提交
2494 2495 2496 2497 2498 2499
static void igb_remove_i2c(struct igb_adapter *adapter)
{
	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

2500
/**
2501 2502
 *  igb_remove - Device Removal Routine
 *  @pdev: PCI device information struct
2503
 *
2504 2505 2506 2507
 *  igb_remove is called by the PCI subsystem to alert the driver
 *  that it should release a PCI device.  The could be caused by a
 *  Hot-Plug event, or because the driver is going to be removed from
 *  memory.
2508
 **/
2509
static void igb_remove(struct pci_dev *pdev)
2510 2511 2512
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2513
	struct e1000_hw *hw = &adapter->hw;
2514

Y
Yan, Zheng 已提交
2515
	pm_runtime_get_noresume(&pdev->dev);
2516 2517 2518
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
C
Carolyn Wyborny 已提交
2519
	igb_remove_i2c(adapter);
2520
	igb_ptp_stop(adapter);
2521
	/* The watchdog timer may be rescheduled, so explicitly
2522 2523
	 * disable watchdog from being rescheduled.
	 */
2524 2525 2526 2527
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2528 2529
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2530

2531
#ifdef CONFIG_IGB_DCA
2532
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2533 2534
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2535
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2536
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2537 2538 2539
	}
#endif

2540
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2541 2542
	 * would have already happened in close and is redundant.
	 */
2543 2544 2545 2546
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2547
	igb_clear_interrupt_scheme(adapter);
2548

2549
#ifdef CONFIG_PCI_IOV
2550
	igb_disable_sriov(pdev);
2551
#endif
2552

2553 2554 2555
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2556
	pci_release_selected_regions(pdev,
2557
				     pci_select_bars(pdev, IORESOURCE_MEM));
2558

2559
	kfree(adapter->shadow_vfta);
2560 2561
	free_netdev(netdev);

2562
	pci_disable_pcie_error_reporting(pdev);
2563

2564 2565 2566
	pci_disable_device(pdev);
}

2567
/**
2568 2569
 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 *  @adapter: board private structure to initialize
2570
 *
2571 2572 2573 2574
 *  This function initializes the vf specific data storage and then attempts to
 *  allocate the VFs.  The reason for ordering it this way is because it is much
 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 *  the memory for the VFs.
2575
 **/
2576
static void igb_probe_vfs(struct igb_adapter *adapter)
2577 2578 2579
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2580
	struct e1000_hw *hw = &adapter->hw;
2581

2582 2583 2584 2585
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2586
	pci_sriov_set_totalvfs(pdev, 7);
A
Alex Williamson 已提交
2587
	igb_enable_sriov(pdev, max_vfs);
2588

2589 2590 2591
#endif /* CONFIG_PCI_IOV */
}

2592
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2593 2594
{
	struct e1000_hw *hw = &adapter->hw;
2595
	u32 max_rss_queues;
2596

2597
	/* Determine the maximum number of RSS queues supported. */
2598
	switch (hw->mac.type) {
2599 2600 2601 2602
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2603
	case e1000_i210:
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
2620
	case e1000_i354:
2621 2622
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2623
		break;
2624 2625 2626 2627 2628 2629 2630
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2631
	case e1000_i211:
2632
		/* Device supports enough interrupts without queue pairing. */
2633
		break;
2634
	case e1000_82576:
2635
		/* If VFs are going to be allocated with RSS queues then we
2636 2637 2638 2639 2640 2641 2642 2643 2644
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
2645
	case e1000_i354:
2646
	case e1000_i210:
2647
	default:
2648
		/* If rss_queues > half of max_rss_queues, pair the queues in
2649 2650 2651 2652
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2653 2654
		break;
	}
2655 2656 2657
}

/**
2658 2659
 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 *  @adapter: board private structure to initialize
2660
 *
2661 2662 2663
 *  igb_sw_init initializes the Adapter private data structure.
 *  Fields are initialized based on PCI device information and
 *  OS network device settings (MTU size).
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
2696
			max_vfs = adapter->vfs_allocated_count = 7;
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2709

2710
	/* Setup and initialize a copy of the hw vlan table array */
2711 2712
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_ATOMIC);
2713

2714
	/* This call may decrease the number of queues */
2715
	if (igb_init_interrupt_scheme(adapter, true)) {
2716 2717 2718 2719
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2720 2721
	igb_probe_vfs(adapter);

2722 2723 2724
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2725
	if (hw->mac.type >= e1000_i350)
2726 2727
		adapter->flags &= ~IGB_FLAG_DMAC;

2728 2729 2730 2731 2732
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
2733 2734
 *  igb_open - Called when a network interface is made active
 *  @netdev: network interface device structure
2735
 *
2736
 *  Returns 0 on success, negative value on failure
2737
 *
2738 2739 2740 2741 2742
 *  The open entry point is called when a network interface is made
 *  active by the system (IFF_UP).  At this point all resources needed
 *  for transmit and receive operations are allocated, the interrupt
 *  handler is registered with the OS, the watchdog timer is started,
 *  and the stack is notified that the interface is ready.
2743
 **/
Y
Yan, Zheng 已提交
2744
static int __igb_open(struct net_device *netdev, bool resuming)
2745 2746 2747
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2748
	struct pci_dev *pdev = adapter->pdev;
2749 2750 2751 2752
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2753 2754
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2755
		return -EBUSY;
Y
Yan, Zheng 已提交
2756 2757 2758 2759
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2760

2761 2762
	netif_carrier_off(netdev);

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2773
	igb_power_up_link(adapter);
2774 2775 2776 2777

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
2778 2779
	 * clean_rx handler before we do so.
	 */
2780 2781 2782 2783 2784 2785
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

2797 2798 2799
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2800 2801
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2802 2803 2804

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2805 2806 2807

	igb_irq_enable(adapter);

2808 2809 2810 2811 2812 2813 2814
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2815 2816
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2817 2818 2819
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2820 2821 2822
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2823 2824 2825

	return 0;

2826 2827
err_set_queues:
	igb_free_irq(adapter);
2828 2829
err_req_irq:
	igb_release_hw_control(adapter);
2830
	igb_power_down_link(adapter);
2831 2832 2833 2834 2835
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2836 2837
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2838 2839 2840 2841

	return err;
}

Y
Yan, Zheng 已提交
2842 2843 2844 2845 2846
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2847
/**
2848 2849
 *  igb_close - Disables a network interface
 *  @netdev: network interface device structure
2850
 *
2851
 *  Returns 0, this is not allowed to fail
2852
 *
2853 2854 2855 2856
 *  The close entry point is called when an interface is de-activated
 *  by the OS.  The hardware is still under the driver's control, but
 *  needs to be disabled.  A global MAC reset is issued to stop the
 *  hardware, and all transmit and receive resources are freed.
2857
 **/
Y
Yan, Zheng 已提交
2858
static int __igb_close(struct net_device *netdev, bool suspending)
2859 2860
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2861
	struct pci_dev *pdev = adapter->pdev;
2862 2863 2864

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2865 2866 2867 2868
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2869 2870 2871 2872 2873
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2874 2875
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2876 2877 2878
	return 0;
}

Y
Yan, Zheng 已提交
2879 2880 2881 2882 2883
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2884
/**
2885 2886
 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2887
 *
2888
 *  Return 0 on success, negative on failure
2889
 **/
2890
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2891
{
2892
	struct device *dev = tx_ring->dev;
2893 2894
	int size;

2895
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2896 2897

	tx_ring->tx_buffer_info = vzalloc(size);
2898
	if (!tx_ring->tx_buffer_info)
2899 2900 2901
		goto err;

	/* round up to nearest 4K */
2902
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2903 2904
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2905 2906
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
2907 2908 2909 2910 2911
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2912

2913 2914 2915
	return 0;

err:
2916
	vfree(tx_ring->tx_buffer_info);
2917 2918
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2919 2920 2921 2922
	return -ENOMEM;
}

/**
2923 2924 2925
 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
2926
 *
2927
 *  Return 0 on success, negative on failure
2928 2929 2930
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2931
	struct pci_dev *pdev = adapter->pdev;
2932 2933 2934
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2935
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2936
		if (err) {
2937
			dev_err(&pdev->dev,
2938 2939
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2940
				igb_free_tx_resources(adapter->tx_ring[i]);
2941 2942 2943 2944 2945 2946 2947 2948
			break;
		}
	}

	return err;
}

/**
2949 2950
 *  igb_setup_tctl - configure the transmit control registers
 *  @adapter: Board private structure
2951
 **/
2952
void igb_setup_tctl(struct igb_adapter *adapter)
2953 2954 2955 2956
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2957 2958
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2974
/**
2975 2976 2977
 *  igb_configure_tx_ring - Configure transmit ring after Reset
 *  @adapter: board private structure
 *  @ring: tx ring to configure
2978
 *
2979
 *  Configure a transmit ring after a reset.
2980
 **/
2981 2982
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2983 2984
{
	struct e1000_hw *hw = &adapter->hw;
2985
	u32 txdctl = 0;
2986 2987 2988 2989
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2990
	wr32(E1000_TXDCTL(reg_idx), 0);
2991 2992 2993 2994
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
2995
	     ring->count * sizeof(union e1000_adv_tx_desc));
2996
	wr32(E1000_TDBAL(reg_idx),
2997
	     tdba & 0x00000000ffffffffULL);
2998 2999
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

3000
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3001
	wr32(E1000_TDH(reg_idx), 0);
3002
	writel(0, ring->tail);
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
3013 3014
 *  igb_configure_tx - Configure transmit Unit after Reset
 *  @adapter: board private structure
3015
 *
3016
 *  Configure the Tx unit of the MAC after a reset.
3017 3018 3019 3020 3021 3022
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3023
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3024 3025
}

3026
/**
3027 3028
 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3029
 *
3030
 *  Returns 0 on success, negative on failure
3031
 **/
3032
int igb_setup_rx_resources(struct igb_ring *rx_ring)
3033
{
3034
	struct device *dev = rx_ring->dev;
3035
	int size;
3036

3037
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3038 3039

	rx_ring->rx_buffer_info = vzalloc(size);
3040
	if (!rx_ring->rx_buffer_info)
3041 3042 3043
		goto err;

	/* Round up to nearest 4K */
3044
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3045 3046
	rx_ring->size = ALIGN(rx_ring->size, 4096);

3047 3048
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
3049 3050 3051
	if (!rx_ring->desc)
		goto err;

3052
	rx_ring->next_to_alloc = 0;
3053 3054 3055 3056 3057 3058
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
3059 3060
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3061
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3062 3063 3064 3065
	return -ENOMEM;
}

/**
3066 3067 3068
 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
3069
 *
3070
 *  Return 0 on success, negative on failure
3071 3072 3073
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
3074
	struct pci_dev *pdev = adapter->pdev;
3075 3076 3077
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
3078
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3079
		if (err) {
3080
			dev_err(&pdev->dev,
3081 3082
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3083
				igb_free_rx_resources(adapter->rx_ring[i]);
3084 3085 3086 3087 3088 3089 3090
			break;
		}
	}

	return err;
}

3091
/**
3092 3093
 *  igb_setup_mrqc - configure the multiple receive queue control registers
 *  @adapter: Board private structure
3094 3095 3096 3097 3098
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
3099
	u32 j, num_rx_queues, shift = 0;
3100 3101 3102 3103
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
3104 3105

	/* Fill out hash function seeds */
3106 3107
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
3108

3109
	num_rx_queues = adapter->rss_queues;
3110

3111 3112 3113 3114 3115 3116 3117
	switch (hw->mac.type) {
	case e1000_82575:
		shift = 6;
		break;
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count) {
3118 3119 3120
			shift = 3;
			num_rx_queues = 2;
		}
3121 3122 3123
		break;
	default:
		break;
3124 3125
	}

3126
	/* Populate the indirection table 4 entries at a time.  To do this
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	 * we are generating the results for n and n+2 and then interleaving
	 * those with the results with n+1 and n+3.
	 */
	for (j = 0; j < 32; j++) {
		/* first pass generates n and n+2 */
		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
		u32 reta = (base & 0x07800780) >> (7 - shift);

		/* second pass generates n+1 and n+3 */
		base += 0x00010001 * num_rx_queues;
		reta |= (base & 0x07800780) << (1 + shift);

		wr32(E1000_RETA(j), reta);
3140 3141
	}

3142
	/* Disable raw packet checksumming so that RSS hash is placed in
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
3155

3156 3157 3158
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
3159 3160 3161 3162 3163
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3164

3165 3166 3167 3168 3169
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

3170 3171
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
3172 3173
	 * if we are only using one queue
	 */
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
3184
		if (adapter->rss_queues > 1)
3185
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3186
		else
3187
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3188
	} else {
3189 3190
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3191 3192 3193 3194 3195 3196
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

3197
/**
3198 3199
 *  igb_setup_rctl - configure the receive control registers
 *  @adapter: Board private structure
3200
 **/
3201
void igb_setup_rctl(struct igb_adapter *adapter)
3202 3203 3204 3205 3206 3207 3208
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3209
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3210

3211
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3212
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3213

3214
	/* enable stripping of CRC. It's unlikely this will break BMC
3215 3216
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3217
	 */
3218
	rctl |= E1000_RCTL_SECRC;
3219

3220
	/* disable store bad packets and clear size bits. */
3221
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3222

A
Alexander Duyck 已提交
3223 3224
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3225

3226 3227
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3238 3239 3240
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
3241 3242
		 * in e1000e_set_rx_mode
		 */
B
Ben Greear 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3255 3256 3257
	wr32(E1000_RCTL, rctl);
}

3258 3259 3260 3261 3262 3263 3264
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
3265 3266
	 * increase the size to support vlan tags
	 */
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3279
/**
3280 3281
 *  igb_rlpml_set - set maximum receive packet size
 *  @adapter: board private structure
3282
 *
3283
 *  Configure maximum receivable packet size.
3284 3285 3286
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3287
	u32 max_frame_size = adapter->max_frame_size;
3288 3289 3290 3291 3292
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3293
		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3294 3295 3296 3297 3298
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3299
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3300 3301 3302 3303 3304
	}

	wr32(E1000_RLPML, max_frame_size);
}

3305 3306
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3307 3308 3309 3310
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

3311
	/* This register exists only on 82576 and newer so if we are older then
3312 3313 3314 3315 3316 3317
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3318
	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3319
	if (aupe)
3320
		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3321 3322
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3323 3324 3325 3326

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3327
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3328
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3329
	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3330 3331 3332
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
3333
		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3334 3335 3336 3337

	wr32(E1000_VMOLR(vfn), vmolr);
}

3338
/**
3339 3340 3341
 *  igb_configure_rx_ring - Configure a receive ring after Reset
 *  @adapter: board private structure
 *  @ring: receive ring to be configured
3342
 *
3343
 *  Configure the Rx unit of the MAC after a reset.
3344
 **/
3345
void igb_configure_rx_ring(struct igb_adapter *adapter,
3346
			   struct igb_ring *ring)
3347 3348 3349 3350
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3351
	u32 srrctl = 0, rxdctl = 0;
3352 3353

	/* disable the queue */
3354
	wr32(E1000_RXDCTL(reg_idx), 0);
3355 3356 3357 3358 3359 3360

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
3361
	     ring->count * sizeof(union e1000_adv_rx_desc));
3362 3363

	/* initialize head and tail */
3364
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3365
	wr32(E1000_RDH(reg_idx), 0);
3366
	writel(0, ring->tail);
3367

3368
	/* set descriptor configuration */
3369
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3370
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3371
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3372
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3373
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3374 3375 3376
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3377 3378 3379

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3380
	/* set filtering for VMDQ pools */
3381
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3382

3383 3384 3385
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3386 3387 3388

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3389 3390 3391
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3392
/**
3393 3394
 *  igb_configure_rx - Configure receive Unit after Reset
 *  @adapter: board private structure
3395
 *
3396
 *  Configure the Rx unit of the MAC after a reset.
3397 3398 3399
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3400
	int i;
3401

3402 3403 3404
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3405 3406
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3407
			 adapter->vfs_allocated_count);
3408

3409
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3410 3411
	 * the Base and Length of the Rx Descriptor Ring
	 */
3412 3413
	for (i = 0; i < adapter->num_rx_queues; i++)
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3414 3415 3416
}

/**
3417 3418
 *  igb_free_tx_resources - Free Tx Resources per Queue
 *  @tx_ring: Tx descriptor ring for a specific queue
3419
 *
3420
 *  Free all transmit software resources
3421
 **/
3422
void igb_free_tx_resources(struct igb_ring *tx_ring)
3423
{
3424
	igb_clean_tx_ring(tx_ring);
3425

3426 3427
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3428

3429 3430 3431 3432
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3433 3434
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3435 3436 3437 3438 3439

	tx_ring->desc = NULL;
}

/**
3440 3441
 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 *  @adapter: board private structure
3442
 *
3443
 *  Free all transmit software resources
3444 3445 3446 3447 3448 3449
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3450
		igb_free_tx_resources(adapter->tx_ring[i]);
3451 3452
}

3453 3454 3455 3456 3457
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3458
		if (dma_unmap_len(tx_buffer, len))
3459
			dma_unmap_single(ring->dev,
3460 3461
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3462
					 DMA_TO_DEVICE);
3463
	} else if (dma_unmap_len(tx_buffer, len)) {
3464
		dma_unmap_page(ring->dev,
3465 3466
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3467 3468 3469 3470
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3471
	dma_unmap_len_set(tx_buffer, len, 0);
3472
	/* buffer_info must be completely set up in the transmit path */
3473 3474 3475
}

/**
3476 3477
 *  igb_clean_tx_ring - Free Tx Buffers
 *  @tx_ring: ring to be cleaned
3478
 **/
3479
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3480
{
3481
	struct igb_tx_buffer *buffer_info;
3482
	unsigned long size;
3483
	u16 i;
3484

3485
	if (!tx_ring->tx_buffer_info)
3486 3487 3488 3489
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3490
		buffer_info = &tx_ring->tx_buffer_info[i];
3491
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3492 3493
	}

3494 3495
	netdev_tx_reset_queue(txring_txq(tx_ring));

3496 3497
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3498 3499 3500 3501 3502 3503 3504 3505 3506

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
3507 3508
 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 *  @adapter: board private structure
3509 3510 3511 3512 3513 3514
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3515
		igb_clean_tx_ring(adapter->tx_ring[i]);
3516 3517 3518
}

/**
3519 3520
 *  igb_free_rx_resources - Free Rx Resources
 *  @rx_ring: ring to clean the resources from
3521
 *
3522
 *  Free all receive software resources
3523
 **/
3524
void igb_free_rx_resources(struct igb_ring *rx_ring)
3525
{
3526
	igb_clean_rx_ring(rx_ring);
3527

3528 3529
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3530

3531 3532 3533 3534
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3535 3536
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3537 3538 3539 3540 3541

	rx_ring->desc = NULL;
}

/**
3542 3543
 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 *  @adapter: board private structure
3544
 *
3545
 *  Free all receive software resources
3546 3547 3548 3549 3550 3551
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3552
		igb_free_rx_resources(adapter->rx_ring[i]);
3553 3554 3555
}

/**
3556 3557
 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 *  @rx_ring: ring to free buffers from
3558
 **/
3559
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3560 3561
{
	unsigned long size;
3562
	u16 i;
3563

3564 3565 3566 3567
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3568
	if (!rx_ring->rx_buffer_info)
3569
		return;
3570

3571 3572
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3573
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3574

3575 3576 3577 3578 3579 3580 3581 3582 3583
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3584
		buffer_info->page = NULL;
3585 3586
	}

3587 3588
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3589 3590 3591 3592

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3593
	rx_ring->next_to_alloc = 0;
3594 3595 3596 3597 3598
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
3599 3600
 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 *  @adapter: board private structure
3601 3602 3603 3604 3605 3606
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3607
		igb_clean_rx_ring(adapter->rx_ring[i]);
3608 3609 3610
}

/**
3611 3612 3613
 *  igb_set_mac - Change the Ethernet Address of the NIC
 *  @netdev: network interface device structure
 *  @p: pointer to an address structure
3614
 *
3615
 *  Returns 0 on success, negative on failure
3616 3617 3618 3619
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3620
	struct e1000_hw *hw = &adapter->hw;
3621 3622 3623 3624 3625 3626
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3627
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3628

3629 3630
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3631
			 adapter->vfs_allocated_count);
3632

3633 3634 3635 3636
	return 0;
}

/**
3637 3638
 *  igb_write_mc_addr_list - write multicast addresses to MTA
 *  @netdev: network interface device structure
3639
 *
3640 3641 3642 3643
 *  Writes multicast address list to the MTA hash table.
 *  Returns: -ENOMEM on failure
 *           0 on no addresses written
 *           X on writing X addresses to MTA
3644
 **/
3645
static int igb_write_mc_addr_list(struct net_device *netdev)
3646 3647 3648
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3649
	struct netdev_hw_addr *ha;
3650
	u8  *mta_list;
3651 3652
	int i;

3653
	if (netdev_mc_empty(netdev)) {
3654 3655 3656 3657 3658
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3659

3660
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3661 3662
	if (!mta_list)
		return -ENOMEM;
3663

3664
	/* The shared function expects a packed array of only addresses. */
3665
	i = 0;
3666 3667
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3668 3669 3670 3671

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3672
	return netdev_mc_count(netdev);
3673 3674 3675
}

/**
3676 3677
 *  igb_write_uc_addr_list - write unicast addresses to RAR table
 *  @netdev: network interface device structure
3678
 *
3679 3680 3681 3682
 *  Writes unicast address list to the RAR table.
 *  Returns: -ENOMEM on failure/insufficient address space
 *           0 on no addresses written
 *           X on writing X addresses to the RAR table
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3693
	if (netdev_uc_count(netdev) > rar_entries)
3694
		return -ENOMEM;
3695

3696
	if (!netdev_uc_empty(netdev) && rar_entries) {
3697
		struct netdev_hw_addr *ha;
3698 3699

		netdev_for_each_uc_addr(ha, netdev) {
3700 3701
			if (!rar_entries)
				break;
3702
			igb_rar_set_qsel(adapter, ha->addr,
3703 3704
					 rar_entries--,
					 vfn);
3705
			count++;
3706 3707 3708 3709 3710 3711 3712 3713 3714
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3715 3716 3717 3718
	return count;
}

/**
3719 3720
 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 *  @netdev: network interface device structure
3721
 *
3722 3723 3724 3725
 *  The set_rx_mode entry point is called whenever the unicast or multicast
 *  address lists or the network interface flags are updated.  This routine is
 *  responsible for configuring the hardware for proper unicast, multicast,
 *  promiscuous mode, and all-multi behavior.
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
3742
		/* retain VLAN HW filtering if in VT mode */
3743
		if (adapter->vfs_allocated_count)
3744
			rctl |= E1000_RCTL_VFE;
3745 3746 3747 3748 3749 3750 3751
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
3752
			/* Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3753
			 * then we should just turn on promiscuous mode so
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
3764
		/* Write addresses to available RAR registers, if there is not
3765
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3766
		 * unicast promiscuous mode
3767 3768 3769 3770 3771 3772 3773
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3774
	}
3775
	wr32(E1000_RCTL, rctl);
3776

3777
	/* In order to support SR-IOV and eventually VMDq it is necessary to set
3778 3779 3780 3781
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3782
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3783
		return;
3784

3785
	vmolr |= rd32(E1000_VMOLR(vfn)) &
3786
		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3787
	wr32(E1000_VMOLR(vfn), vmolr);
3788
	igb_restore_vf_multicasts(adapter);
3789 3790
}

G
Greg Rose 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3830
/* Need to wait a few seconds after link up to get diagnostic information from
3831 3832
 * the phy
 */
3833 3834 3835
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3836
	igb_get_phy_info(&adapter->hw);
3837 3838
}

A
Alexander Duyck 已提交
3839
/**
3840 3841
 *  igb_has_link - check shared code for link and determine up/down
 *  @adapter: pointer to driver private info
A
Alexander Duyck 已提交
3842
 **/
3843
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3875 3876 3877 3878 3879
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3880
	/* check for thermal sensor event on i350 copper only */
3881 3882 3883 3884 3885
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
3886
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3887 3888 3889 3890 3891 3892
			ret = !!(thstat & event);
	}

	return ret;
}

3893
/**
3894 3895
 *  igb_watchdog - Timer Call-back
 *  @data: pointer to adapter cast into an unsigned long
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3907 3908
						   struct igb_adapter,
						   watchdog_task);
3909
	struct e1000_hw *hw = &adapter->hw;
3910
	struct e1000_phy_info *phy = &hw->phy;
3911
	struct net_device *netdev = adapter->netdev;
3912
	u32 link;
3913
	int i;
3914

A
Alexander Duyck 已提交
3915
	link = igb_has_link(adapter);
3916
	if (link) {
Y
Yan, Zheng 已提交
3917 3918 3919
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3920 3921
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3922
			hw->mac.ops.get_speed_and_duplex(hw,
3923 3924
							 &adapter->link_speed,
							 &adapter->link_duplex);
3925 3926

			ctrl = rd32(E1000_CTRL);
3927
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3928 3929
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3930 3931 3932
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3933 3934 3935 3936 3937
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3938

3939 3940 3941 3942 3943
			/* check if SmartSpeed worked */
			igb_check_downshift(hw);
			if (phy->speed_downgraded)
				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");

3944
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3945 3946 3947 3948 3949
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3950
			}
3951

3952
			/* adjust timeout factor according to speed/duplex */
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3965
			igb_ping_all_vfs(adapter);
3966
			igb_check_vf_rate_limit(adapter);
3967

3968
			/* link state has changed, schedule phy info update */
3969 3970 3971 3972 3973 3974 3975 3976
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3977 3978

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3979 3980 3981 3982
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3983
			}
3984

3985 3986 3987
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3988
			netif_carrier_off(netdev);
3989

3990 3991
			igb_ping_all_vfs(adapter);

3992
			/* link state has changed, schedule phy info update */
3993 3994 3995
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
3996 3997 3998

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
3999 4000 4001
		}
	}

E
Eric Dumazet 已提交
4002 4003 4004
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
4005

4006
	for (i = 0; i < adapter->num_tx_queues; i++) {
4007
		struct igb_ring *tx_ring = adapter->tx_ring[i];
4008
		if (!netif_carrier_ok(netdev)) {
4009 4010 4011
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
4012 4013
			 * (Do the reset outside of interrupt context).
			 */
4014 4015 4016 4017 4018 4019
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
4020 4021
		}

4022
		/* Force detection of hung controller every watchdog period */
4023
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4024
	}
4025

4026
	/* Cause software interrupt to ensure Rx ring is cleaned */
4027
	if (adapter->msix_entries) {
4028
		u32 eics = 0;
4029 4030
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
4031 4032 4033 4034
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
4035

G
Greg Rose 已提交
4036
	igb_spoof_check(adapter);
4037
	igb_ptp_rx_hang(adapter);
G
Greg Rose 已提交
4038

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

4052
/**
4053 4054
 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 *  @q_vector: pointer to q_vector
4055
 *
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
 *  Stores a new ITR value based on strictly on packet size.  This
 *  algorithm is less sophisticated than that used in igb_update_itr,
 *  due to the difficulty of synchronizing statistics across multiple
 *  receive rings.  The divisors and thresholds used by this function
 *  were determined based on theoretical maximum wire speed and testing
 *  data, in order to minimize response time while increasing bulk
 *  throughput.
 *  This functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  This function is called only when operating in a multiqueue
 *         receive environment.
4067
 **/
4068
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4069
{
4070
	int new_val = q_vector->itr_val;
4071
	int avg_wire_size = 0;
4072
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
4073
	unsigned int packets;
4074

4075 4076 4077 4078
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
4079
		new_val = IGB_4K_ITR;
4080
		goto set_itr_val;
4081
	}
4082

4083 4084 4085
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
4086

4087 4088 4089 4090
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
4091 4092 4093 4094

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
4095

4096 4097 4098 4099 4100
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
4101

4102 4103 4104 4105 4106
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
4107

4108 4109 4110 4111 4112
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
4113

4114
set_itr_val:
4115 4116 4117
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
4118
	}
4119
clear_counts:
4120 4121 4122 4123
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
4124 4125 4126
}

/**
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
 *  igb_update_itr - update the dynamic ITR value based on statistics
 *  @q_vector: pointer to q_vector
 *  @ring_container: ring info to update the itr for
 *
 *  Stores a new ITR value based on packets and byte
 *  counts during the last interrupt.  The advantage of per interrupt
 *  computation is faster updates and more accurate ITR for the current
 *  traffic pattern.  Constants in this function were computed
 *  based on theoretical maximum wire speed and thresholds were set based
 *  on testing data as well as attempting to minimize response time
 *  while increasing bulk throughput.
 *  this functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  These calculations are only valid when operating in a single-
 *         queue environment.
4142
 **/
4143 4144
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
4145
{
4146 4147 4148
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
4149

4150
	/* no packets, exit with status unchanged */
4151
	if (packets == 0)
4152
		return;
4153

4154
	switch (itrval) {
4155 4156 4157
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
4158
			itrval = bulk_latency;
4159
		else if ((packets < 5) && (bytes > 512))
4160
			itrval = low_latency;
4161 4162 4163 4164 4165
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
4166
				itrval = bulk_latency;
4167
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4168
				itrval = bulk_latency;
4169
			} else if ((packets > 35)) {
4170
				itrval = lowest_latency;
4171 4172
			}
		} else if (bytes/packets > 2000) {
4173
			itrval = bulk_latency;
4174
		} else if (packets <= 2 && bytes < 512) {
4175
			itrval = lowest_latency;
4176 4177 4178 4179 4180
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
4181
				itrval = low_latency;
4182
		} else if (bytes < 1500) {
4183
			itrval = low_latency;
4184 4185 4186 4187
		}
		break;
	}

4188 4189 4190 4191 4192 4193
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
4194 4195
}

4196
static void igb_set_itr(struct igb_q_vector *q_vector)
4197
{
4198
	struct igb_adapter *adapter = q_vector->adapter;
4199
	u32 new_itr = q_vector->itr_val;
4200
	u8 current_itr = 0;
4201 4202 4203 4204

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
4205
		new_itr = IGB_4K_ITR;
4206 4207 4208
		goto set_itr_now;
	}

4209 4210
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
4211

4212
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4213

4214
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4215 4216 4217
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4218 4219
		current_itr = low_latency;

4220 4221 4222
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4223
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4224 4225
		break;
	case low_latency:
4226
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4227 4228
		break;
	case bulk_latency:
4229
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4230 4231 4232 4233 4234 4235
		break;
	default:
		break;
	}

set_itr_now:
4236
	if (new_itr != q_vector->itr_val) {
4237 4238
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
4239 4240
		 * increasing
		 */
4241
		new_itr = new_itr > q_vector->itr_val ?
4242 4243 4244
			  max((new_itr * q_vector->itr_val) /
			  (new_itr + (q_vector->itr_val >> 2)),
			  new_itr) : new_itr;
4245 4246 4247 4248 4249 4250
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4251 4252
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4253 4254 4255
	}
}

4256 4257
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4271
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4272 4273 4274 4275 4276 4277 4278 4279
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4280 4281 4282
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4283
{
4284
	struct sk_buff *skb = first->skb;
4285 4286 4287
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

4288 4289 4290
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4291 4292
	if (!skb_is_gso(skb))
		return 0;
4293 4294

	if (skb_header_cloned(skb)) {
4295
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4296 4297 4298 4299
		if (err)
			return err;
	}

4300 4301
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4302

4303
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4304 4305 4306 4307 4308 4309 4310
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4311
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4312 4313 4314
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4315
	} else if (skb_is_gso_v6(skb)) {
4316 4317 4318 4319
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4320 4321
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4322 4323
	}

4324
	/* compute header lengths */
4325 4326
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4327

4328 4329 4330 4331
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4332
	/* MSS L4LEN IDX */
4333 4334
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4335

4336 4337 4338
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4339
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4340

4341
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4342

4343
	return 1;
4344 4345
}

4346
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4347
{
4348
	struct sk_buff *skb = first->skb;
4349 4350 4351
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4352

4353
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4354 4355
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4356 4357
	} else {
		u8 l4_hdr = 0;
4358
		switch (first->protocol) {
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4371 4372
					 "partial checksum but proto=%x!\n",
					 first->protocol);
4373
			}
4374 4375
			break;
		}
4376

4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4395 4396
					 "partial checksum but l4 proto=%x!\n",
					 l4_hdr);
4397
			}
4398
			break;
4399
		}
4400 4401 4402

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4403
	}
4404

4405
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4406
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4407

4408
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4409 4410
}

4411 4412 4413 4414 4415 4416
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4417 4418
{
	/* set type for advanced descriptor with frame checksum insertion */
4419 4420 4421
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4422 4423

	/* set HW vlan bit if vlan is present */
4424 4425 4426 4427 4428 4429
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4430 4431

	/* set timestamp bit if present */
4432 4433
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4434

4435 4436
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4437 4438 4439 4440

	return cmd_type;
}

4441 4442 4443
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4444 4445 4446
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4447 4448
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4449 4450 4451
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4452 4453 4454
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4455

4456 4457 4458 4459
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4460

4461
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4462 4463
}

4464 4465
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4466
		       const u8 hdr_len)
4467
{
4468
	struct sk_buff *skb = first->skb;
4469
	struct igb_tx_buffer *tx_buffer;
4470
	union e1000_adv_tx_desc *tx_desc;
4471
	struct skb_frag_struct *frag;
4472
	dma_addr_t dma;
4473
	unsigned int data_len, size;
4474
	u32 tx_flags = first->tx_flags;
4475
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4476 4477 4478 4479
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4480 4481 4482 4483
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4484 4485

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4486

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4498 4499 4500

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4501
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4502 4503 4504 4505 4506 4507 4508

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4509
			tx_desc->read.olinfo_status = 0;
4510 4511 4512 4513 4514 4515 4516 4517 4518

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4519

4520
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4521

4522
		i++;
4523 4524 4525
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4526
			i = 0;
4527
		}
4528
		tx_desc->read.olinfo_status = 0;
4529

E
Eric Dumazet 已提交
4530
		size = skb_frag_size(frag);
4531 4532 4533
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4534
				       size, DMA_TO_DEVICE);
4535

4536
		tx_buffer = &tx_ring->tx_buffer_info[i];
4537 4538
	}

4539
	/* write last descriptor with RS and EOP bits */
4540 4541
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4542

4543 4544
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4545 4546 4547
	/* set the timestamp */
	first->time_stamp = jiffies;

4548
	/* Force memory writes to complete before letting h/w know there
4549 4550 4551 4552 4553 4554 4555 4556
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4557
	/* set next_to_watch value indicating a packet is present */
4558
	first->next_to_watch = tx_desc;
4559

4560 4561 4562
	i++;
	if (i == tx_ring->count)
		i = 0;
4563

4564
	tx_ring->next_to_use = i;
4565

4566
	writel(i, tx_ring->tail);
4567

4568
	/* we need this if more than one processor can write to our tail
4569 4570
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4571 4572 4573 4574 4575 4576 4577 4578 4579
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4580 4581 4582
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4583
			break;
4584 4585
		if (i == 0)
			i = tx_ring->count;
4586 4587 4588
		i--;
	}

4589 4590 4591
	tx_ring->next_to_use = i;
}

4592
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4593
{
4594 4595
	struct net_device *netdev = tx_ring->netdev;

4596 4597
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4598 4599
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
4600 4601
	 * but since that doesn't exist yet, just open code it.
	 */
4602 4603 4604
	smp_mb();

	/* We need to check again in a case another CPU has just
4605 4606
	 * made room available.
	 */
4607
	if (igb_desc_unused(tx_ring) < size)
4608 4609 4610
		return -EBUSY;

	/* A reprieve! */
4611
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4612 4613 4614 4615 4616

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4617 4618 4619
	return 0;
}

4620
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4621
{
4622
	if (igb_desc_unused(tx_ring) >= size)
4623
		return 0;
4624
	return __igb_maybe_stop_tx(tx_ring, size);
4625 4626
}

4627 4628
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4629
{
4630
	struct igb_tx_buffer *first;
4631
	int tso;
N
Nick Nunley 已提交
4632
	u32 tx_flags = 0;
4633
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4634
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4635
	u8 hdr_len = 0;
4636

4637 4638
	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4639 4640
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
	 * otherwise try next time
	 */
	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
		unsigned short f;
		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
	} else {
		count += skb_shinfo(skb)->nr_frags;
	}

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4652 4653 4654
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4655

4656 4657 4658 4659 4660 4661
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4662 4663
	skb_tx_timestamp(skb);

4664 4665
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4666

4667 4668 4669 4670 4671 4672 4673 4674 4675
		if (!(adapter->ptp_tx_skb)) {
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			tx_flags |= IGB_TX_FLAGS_TSTAMP;

			adapter->ptp_tx_skb = skb_get(skb);
			adapter->ptp_tx_start = jiffies;
			if (adapter->hw.mac.type == e1000_82576)
				schedule_work(&adapter->ptp_tx_work);
		}
4676
	}
4677

4678
	if (vlan_tx_tag_present(skb)) {
4679 4680 4681 4682
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4683 4684 4685
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4686

4687 4688
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4689
		goto out_drop;
4690 4691
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4692

4693
	igb_tx_map(tx_ring, first, hdr_len);
4694 4695

	/* Make sure there is space in the ring for the next send. */
4696
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4697

4698
	return NETDEV_TX_OK;
4699 4700

out_drop:
4701 4702
	igb_unmap_and_free_tx_resource(tx_ring, first);

4703
	return NETDEV_TX_OK;
4704 4705
}

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4717 4718
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4719 4720
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4732
	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4733 4734
	 * in order to meet this minimum size requirement.
	 */
4735 4736
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4737 4738
			return NETDEV_TX_OK;
		skb->len = 17;
4739
		skb_set_tail_pointer(skb, 17);
4740
	}
4741

4742
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4743 4744 4745
}

/**
4746 4747
 *  igb_tx_timeout - Respond to a Tx Hang
 *  @netdev: network interface device structure
4748 4749 4750 4751 4752 4753 4754 4755
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4756

4757
	if (hw->mac.type >= e1000_82580)
4758 4759
		hw->dev_spec._82575.global_device_reset = true;

4760
	schedule_work(&adapter->reset_task);
4761 4762
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4763 4764 4765 4766 4767 4768 4769
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4770 4771
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4772 4773 4774 4775
	igb_reinit_locked(adapter);
}

/**
4776 4777 4778
 *  igb_get_stats64 - Get System Network Statistics
 *  @netdev: network interface device structure
 *  @stats: rtnl_link_stats64 pointer
4779
 **/
E
Eric Dumazet 已提交
4780
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4781
						struct rtnl_link_stats64 *stats)
4782
{
E
Eric Dumazet 已提交
4783 4784 4785 4786 4787 4788 4789 4790
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4791 4792 4793
}

/**
4794 4795 4796
 *  igb_change_mtu - Change the Maximum Transfer Unit
 *  @netdev: network interface device structure
 *  @new_mtu: new value for maximum frame size
4797
 *
4798
 *  Returns 0 on success, negative on failure
4799 4800 4801 4802
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4803
	struct pci_dev *pdev = adapter->pdev;
4804
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4805

4806
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4807
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4808 4809 4810
		return -EINVAL;
	}

4811
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4812
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4813
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4814 4815 4816 4817 4818
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4819

4820 4821
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4822

4823 4824
	if (netif_running(netdev))
		igb_down(adapter);
4825

4826
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
4841 4842
 *  igb_update_stats - Update the board statistics counters
 *  @adapter: board private structure
4843
 **/
E
Eric Dumazet 已提交
4844 4845
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4846 4847 4848
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4849
	u32 reg, mpc;
4850
	u16 phy_tmp;
4851 4852
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4853 4854
	unsigned int start;
	u64 _bytes, _packets;
4855 4856 4857

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

4858
	/* Prevent stats update while adapter is being reset, or if the pci
4859 4860 4861 4862 4863 4864 4865
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4866 4867 4868
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
4869
		u32 rqdpc = rd32(E1000_RQDPC(i));
4870
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4871

4872 4873 4874 4875
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4876 4877 4878 4879 4880 4881 4882 4883

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4884 4885
	}

4886 4887
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4888 4889 4890 4891

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4892
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4893 4894 4895 4896 4897 4898 4899
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4900
	}
4901 4902
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4903 4904

	/* read stats registers */
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4922 4923 4924
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4939
	adapter->stats.rnbc += rd32(E1000_RNBC);
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4957 4958
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4959 4960

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4961 4962 4963 4964
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4965 4966 4967 4968 4969

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
4970 4971
	}

4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4986 4987
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4988 4989 4990 4991

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4992 4993
	 * our own version based on RUC and ROC
	 */
4994
	net_stats->rx_errors = adapter->stats.rxerrc +
4995 4996 4997
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4998 4999 5000 5001 5002
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
5003 5004

	/* Tx Errors */
5005 5006 5007 5008 5009
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5010 5011 5012 5013 5014 5015

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
5016
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5017 5018 5019 5020 5021 5022 5023 5024 5025
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5026 5027 5028 5029 5030 5031 5032 5033 5034

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
5035 5036 5037 5038
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
5039
	struct igb_adapter *adapter = data;
5040
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
5041 5042
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
5043

5044 5045 5046
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5047
	if (icr & E1000_ICR_DOUTSYNC) {
5048 5049
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
5050 5051
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
5052 5053
		 * see if it is really a spoof event.
		 */
G
Greg Rose 已提交
5054
		igb_check_wvbr(adapter);
5055
	}
5056

5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
5079
	wr32(E1000_EIMS, adapter->eims_other);
5080 5081 5082 5083

	return IRQ_HANDLED;
}

5084
static void igb_write_itr(struct igb_q_vector *q_vector)
5085
{
5086
	struct igb_adapter *adapter = q_vector->adapter;
5087
	u32 itr_val = q_vector->itr_val & 0x7FFC;
5088

5089 5090
	if (!q_vector->set_itr)
		return;
5091

5092 5093
	if (!itr_val)
		itr_val = 0x4;
5094

5095 5096
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
5097
	else
5098
		itr_val |= E1000_EITR_CNT_IGNR;
5099

5100 5101
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
5102 5103
}

5104
static irqreturn_t igb_msix_ring(int irq, void *data)
5105
{
5106
	struct igb_q_vector *q_vector = data;
5107

5108 5109
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
5110

5111
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
5112

5113
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
5114 5115
}

5116
#ifdef CONFIG_IGB_DCA
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

5127
	/* We can enable relaxed ordering for reads, but not writes when
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

5148
	/* We can enable relaxed ordering for reads, but not writes when
5149 5150 5151 5152 5153 5154 5155 5156 5157
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

5158
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
5159
{
5160
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
5161 5162
	int cpu = get_cpu();

5163 5164 5165
	if (q_vector->cpu == cpu)
		goto out_no_update;

5166 5167 5168 5169 5170 5171
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

5172 5173
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
5174 5175 5176 5177 5178
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
5179
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
5180 5181
	int i;

5182
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
5183 5184
		return;

5185 5186 5187
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

5188
	for (i = 0; i < adapter->num_q_vectors; i++) {
5189 5190
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
5191 5192 5193 5194 5195 5196 5197
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
5198
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
5199 5200 5201 5202 5203 5204
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
5205
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
5206 5207
			break;
		if (dca_add_requester(dev) == 0) {
5208
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5209
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
5210 5211 5212 5213 5214
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
5215
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
5216
			/* without this a class_device is left
5217 5218
			 * hanging around in the sysfs model
			 */
J
Jeb Cramer 已提交
5219
			dca_remove_requester(dev);
5220
			dev_info(&pdev->dev, "DCA disabled\n");
5221
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
5222
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
5223 5224 5225
		}
		break;
	}
5226

J
Jeb Cramer 已提交
5227
	return 0;
5228 5229
}

J
Jeb Cramer 已提交
5230
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5231
			  void *p)
J
Jeb Cramer 已提交
5232 5233 5234 5235
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5236
					 __igb_notify_dca);
J
Jeb Cramer 已提交
5237 5238 5239

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5240
#endif /* CONFIG_IGB_DCA */
5241

5242 5243 5244 5245 5246
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

5247
	eth_zero_addr(mac_addr);
5248 5249
	igb_set_vf_mac(adapter, vf, mac_addr);

L
Lior Levy 已提交
5250 5251 5252
	/* By default spoof check is enabled for all VFs */
	adapter->vf_data[vf].spoofchk_enabled = true;

5253
	return 0;
5254 5255 5256
}

#endif
5257 5258 5259 5260 5261 5262 5263 5264
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5265
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5266 5267 5268 5269 5270
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5271 5272 5273 5274 5275 5276
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5277
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5278
			    IGB_VF_FLAG_MULTI_PROMISC);
5279 5280 5281 5282
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5283
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5284 5285
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
5286
		/* if we have hashes and we are clearing a multicast promisc
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;
}

5309 5310 5311 5312 5313 5314 5315 5316
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5317
	/* salt away the number of multicast addresses assigned
5318 5319 5320 5321 5322
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5323 5324 5325 5326 5327
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5328
	for (i = 0; i < n; i++)
5329
		vf_data->vf_mc_hashes[i] = hash_list[i];
5330 5331

	/* Flush and reset the mta with the new values */
5332
	igb_set_rx_mode(adapter->netdev);
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5344 5345 5346
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5347
		vf_data = &adapter->vf_data[i];
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5386 5387

	adapter->vf_data[vf].vlans_enabled = 0;
5388 5389 5390 5391 5392 5393 5394
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5395 5396 5397 5398 5399
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5429 5430
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5431 5432
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5433 5434
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5435
			wr32(E1000_VLVF(i), reg);
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5451
			adapter->vf_data[vf].vlans_enabled++;
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5478 5479
		}
	}
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
5513
				 "The VF VLAN has been set, but the PF device is not up.\n");
5514
			dev_warn(&adapter->pdev->dev,
5515
				 "Bring the PF device up before attempting to use the VF device.\n");
5516 5517 5518
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5519
			     false, vf);
5520 5521 5522 5523
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
5524
	}
5525
out:
5526
	return err;
5527 5528
}

5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;
	u32 reg;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (i >= E1000_VLVF_ARRAY_SIZE)
		i = -1;

	return i;
}

5549 5550
static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
5551
	struct e1000_hw *hw = &adapter->hw;
5552 5553
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5554
	int err = 0;
5555

5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
	/* If in promiscuous mode we need to make sure the PF also has
	 * the VLAN filter set.
	 */
	if (add && (adapter->netdev->flags & IFF_PROMISC))
		err = igb_vlvf_set(adapter, vid, add,
				   adapter->vfs_allocated_count);
	if (err)
		goto out;

	err = igb_vlvf_set(adapter, vid, add, vf);

	if (err)
		goto out;

	/* Go through all the checks to see if the VLAN filter should
	 * be wiped completely.
	 */
	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
		u32 vlvf, bits;

		int regndx = igb_find_vlvf_entry(adapter, vid);
		if (regndx < 0)
			goto out;
		/* See if any other pools are set for this VLAN filter
		 * entry other than the PF.
		 */
		vlvf = bits = rd32(E1000_VLVF(regndx));
		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
			      adapter->vfs_allocated_count);
		/* If the filter was removed then ensure PF pool bit
		 * is cleared if the PF only added itself to the pool
		 * because the PF is in promiscuous mode.
		 */
		if ((vlvf & VLAN_VID_MASK) == vid &&
		    !test_bit(vid, adapter->active_vlans) &&
		    !bits)
			igb_vlvf_set(adapter, vid, add,
				     adapter->vfs_allocated_count);
	}

out:
	return err;
5598 5599
}

5600
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5601
{
G
Greg Rose 已提交
5602 5603
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5604
	adapter->vf_data[vf].last_nack = jiffies;
5605 5606

	/* reset offloads to defaults */
5607
	igb_set_vmolr(adapter, vf, true);
5608 5609 5610

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5611 5612 5613 5614 5615 5616
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5617 5618 5619 5620 5621

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5622
	igb_set_rx_mode(adapter->netdev);
5623 5624
}

5625 5626 5627 5628
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

5629
	/* clear mac address as we were hotplug removed/added */
5630
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5631
		eth_zero_addr(vf_mac);
5632 5633 5634 5635 5636 5637

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5638 5639 5640
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5641
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5642 5643 5644 5645
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5646
	igb_vf_reset(adapter, vf);
5647 5648

	/* set vf mac address */
5649
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5650 5651 5652 5653 5654 5655 5656

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5657
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5658 5659 5660 5661 5662 5663 5664 5665 5666

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
5667
	/* The VF MAC Address is stored in a packed array of bytes
G
Greg Rose 已提交
5668 5669
	 * starting at the second 32 bit word of the msg array
	 */
5670 5671
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5672

5673 5674
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5675

5676
	return err;
5677 5678 5679 5680 5681
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5682
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5683 5684 5685
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5686 5687
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5688
		igb_write_mbx(hw, &msg, 1, vf);
5689
		vf_data->last_nack = jiffies;
5690 5691 5692
	}
}

5693
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5694
{
5695 5696
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5697
	struct e1000_hw *hw = &adapter->hw;
5698
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5699 5700
	s32 retval;

5701
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5702

5703 5704
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5705
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5706 5707 5708 5709 5710
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5711 5712 5713

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5714
		return;
5715

5716
	/* until the vf completes a reset it should not be
5717 5718 5719 5720
	 * allowed to start any configuration.
	 */
	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5721
		return;
5722 5723
	}

5724
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5725 5726 5727 5728
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5729 5730 5731 5732
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5733 5734 5735 5736 5737
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
5738 5739
				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
				 vf);
5740
		break;
5741 5742 5743
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5744 5745 5746 5747 5748 5749 5750
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5751 5752 5753
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
5754 5755
				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
				 vf);
5756 5757
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5758 5759
		break;
	default:
5760
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5761 5762 5763 5764
		retval = -1;
		break;
	}

5765 5766
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5767 5768 5769 5770 5771 5772 5773
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5774
}
5775

5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5794 5795
}

5796 5797 5798 5799 5800 5801 5802
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5803 5804
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5823
/**
5824 5825 5826
 *  igb_intr_msi - Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5827 5828 5829
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5830 5831
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5832 5833 5834 5835
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5836
	igb_write_itr(q_vector);
5837

5838 5839 5840
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5841
	if (icr & E1000_ICR_DOUTSYNC) {
5842 5843 5844 5845
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5846 5847 5848 5849 5850 5851
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5863
	napi_schedule(&q_vector->napi);
5864 5865 5866 5867 5868

	return IRQ_HANDLED;
}

/**
5869 5870 5871
 *  igb_intr - Legacy Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
5872 5873 5874
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5875 5876
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5877 5878
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5879 5880
	 * need for the IMC write
	 */
5881 5882 5883
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5884 5885
	 * not set, then the adapter didn't send an interrupt
	 */
5886 5887 5888
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5889 5890
	igb_write_itr(q_vector);

5891 5892 5893
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5894
	if (icr & E1000_ICR_DOUTSYNC) {
5895 5896 5897 5898
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5899 5900 5901 5902 5903 5904 5905
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5917
	napi_schedule(&q_vector->napi);
5918 5919 5920 5921

	return IRQ_HANDLED;
}

5922
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5923
{
5924
	struct igb_adapter *adapter = q_vector->adapter;
5925
	struct e1000_hw *hw = &adapter->hw;
5926

5927 5928 5929 5930
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5931
		else
5932
			igb_update_ring_itr(q_vector);
5933 5934
	}

5935 5936
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5937
			wr32(E1000_EIMS, q_vector->eims_value);
5938 5939 5940
		else
			igb_irq_enable(adapter);
	}
5941 5942
}

5943
/**
5944 5945 5946
 *  igb_poll - NAPI Rx polling callback
 *  @napi: napi polling structure
 *  @budget: count of how many packets we should handle
5947 5948
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5949
{
5950
	struct igb_q_vector *q_vector = container_of(napi,
5951 5952
						     struct igb_q_vector,
						     napi);
5953
	bool clean_complete = true;
5954

5955
#ifdef CONFIG_IGB_DCA
5956 5957
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5958
#endif
5959
	if (q_vector->tx.ring)
5960
		clean_complete = igb_clean_tx_irq(q_vector);
5961

5962
	if (q_vector->rx.ring)
5963
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5964

5965 5966 5967
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5968

5969
	/* If not enough Rx work done, exit the polling mode */
5970 5971
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5972

5973
	return 0;
5974
}
A
Al Viro 已提交
5975

5976
/**
5977 5978
 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 *  @q_vector: pointer to q_vector containing needed info
5979
 *
5980
 *  returns true if ring is completely cleaned
5981
 **/
5982
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5983
{
5984
	struct igb_adapter *adapter = q_vector->adapter;
5985
	struct igb_ring *tx_ring = q_vector->tx.ring;
5986
	struct igb_tx_buffer *tx_buffer;
5987
	union e1000_adv_tx_desc *tx_desc;
5988
	unsigned int total_bytes = 0, total_packets = 0;
5989
	unsigned int budget = q_vector->tx.work_limit;
5990
	unsigned int i = tx_ring->next_to_clean;
5991

5992 5993
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5994

5995
	tx_buffer = &tx_ring->tx_buffer_info[i];
5996
	tx_desc = IGB_TX_DESC(tx_ring, i);
5997
	i -= tx_ring->count;
5998

5999 6000
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6001 6002 6003 6004

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
6005

6006
		/* prevent any other reads prior to eop_desc */
6007
		read_barrier_depends();
6008

6009 6010 6011 6012
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

6013 6014
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
6015

6016 6017 6018
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
6019

6020 6021
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
6022

6023 6024
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
6025 6026
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
6027 6028
				 DMA_TO_DEVICE);

6029 6030 6031 6032
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

6033 6034
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
6035 6036
			tx_buffer++;
			tx_desc++;
6037
			i++;
6038 6039
			if (unlikely(!i)) {
				i -= tx_ring->count;
6040
				tx_buffer = tx_ring->tx_buffer_info;
6041 6042
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
6043 6044

			/* unmap any remaining paged data */
6045
			if (dma_unmap_len(tx_buffer, len)) {
6046
				dma_unmap_page(tx_ring->dev,
6047 6048
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
6049
					       DMA_TO_DEVICE);
6050
				dma_unmap_len_set(tx_buffer, len, 0);
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
6063 6064 6065 6066 6067 6068 6069

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
6070

6071 6072
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
6073
	i += tx_ring->count;
6074
	tx_ring->next_to_clean = i;
6075 6076 6077 6078
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
6079 6080
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
6081

6082
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6083
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
6084

6085
		/* Detect a transmit hang in hardware, this serializes the
6086 6087
		 * check with the clearing of time_stamp and movement of i
		 */
6088
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6089
		if (tx_buffer->next_to_watch &&
6090
		    time_after(jiffies, tx_buffer->time_stamp +
6091 6092
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6093 6094

			/* detected Tx unit hang */
6095
			dev_err(tx_ring->dev,
6096
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
6097
				"  Tx Queue             <%d>\n"
6098 6099 6100 6101 6102 6103
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
6104
				"  next_to_watch        <%p>\n"
6105 6106
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
6107
				tx_ring->queue_index,
6108
				rd32(E1000_TDH(tx_ring->reg_idx)),
6109
				readl(tx_ring->tail),
6110 6111
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
6112
				tx_buffer->time_stamp,
6113
				tx_buffer->next_to_watch,
6114
				jiffies,
6115
				tx_buffer->next_to_watch->wb.status);
6116 6117 6118 6119 6120
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
6121 6122
		}
	}
6123

6124
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6125
	if (unlikely(total_packets &&
6126 6127
	    netif_carrier_ok(tx_ring->netdev) &&
	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
6145 6146
}

6147
/**
6148 6149 6150
 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 *  @rx_ring: rx descriptor ring to store buffers on
 *  @old_buff: donor buffer to have page reused
6151
 *
6152
 *  Synchronizes page for reuse by the adapter
6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
6172
					 IGB_RX_BUFSZ,
6173 6174 6175
					 DMA_FROM_DEVICE);
}

6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
				  struct page *page,
				  unsigned int truesize)
{
	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;

	/* since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif

	return true;
}

6211
/**
6212 6213 6214 6215 6216
 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 *  @rx_ring: rx descriptor ring to transact packets on
 *  @rx_buffer: buffer containing page to add
 *  @rx_desc: descriptor containing length of buffer written by hardware
 *  @skb: sk_buff to place the data into
6217
 *
6218 6219 6220 6221
 *  This function will add the data contained in rx_buffer->page to the skb.
 *  This is done either through a direct copy if the data in the buffer is
 *  less than the skb header size, otherwise it will just attach the page as
 *  a frag to the skb.
6222
 *
6223 6224
 *  The function will then update the page offset if necessary and return
 *  true if the buffer can be reused by the adapter.
6225 6226 6227 6228 6229 6230 6231 6232
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6233 6234 6235 6236 6237
#if (PAGE_SIZE < 8192)
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6260
			rx_buffer->page_offset, size, truesize);
6261

6262 6263
	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
6264

6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

6295
		/* we will be copying header into skb->data in
6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6306
				      IGB_RX_BUFSZ,
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6325
static inline void igb_rx_checksum(struct igb_ring *ring,
6326 6327
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6328
{
6329
	skb_checksum_none_assert(skb);
6330

6331
	/* Ignore Checksum bit is set */
6332
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6333 6334 6335 6336
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6337
		return;
6338

6339
	/* TCP/UDP checksum error bit is set */
6340 6341 6342
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6343
		/* work around errata with sctp packets where the TCPE aka
6344 6345 6346
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6347 6348
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6349
			u64_stats_update_begin(&ring->rx_syncp);
6350
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6351 6352
			u64_stats_update_end(&ring->rx_syncp);
		}
6353 6354 6355 6356
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6357 6358
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6359 6360
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6361 6362
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6363 6364
}

6365 6366 6367 6368 6369 6370 6371 6372
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6373
/**
6374 6375 6376 6377
 *  igb_is_non_eop - process handling of non-EOP buffers
 *  @rx_ring: Rx ring being processed
 *  @rx_desc: Rx descriptor for current buffer
 *  @skb: current socket buffer containing buffer in progress
6378
 *
6379 6380 6381 6382
 *  This function updates next to clean.  If the buffer is an EOP buffer
 *  this function exits returning false, otherwise it will place the
 *  sk_buff in the next buffer to be chained and return true indicating
 *  that this is in fact a non-EOP buffer.
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6401
/**
6402 6403 6404
 *  igb_get_headlen - determine size of header for LRO/GRO
 *  @data: pointer to the start of the headers
 *  @max_len: total length of section to find headers in
6405
 *
6406 6407 6408 6409 6410
 *  This function is meant to determine the length of headers that will
 *  be recognized by hardware for LRO, and GRO offloads.  The main
 *  motivation of doing this is to only perform one pull for IPv4 TCP
 *  packets so that we can do basic things like calculating the gso_size
 *  based on the average data per packet.
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6460
		/* record next protocol if header is present */
6461
		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6462
			nexthdr = hdr.ipv4->protocol;
6463 6464 6465 6466 6467 6468
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6469
		hlen = sizeof(struct ipv6hdr);
6470 6471 6472 6473
	} else {
		return hdr.network - data;
	}

6474 6475 6476
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

6497
	/* If everything has gone correctly hdr.network should be the
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
6509 6510 6511 6512
 *  igb_pull_tail - igb specific version of skb_pull_tail
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being adjusted
6513
 *
6514 6515 6516 6517 6518 6519
 *  This function is an igb specific version of __pskb_pull_tail.  The
 *  main difference between this version and the original function is that
 *  this function can make several assumptions about the state of things
 *  that allow for significant optimizations versus the standard function.
 *  As a result we can do things like drop a frag and maintain an accurate
 *  truesize for the skb.
6520 6521 6522 6523
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6524
{
6525 6526 6527 6528
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

6529
	/* it is valid to use page_address instead of kmap since we are
6530 6531
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6532
	 */
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

6549
	/* we need the header to contain the greater of either ETH_HLEN or
6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
6565 6566 6567 6568
 *  igb_cleanup_headers - Correct corrupted or empty headers
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being fixed
6569
 *
6570 6571
 *  Address the case where we are pulling data in on pages only
 *  and as such no data is present in the skb header.
6572
 *
6573 6574
 *  In addition if skb is not at least 60 bytes we need to pad it so that
 *  it is large enough to qualify as a valid Ethernet frame.
6575
 *
6576
 *  Returns true if an error was encountered and skb was freed.
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{
	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6605 6606
}

6607
/**
6608 6609 6610 6611
 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being populated
6612
 *
6613 6614 6615
 *  This function checks the ring, descriptor, and packet information in
 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 *  other fields within the skb.
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

6627
	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6628

6629
	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6630 6631 6632 6633 6634 6635 6636 6637
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

6638
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6639 6640 6641 6642 6643 6644 6645
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6646
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6647
{
6648
	struct igb_ring *rx_ring = q_vector->rx.ring;
6649
	struct sk_buff *skb = rx_ring->skb;
6650
	unsigned int total_bytes = 0, total_packets = 0;
6651
	u16 cleaned_count = igb_desc_unused(rx_ring);
6652

6653 6654
	do {
		union e1000_adv_rx_desc *rx_desc;
6655

6656 6657 6658 6659 6660
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6661

6662
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6663

6664 6665
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6666

6667 6668 6669 6670 6671 6672
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();

6673
		/* retrieve a buffer from the ring */
6674
		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6675

6676 6677 6678
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6679

6680
		cleaned_count++;
6681

6682 6683 6684
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6685 6686 6687 6688 6689

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6690 6691
		}

6692
		/* probably a little skewed due to removing CRC */
6693 6694
		total_bytes += skb->len;

6695 6696
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6697

J
Jiri Pirko 已提交
6698
		napi_gro_receive(&q_vector->napi, skb);
6699

6700 6701 6702
		/* reset skb pointer */
		skb = NULL;

6703 6704 6705
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6706

6707 6708 6709
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6710
	u64_stats_update_begin(&rx_ring->rx_syncp);
6711 6712
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6713
	u64_stats_update_end(&rx_ring->rx_syncp);
6714 6715
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6716 6717

	if (cleaned_count)
6718
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6719

6720
	return (total_packets < budget);
6721 6722
}

6723
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6724
				  struct igb_rx_buffer *bi)
6725 6726
{
	struct page *page = bi->page;
6727
	dma_addr_t dma;
6728

6729 6730
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6731 6732
		return true;

6733 6734 6735 6736 6737
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6738 6739
	}

6740 6741
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6742

6743
	/* if mapping failed free memory back to system since
6744 6745
	 * there isn't much point in holding memory we can't use
	 */
6746
	if (dma_mapping_error(rx_ring->dev, dma)) {
6747 6748
		__free_page(page);

6749 6750 6751 6752
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6753
	bi->dma = dma;
6754 6755
	bi->page = page;
	bi->page_offset = 0;
6756

6757 6758 6759
	return true;
}

6760
/**
6761 6762
 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
 *  @adapter: address of board private structure
6763
 **/
6764
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6765 6766
{
	union e1000_adv_rx_desc *rx_desc;
6767
	struct igb_rx_buffer *bi;
6768
	u16 i = rx_ring->next_to_use;
6769

6770 6771 6772 6773
	/* nothing to do */
	if (!cleaned_count)
		return;

6774
	rx_desc = IGB_RX_DESC(rx_ring, i);
6775
	bi = &rx_ring->rx_buffer_info[i];
6776
	i -= rx_ring->count;
6777

6778
	do {
6779
		if (!igb_alloc_mapped_page(rx_ring, bi))
6780
			break;
6781

6782
		/* Refresh the desc even if buffer_addrs didn't change
6783 6784
		 * because each write-back erases this info.
		 */
6785
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6786

6787 6788
		rx_desc++;
		bi++;
6789
		i++;
6790
		if (unlikely(!i)) {
6791
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6792
			bi = rx_ring->rx_buffer_info;
6793 6794 6795 6796 6797
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6798 6799 6800

		cleaned_count--;
	} while (cleaned_count);
6801

6802 6803
	i += rx_ring->count;

6804
	if (rx_ring->next_to_use != i) {
6805
		/* record the next descriptor to use */
6806 6807
		rx_ring->next_to_use = i;

6808 6809 6810
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

6811
		/* Force memory writes to complete before letting h/w
6812 6813
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6814 6815
		 * such as IA-64).
		 */
6816
		wmb();
6817
		writel(i, rx_ring->tail);
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6840 6841
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6864
	case SIOCSHWTSTAMP:
6865
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6866 6867 6868 6869 6870
	default:
		return -EOPNOTSUPP;
	}
}

6871 6872 6873 6874
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6875
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6876 6877 6878 6879 6880 6881 6882 6883 6884
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6885
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6886 6887 6888 6889 6890
		return -E1000_ERR_CONFIG;

	return 0;
}

6891
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6892 6893 6894 6895
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6896
	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6897

6898
	if (enable) {
6899 6900 6901 6902 6903
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6904
		/* Disable CFI check */
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6915
	igb_rlpml_set(adapter);
6916 6917
}

6918 6919
static int igb_vlan_rx_add_vid(struct net_device *netdev,
			       __be16 proto, u16 vid)
6920 6921 6922
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6923
	int pf_id = adapter->vfs_allocated_count;
6924

6925 6926
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6927

6928 6929
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6930 6931

	set_bit(vid, adapter->active_vlans);
6932 6933

	return 0;
6934 6935
}

6936 6937
static int igb_vlan_rx_kill_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
6938 6939 6940
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6941
	int pf_id = adapter->vfs_allocated_count;
6942
	s32 err;
6943

6944 6945
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6946

6947 6948
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6949
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6950 6951

	clear_bit(vid, adapter->active_vlans);
6952 6953

	return 0;
6954 6955 6956 6957
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6958
	u16 vid;
6959

6960 6961
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6962
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6963
		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6964 6965
}

6966
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6967
{
6968
	struct pci_dev *pdev = adapter->pdev;
6969 6970 6971 6972
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6973
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
6974 6975
	 * for the switch() below to work
	 */
6976 6977 6978
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
	/* Fiber NIC's only allow 1000 gbps Full duplex
	 * and 100Mbps Full duplex for 100baseFx sfp
	 */
	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
		switch (spd + dplx) {
		case SPEED_10 + DUPLEX_HALF:
		case SPEED_10 + DUPLEX_FULL:
		case SPEED_100 + DUPLEX_HALF:
			goto err_inval;
		default:
			break;
		}
	}
6992

6993
	switch (spd + dplx) {
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
7012
		goto err_inval;
7013
	}
7014 7015 7016 7017

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

7018
	return 0;
7019 7020 7021 7022

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
7023 7024
}

Y
Yan, Zheng 已提交
7025 7026
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
7027 7028 7029 7030
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
7031
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
7032
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7033 7034 7035 7036 7037 7038
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
7039
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
7040
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
7041

7042
	igb_clear_interrupt_scheme(adapter);
7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
7056
		igb_set_rx_mode(netdev);
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
7074
		igb_disable_pcie_master(hw);
7075 7076 7077 7078 7079 7080 7081 7082

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

7083 7084
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
7085 7086 7087
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
7088 7089

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7090 7091
	 * would have already happened in close and is redundant.
	 */
7092 7093 7094 7095 7096 7097 7098 7099
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
7100
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
7101
static int igb_suspend(struct device *dev)
7102 7103 7104
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
7105
	struct pci_dev *pdev = to_pci_dev(dev);
7106

Y
Yan, Zheng 已提交
7107
	retval = __igb_shutdown(pdev, &wake, 0);
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
7120
#endif /* CONFIG_PM_SLEEP */
7121

Y
Yan, Zheng 已提交
7122
static int igb_resume(struct device *dev)
7123
{
Y
Yan, Zheng 已提交
7124
	struct pci_dev *pdev = to_pci_dev(dev);
7125 7126 7127 7128 7129 7130 7131
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
7132
	pci_save_state(pdev);
T
Taku Izumi 已提交
7133

7134
	err = pci_enable_device_mem(pdev);
7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

7145
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
7146 7147
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
7148 7149 7150
	}

	igb_reset(adapter);
7151 7152

	/* let the f/w know that the h/w is now under the control of the
7153 7154
	 * driver.
	 */
7155 7156
	igb_get_hw_control(adapter);

7157 7158
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
7159
	if (netdev->flags & IFF_UP) {
7160
		rtnl_lock();
Y
Yan, Zheng 已提交
7161
		err = __igb_open(netdev, true);
7162
		rtnl_unlock();
A
Alexander Duyck 已提交
7163 7164 7165
		if (err)
			return err;
	}
7166 7167

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7200 7201 7202

	return 0;
}
Y
Yan, Zheng 已提交
7203 7204 7205 7206 7207 7208

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
7209 7210 7211 7212
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
7213 7214
	bool wake;

Y
Yan, Zheng 已提交
7215
	__igb_shutdown(pdev, &wake, 0);
7216 7217 7218 7219 7220

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7221 7222
}

7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7289
#ifdef CONFIG_NET_POLL_CONTROLLER
7290
/* Polling 'interrupt' - used by things like netconsole to send skbs
7291 7292 7293 7294 7295 7296
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7297
	struct e1000_hw *hw = &adapter->hw;
7298
	struct igb_q_vector *q_vector;
7299 7300
	int i;

7301
	for (i = 0; i < adapter->num_q_vectors; i++) {
7302 7303 7304 7305 7306
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7307
		napi_schedule(&q_vector->napi);
7308
	}
7309 7310 7311 7312
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
7313 7314 7315
 *  igb_io_error_detected - called when PCI error is detected
 *  @pdev: Pointer to PCI device
 *  @state: The current pci connection state
7316
 *
7317 7318 7319
 *  This function is called after a PCI bus error affecting
 *  this device has been detected.
 **/
7320 7321 7322 7323 7324 7325 7326 7327
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7328 7329 7330
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7331 7332 7333 7334 7335 7336 7337 7338 7339
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
7340 7341
 *  igb_io_slot_reset - called after the pci bus has been reset.
 *  @pdev: Pointer to PCI device
7342
 *
7343 7344 7345
 *  Restart the card from scratch, as if from a cold-boot. Implementation
 *  resembles the first-half of the igb_resume routine.
 **/
7346 7347 7348 7349 7350
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7351
	pci_ers_result_t result;
T
Taku Izumi 已提交
7352
	int err;
7353

7354
	if (pci_enable_device_mem(pdev)) {
7355 7356
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7357 7358 7359 7360
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7361
		pci_save_state(pdev);
7362

7363 7364
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7365

7366 7367 7368 7369
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7370

7371 7372
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
7373 7374 7375
		dev_err(&pdev->dev,
			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
			err);
7376 7377
		/* non-fatal, continue */
	}
7378 7379

	return result;
7380 7381 7382
}

/**
7383 7384
 *  igb_io_resume - called when traffic can start flowing again.
 *  @pdev: Pointer to PCI device
7385
 *
7386 7387 7388
 *  This callback is called when the error recovery driver tells us that
 *  its OK to resume normal operation. Implementation resembles the
 *  second-half of the igb_resume routine.
7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
7405 7406
	 * driver.
	 */
7407 7408 7409
	igb_get_hw_control(adapter);
}

7410
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7411
			     u8 qsel)
7412 7413 7414 7415 7416 7417 7418 7419
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7420
		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7437
static int igb_set_vf_mac(struct igb_adapter *adapter,
7438
			  int vf, unsigned char *mac_addr)
7439 7440
{
	struct e1000_hw *hw = &adapter->hw;
7441
	/* VF MAC addresses start at end of receive addresses and moves
7442 7443
	 * towards the first, as a result a collision should not be possible
	 */
7444
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7445

7446
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7447

7448
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7449 7450 7451 7452

	return 0;
}

7453 7454 7455 7456 7457 7458 7459
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7460 7461
	dev_info(&adapter->pdev->dev,
		 "Reload the VF driver to make this change effective.");
7462
	if (test_bit(__IGB_DOWN, &adapter->state)) {
7463 7464 7465 7466
		dev_warn(&adapter->pdev->dev,
			 "The VF MAC address has been set, but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev,
			 "Bring the PF device up before attempting to use the VF device.\n");
7467 7468 7469 7470
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
7493 7494
		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
			 tx_rate;
7495 7496

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7497 7498
		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
			      E1000_RTTBCNRC_RF_INT_MASK);
7499 7500 7501 7502 7503 7504
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7505
	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
L
Lior Levy 已提交
7506 7507 7508
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
7527
			 "Link speed has been changed. VF Transmit rate is disabled\n");
7528 7529 7530 7531 7532 7533 7534
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
7535 7536
				      adapter->vf_data[i].tx_rate,
				      actual_link_speed);
7537 7538 7539
	}
}

7540 7541
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7560 7561
}

L
Lior Levy 已提交
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_val, reg_offset;

	if (!adapter->vfs_allocated_count)
		return -EOPNOTSUPP;

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;

	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
	reg_val = rd32(reg_offset);
	if (setting)
		reg_val |= ((1 << vf) |
			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	else
		reg_val &= ~((1 << vf) |
			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	wr32(reg_offset, reg_val);

	adapter->vf_data[vf].spoofchk_enabled = setting;
	return E1000_SUCCESS;
}

7589 7590 7591 7592 7593 7594 7595 7596
static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7597
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7598 7599
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
L
Lior Levy 已提交
7600
	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7601 7602 7603
	return 0;
}

7604 7605 7606
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7607
	u32 reg;
7608

7609 7610
	switch (hw->mac.type) {
	case e1000_82575:
7611 7612
	case e1000_i210:
	case e1000_i211:
7613
	case e1000_i354:
7614 7615
	default:
		/* replication is not supported for 82575 */
7616
		return;
7617 7618 7619 7620 7621 7622 7623 7624 7625 7626
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7627 7628
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7629 7630
		break;
	}
7631

7632 7633 7634
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7635
		igb_vmdq_set_anti_spoofing_pf(hw, true,
7636
					      adapter->vfs_allocated_count);
7637 7638 7639 7640
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7641 7642
}

7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

7656
			/* DMA Coalescing high water mark needs to be greater
7657 7658
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7659
			 */
7660 7661 7662 7663 7664 7665 7666 7667 7668
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

7669
			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7670 7671 7672 7673 7674
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7675 7676 7677 7678 7679 7680 7681 7682 7683 7684
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7685 7686

			/* Disable BMC-to-OS Watchdog Enable */
7687 7688 7689
			if (hw->mac.type != e1000_i354)
				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;

7690 7691
			wr32(E1000_DMACR, reg);

7692
			/* no lower threshold to disable
7693 7694 7695 7696 7697 7698 7699 7700
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

7701
			/* free space in tx packet buffer to wake from
7702 7703 7704 7705 7706
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

7707
			/* make low power state decision controlled
7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

7721 7722
/**
 *  igb_read_i2c_byte - Reads 8 bit word over I2C
C
Carolyn Wyborny 已提交
7723 7724 7725 7726 7727 7728 7729
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
7730
 **/
C
Carolyn Wyborny 已提交
7731
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7732
		      u8 dev_addr, u8 *data)
C
Carolyn Wyborny 已提交
7733 7734
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7735
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
	    != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return E1000_SUCCESS;
	}
}

7759 7760
/**
 *  igb_write_i2c_byte - Writes 8 bit word over I2C
C
Carolyn Wyborny 已提交
7761 7762 7763 7764 7765 7766 7767
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
7768
 **/
C
Carolyn Wyborny 已提交
7769
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7770
		       u8 dev_addr, u8 data)
C
Carolyn Wyborny 已提交
7771 7772
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7773
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return E1000_SUCCESS;

}
7791
/* igb_main.c */