i915_gem_shmem.c 15.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2014-2016 Intel Corporation
 */

#include <linux/pagevec.h>
#include <linux/swap.h>

M
Matthew Auld 已提交
10
#include "gem/i915_gem_region.h"
11
#include "i915_drv.h"
M
Matthew Auld 已提交
12
#include "i915_gemfs.h"
13
#include "i915_gem_object.h"
14
#include "i915_scatterlist.h"
15
#include "i915_trace.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

static int shmem_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
M
Matthew Auld 已提交
31
	struct intel_memory_region *mem = obj->mm.region;
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
	struct address_space *mapping;
	struct sg_table *st;
	struct scatterlist *sg;
	struct sgt_iter sgt_iter;
	struct page *page;
	unsigned long last_pfn = 0;	/* suppress gcc warning */
	unsigned int max_segment = i915_sg_segment_size();
	unsigned int sg_page_sizes;
	gfp_t noreclaim;
	int ret;

	/*
	 * Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);

	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
M
Matthew Auld 已提交
57
	if (obj->base.size > resource_size(&mem->region))
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
		return -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		return -ENOMEM;

rebuild_st:
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
	mapping = obj->base.filp->f_mapping;
	mapping_set_unevictable(mapping);
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

	sg = st->sgl;
	st->nents = 0;
	sg_page_sizes = 0;
	for (i = 0; i < page_count; i++) {
		const unsigned int shrink[] = {
86
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
			cond_resched();
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
			if (!IS_ERR(page))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

			i915_gem_shrink(i915, 2 * page_count, NULL, *s++);

			/*
			 * We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
			 */
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);

				/*
				 * Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
				 * this we want __GFP_RETRY_MAYFAIL.
				 */
				gfp |= __GFP_RETRY_MAYFAIL;
			}
		} while (1);

		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
			if (i) {
				sg_page_sizes |= sg->length;
				sg = sg_next(sg);
			}
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);

		/* Check that the i965g/gm workaround works. */
150
		GEM_BUG_ON(gfp & __GFP_DMA32 && last_pfn >= 0x00100000UL);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	}
	if (sg) { /* loop terminated early; short sg table */
		sg_page_sizes |= sg->length;
		sg_mark_end(sg);
	}

	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

	ret = i915_gem_gtt_prepare_pages(obj, st);
	if (ret) {
		/*
		 * DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&i915->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}

	if (i915_gem_object_needs_bit17_swizzle(obj))
		i915_gem_object_do_bit_17_swizzle(obj, st);

	__i915_gem_object_set_pages(obj, st, sg_page_sizes);

	return 0;

err_sg:
	sg_mark_end(sg);
err_pages:
	mapping_clear_unevictable(mapping);
193 194 195 196 197 198 199 200 201
	if (sg != st->sgl) {
		struct pagevec pvec;

		pagevec_init(&pvec);
		for_each_sgt_page(page, sgt_iter, st) {
			if (!pagevec_add(&pvec, page))
				check_release_pagevec(&pvec);
		}
		if (pagevec_count(&pvec))
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
			check_release_pagevec(&pvec);
	}
	sg_free_table(st);
	kfree(st);

	/*
	 * shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
static void
shmem_truncate(struct drm_i915_gem_object *obj)
{
	/*
	 * Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
	obj->mm.madv = __I915_MADV_PURGED;
	obj->mm.pages = ERR_PTR(-EFAULT);
}

static void
shmem_writeback(struct drm_i915_gem_object *obj)
{
	struct address_space *mapping;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = SWAP_CLUSTER_MAX,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1,
	};
	unsigned long i;

	/*
	 * Leave mmapings intact (GTT will have been revoked on unbinding,
	 * leaving only CPU mmapings around) and add those pages to the LRU
	 * instead of invoking writeback so they are aged and paged out
	 * as normal.
	 */
	mapping = obj->base.filp->f_mapping;

	/* Begin writeback on each dirty page */
	for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) {
		struct page *page;

261 262
		page = find_lock_page(mapping, i);
		if (!page)
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
			continue;

		if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
			int ret;

			SetPageReclaim(page);
			ret = mapping->a_ops->writepage(page, &wbc);
			if (!PageWriteback(page))
				ClearPageReclaim(page);
			if (!ret)
				goto put;
		}
		unlock_page(page);
put:
		put_page(page);
	}
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
void
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
				struct sg_table *pages,
				bool needs_clflush)
{
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);

	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;

	if (needs_clflush &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
		drm_clflush_sg(pages);

	__start_cpu_write(obj);
}

static void
shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
{
	struct sgt_iter sgt_iter;
	struct pagevec pvec;
	struct page *page;

	__i915_gem_object_release_shmem(obj, pages, true);

	i915_gem_gtt_finish_pages(obj, pages);

	if (i915_gem_object_needs_bit17_swizzle(obj))
		i915_gem_object_save_bit_17_swizzle(obj, pages);

	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, pages) {
		if (obj->mm.dirty)
			set_page_dirty(page);

		if (obj->mm.madv == I915_MADV_WILLNEED)
			mark_page_accessed(page);

		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
	obj->mm.dirty = false;

	sg_free_table(pages);
	kfree(pages);
}

static int
shmem_pwrite(struct drm_i915_gem_object *obj,
	     const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Caller already validated user args */
	GEM_BUG_ON(!access_ok(user_data, arg->size));

	/*
	 * Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (i915_gem_object_has_pages(obj))
		return -ENODEV;

	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

	/*
	 * Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;
		char c;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		/* Prefault the user page to reduce potential recursion */
		err = __get_user(c, user_data);
		if (err)
			return err;

		err = __get_user(c, user_data + len - 1);
		if (err)
			return err;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap_atomic(page);
		unwritten = __copy_from_user_inatomic(vaddr + pg,
						      user_data,
						      len);
		kunmap_atomic(vaddr);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		/* We don't handle -EFAULT, leave it to the caller to check */
		if (unwritten)
			return -ENODEV;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

424 425
static void shmem_release(struct drm_i915_gem_object *obj)
{
M
Matthew Auld 已提交
426 427
	i915_gem_object_release_memory_region(obj);

428 429 430
	fput(obj->base.filp);
}

431
const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
432
	.name = "i915_gem_object_shmem",
433 434 435 436 437
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,

	.get_pages = shmem_get_pages,
	.put_pages = shmem_put_pages,
438 439
	.truncate = shmem_truncate,
	.writeback = shmem_writeback,
440 441

	.pwrite = shmem_pwrite,
442 443

	.release = shmem_release,
444 445
};

M
Matthew Auld 已提交
446 447 448
static int __create_shmem(struct drm_i915_private *i915,
			  struct drm_gem_object *obj,
			  resource_size_t size)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
{
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(&i915->drm, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);
	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;
	return 0;
}

M
Matthew Auld 已提交
467 468 469 470
static struct drm_i915_gem_object *
create_shmem(struct intel_memory_region *mem,
	     resource_size_t size,
	     unsigned int flags)
471
{
472
	static struct lock_class_key lock_class;
M
Matthew Auld 已提交
473
	struct drm_i915_private *i915 = mem->i915;
474 475 476 477 478 479 480 481 482 483
	struct drm_i915_gem_object *obj;
	struct address_space *mapping;
	unsigned int cache_level;
	gfp_t mask;
	int ret;

	obj = i915_gem_object_alloc();
	if (!obj)
		return ERR_PTR(-ENOMEM);

M
Matthew Auld 已提交
484
	ret = __create_shmem(i915, &obj->base, size);
485 486 487 488 489 490 491 492 493 494 495 496 497 498
	if (ret)
		goto fail;

	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_I965GM(i915) || IS_I965G(i915)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

	mapping = obj->base.filp->f_mapping;
	mapping_set_gfp_mask(mapping, mask);
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));

499
	i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;

	if (HAS_LLC(i915))
		/* On some devices, we can have the GPU use the LLC (the CPU
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;

	i915_gem_object_set_cache_coherency(obj, cache_level);

M
Matthew Auld 已提交
523
	i915_gem_object_init_memory_region(obj, mem, 0);
524 525 526 527 528 529 530 531

	return obj;

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
}

M
Matthew Auld 已提交
532 533 534 535 536 537 538 539
struct drm_i915_gem_object *
i915_gem_object_create_shmem(struct drm_i915_private *i915,
			     resource_size_t size)
{
	return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
					     size, 0);
}

540 541 542
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
M
Matthew Auld 已提交
543
				       const void *data, resource_size_t size)
544 545 546
{
	struct drm_i915_gem_object *obj;
	struct file *file;
M
Matthew Auld 已提交
547
	resource_size_t offset;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	int err;

	obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
	if (IS_ERR(obj))
		return obj;

	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);

	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;

		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;

		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);

	return obj;

fail:
	i915_gem_object_put(obj);
	return ERR_PTR(err);
}
M
Matthew Auld 已提交
590 591 592 593 594 595 596 597 598 599 600

static int init_shmem(struct intel_memory_region *mem)
{
	int err;

	err = i915_gemfs_init(mem->i915);
	if (err) {
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n",
			 err);
	}

601 602
	intel_memory_region_set_name(mem, "system");

M
Matthew Auld 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
	return 0; /* Don't error, we can simply fallback to the kernel mnt */
}

static void release_shmem(struct intel_memory_region *mem)
{
	i915_gemfs_fini(mem->i915);
}

static const struct intel_memory_region_ops shmem_region_ops = {
	.init = init_shmem,
	.release = release_shmem,
	.create_object = create_shmem,
};

struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915)
{
	return intel_memory_region_create(i915, 0,
					  totalram_pages() << PAGE_SHIFT,
					  PAGE_SIZE, 0,
					  &shmem_region_ops);
}