algif_aead.c 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * algif_aead: User-space interface for AEAD algorithms
 *
 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
 *
 * This file provides the user-space API for AEAD ciphers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * The following concept of the memory management is used:
 *
 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
 * filled by user space with the data submitted via sendpage/sendmsg. Filling
 * up the TX SGL does not cause a crypto operation -- the data will only be
 * tracked by the kernel. Upon receipt of one recvmsg call, the caller must
 * provide a buffer which is tracked with the RX SGL.
 *
 * During the processing of the recvmsg operation, the cipher request is
 * allocated and prepared. As part of the recvmsg operation, the processed
 * TX buffers are extracted from the TX SGL into a separate SGL.
 *
 * After the completion of the crypto operation, the RX SGL and the cipher
 * request is released. The extracted TX SGL parts are released together with
 * the RX SGL release.
28 29
 */

30
#include <crypto/internal/aead.h>
31 32
#include <crypto/scatterwalk.h>
#include <crypto/if_alg.h>
33 34
#include <crypto/skcipher.h>
#include <crypto/null.h>
35 36 37 38 39 40 41 42
#include <linux/init.h>
#include <linux/list.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/net.h>
#include <net/sock.h>

43 44 45
struct aead_tfm {
	struct crypto_aead *aead;
	bool has_key;
46
	struct crypto_skcipher *null_tfm;
47 48
};

49 50 51 52 53
static inline bool aead_sufficient_data(struct sock *sk)
{
	struct alg_sock *ask = alg_sk(sk);
	struct sock *psk = ask->parent;
	struct alg_sock *pask = alg_sk(psk);
54
	struct af_alg_ctx *ctx = ask->private;
55 56 57
	struct aead_tfm *aeadc = pask->private;
	struct crypto_aead *tfm = aeadc->aead;
	unsigned int as = crypto_aead_authsize(tfm);
58

59 60 61 62 63
	/*
	 * The minimum amount of memory needed for an AEAD cipher is
	 * the AAD and in case of decryption the tag.
	 */
	return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
64 65
}

66
static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
67 68 69
{
	struct sock *sk = sock->sk;
	struct alg_sock *ask = alg_sk(sk);
70 71 72 73 74
	struct sock *psk = ask->parent;
	struct alg_sock *pask = alg_sk(psk);
	struct aead_tfm *aeadc = pask->private;
	struct crypto_aead *tfm = aeadc->aead;
	unsigned int ivsize = crypto_aead_ivsize(tfm);
75

76
	return af_alg_sendmsg(sock, msg, size, ivsize);
77 78
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92
static int crypto_aead_copy_sgl(struct crypto_skcipher *null_tfm,
				struct scatterlist *src,
				struct scatterlist *dst, unsigned int len)
{
	SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);

	skcipher_request_set_tfm(skreq, null_tfm);
	skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_BACKLOG,
				      NULL, NULL);
	skcipher_request_set_crypt(skreq, src, dst, len, NULL);

	return crypto_skcipher_encrypt(skreq);
}

93 94
static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
			 size_t ignored, int flags)
95 96 97
{
	struct sock *sk = sock->sk;
	struct alg_sock *ask = alg_sk(sk);
98 99
	struct sock *psk = ask->parent;
	struct alg_sock *pask = alg_sk(psk);
100
	struct af_alg_ctx *ctx = ask->private;
101 102
	struct aead_tfm *aeadc = pask->private;
	struct crypto_aead *tfm = aeadc->aead;
103
	struct crypto_skcipher *null_tfm = aeadc->null_tfm;
104
	unsigned int i, as = crypto_aead_authsize(tfm);
105
	struct af_alg_async_req *areq;
106 107
	struct af_alg_tsgl *tsgl, *tmp;
	struct scatterlist *rsgl_src, *tsgl_src = NULL;
108 109 110 111 112
	int err = 0;
	size_t used = 0;		/* [in]  TX bufs to be en/decrypted */
	size_t outlen = 0;		/* [out] RX bufs produced by kernel */
	size_t usedpages = 0;		/* [in]  RX bufs to be used from user */
	size_t processed = 0;		/* [in]  TX bufs to be consumed */
113 114

	/*
115 116
	 * Data length provided by caller via sendmsg/sendpage that has not
	 * yet been processed.
117 118 119 120 121 122 123 124 125 126 127 128
	 */
	used = ctx->used;

	/*
	 * Make sure sufficient data is present -- note, the same check is
	 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg
	 * shall provide an information to the data sender that something is
	 * wrong, but they are irrelevant to maintain the kernel integrity.
	 * We need this check here too in case user space decides to not honor
	 * the error message in sendmsg/sendpage and still call recvmsg. This
	 * check here protects the kernel integrity.
	 */
129 130
	if (!aead_sufficient_data(sk))
		return -EINVAL;
131

132 133 134 135 136 137 138 139 140 141 142 143
	/*
	 * Calculate the minimum output buffer size holding the result of the
	 * cipher operation. When encrypting data, the receiving buffer is
	 * larger by the tag length compared to the input buffer as the
	 * encryption operation generates the tag. For decryption, the input
	 * buffer provides the tag which is consumed resulting in only the
	 * plaintext without a buffer for the tag returned to the caller.
	 */
	if (ctx->enc)
		outlen = used + as;
	else
		outlen = used - as;
144

145 146 147 148
	/*
	 * The cipher operation input data is reduced by the associated data
	 * length as this data is processed separately later on.
	 */
149
	used -= ctx->aead_assoclen;
150

151
	/* Allocate cipher request for current operation. */
152 153 154 155
	areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
				     crypto_aead_reqsize(tfm));
	if (IS_ERR(areq))
		return PTR_ERR(areq);
156 157

	/* convert iovecs of output buffers into RX SGL */
158 159 160
	err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
	if (err)
		goto free;
161

162 163 164 165 166 167 168
	/*
	 * Ensure output buffer is sufficiently large. If the caller provides
	 * less buffer space, only use the relative required input size. This
	 * allows AIO operation where the caller sent all data to be processed
	 * and the AIO operation performs the operation on the different chunks
	 * of the input data.
	 */
169
	if (usedpages < outlen) {
170
		size_t less = outlen - usedpages;
171

172 173 174 175 176 177 178
		if (used < less) {
			err = -EINVAL;
			goto free;
		}
		used -= less;
		outlen -= less;
	}
179

180
	processed = used + ctx->aead_assoclen;
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
		for (i = 0; i < tsgl->cur; i++) {
			struct scatterlist *process_sg = tsgl->sg + i;

			if (!(process_sg->length) || !sg_page(process_sg))
				continue;
			tsgl_src = process_sg;
			break;
		}
		if (tsgl_src)
			break;
	}
	if (processed && !tsgl_src) {
		err = -EFAULT;
		goto free;
	}
197

198
	/*
199 200 201 202 203 204 205 206 207 208
	 * Copy of AAD from source to destination
	 *
	 * The AAD is copied to the destination buffer without change. Even
	 * when user space uses an in-place cipher operation, the kernel
	 * will copy the data as it does not see whether such in-place operation
	 * is initiated.
	 *
	 * To ensure efficiency, the following implementation ensure that the
	 * ciphers are invoked to perform a crypto operation in-place. This
	 * is achieved by memory management specified as follows.
209
	 */
210 211

	/* Use the RX SGL as source (and destination) for crypto op. */
212
	rsgl_src = areq->first_rsgl.sgl.sg;
213 214 215 216 217 218

	if (ctx->enc) {
		/*
		 * Encryption operation - The in-place cipher operation is
		 * achieved by the following operation:
		 *
219
		 * TX SGL: AAD || PT
220 221 222
		 *	    |	   |
		 *	    | copy |
		 *	    v	   v
223
		 * RX SGL: AAD || PT || Tag
224
		 */
225
		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
226 227 228
					   areq->first_rsgl.sgl.sg, processed);
		if (err)
			goto free;
229
		af_alg_pull_tsgl(sk, processed, NULL, 0);
230 231 232 233 234 235 236 237 238 239 240 241 242
	} else {
		/*
		 * Decryption operation - To achieve an in-place cipher
		 * operation, the following  SGL structure is used:
		 *
		 * TX SGL: AAD || CT || Tag
		 *	    |	   |	 ^
		 *	    | copy |	 | Create SGL link.
		 *	    v	   v	 |
		 * RX SGL: AAD || CT ----+
		 */

		 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
243
		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
244 245 246 247 248
					   areq->first_rsgl.sgl.sg, outlen);
		if (err)
			goto free;

		/* Create TX SGL for tag and chain it to RX SGL. */
249 250
		areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
						       processed - as);
251 252 253 254 255 256 257 258 259 260 261 262
		if (!areq->tsgl_entries)
			areq->tsgl_entries = 1;
		areq->tsgl = sock_kmalloc(sk, sizeof(*areq->tsgl) *
					      areq->tsgl_entries,
					  GFP_KERNEL);
		if (!areq->tsgl) {
			err = -ENOMEM;
			goto free;
		}
		sg_init_table(areq->tsgl, areq->tsgl_entries);

		/* Release TX SGL, except for tag data and reassign tag data. */
263
		af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
264 265

		/* chain the areq TX SGL holding the tag with RX SGL */
266
		if (usedpages) {
267
			/* RX SGL present */
268
			struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
269 270 271 272 273 274

			sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
			sg_chain(sgl_prev->sg, sgl_prev->npages + 1,
				 areq->tsgl);
		} else
			/* no RX SGL present (e.g. authentication only) */
275
			rsgl_src = areq->tsgl;
276 277 278
	}

	/* Initialize the crypto operation */
279
	aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
280
			       areq->first_rsgl.sgl.sg, used, ctx->iv);
281 282
	aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
	aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
283 284 285

	if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
		/* AIO operation */
286
		sock_hold(sk);
287
		areq->iocb = msg->msg_iocb;
288
		aead_request_set_callback(&areq->cra_u.aead_req,
289
					  CRYPTO_TFM_REQ_MAY_BACKLOG,
290 291 292
					  af_alg_async_cb, areq);
		err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
				 crypto_aead_decrypt(&areq->cra_u.aead_req);
293 294 295 296 297 298 299 300 301 302

		/* AIO operation in progress */
		if (err == -EINPROGRESS || err == -EBUSY) {
			/* Remember output size that will be generated. */
			areq->outlen = outlen;

			return -EIOCBQUEUED;
		}

		sock_put(sk);
303 304
	} else {
		/* Synchronous operation */
305
		aead_request_set_callback(&areq->cra_u.aead_req,
306
					  CRYPTO_TFM_REQ_MAY_BACKLOG,
307 308
					  crypto_req_done, &ctx->wait);
		err = crypto_wait_req(ctx->enc ?
309 310
				crypto_aead_encrypt(&areq->cra_u.aead_req) :
				crypto_aead_decrypt(&areq->cra_u.aead_req),
311
				&ctx->wait);
312 313
	}

314 315

free:
316
	af_alg_free_resources(areq);
317 318 319 320

	return err ? err : outlen;
}

321 322
static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
			size_t ignored, int flags)
323
{
324 325 326 327 328 329 330 331 332 333 334 335
	struct sock *sk = sock->sk;
	int ret = 0;

	lock_sock(sk);
	while (msg_data_left(msg)) {
		int err = _aead_recvmsg(sock, msg, ignored, flags);

		/*
		 * This error covers -EIOCBQUEUED which implies that we can
		 * only handle one AIO request. If the caller wants to have
		 * multiple AIO requests in parallel, he must make multiple
		 * separate AIO calls.
336 337
		 *
		 * Also return the error if no data has been processed so far.
338 339
		 */
		if (err <= 0) {
340
			if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
341 342 343 344 345 346 347 348
				ret = err;
			goto out;
		}

		ret += err;
	}

out:
349
	af_alg_wmem_wakeup(sk);
350 351
	release_sock(sk);
	return ret;
352 353
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
static struct proto_ops algif_aead_ops = {
	.family		=	PF_ALG,

	.connect	=	sock_no_connect,
	.socketpair	=	sock_no_socketpair,
	.getname	=	sock_no_getname,
	.ioctl		=	sock_no_ioctl,
	.listen		=	sock_no_listen,
	.shutdown	=	sock_no_shutdown,
	.getsockopt	=	sock_no_getsockopt,
	.mmap		=	sock_no_mmap,
	.bind		=	sock_no_bind,
	.accept		=	sock_no_accept,
	.setsockopt	=	sock_no_setsockopt,

	.release	=	af_alg_release,
	.sendmsg	=	aead_sendmsg,
371
	.sendpage	=	af_alg_sendpage,
372
	.recvmsg	=	aead_recvmsg,
373
	.poll		=	af_alg_poll,
374 375
};

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
static int aead_check_key(struct socket *sock)
{
	int err = 0;
	struct sock *psk;
	struct alg_sock *pask;
	struct aead_tfm *tfm;
	struct sock *sk = sock->sk;
	struct alg_sock *ask = alg_sk(sk);

	lock_sock(sk);
	if (ask->refcnt)
		goto unlock_child;

	psk = ask->parent;
	pask = alg_sk(ask->parent);
	tfm = pask->private;

	err = -ENOKEY;
	lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
	if (!tfm->has_key)
		goto unlock;

	if (!pask->refcnt++)
		sock_hold(psk);

	ask->refcnt = 1;
	sock_put(psk);

	err = 0;

unlock:
	release_sock(psk);
unlock_child:
	release_sock(sk);

	return err;
}

static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
				  size_t size)
{
	int err;

	err = aead_check_key(sock);
	if (err)
		return err;

	return aead_sendmsg(sock, msg, size);
}

static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page,
				       int offset, size_t size, int flags)
{
	int err;

	err = aead_check_key(sock);
	if (err)
		return err;

435
	return af_alg_sendpage(sock, page, offset, size, flags);
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
}

static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
				  size_t ignored, int flags)
{
	int err;

	err = aead_check_key(sock);
	if (err)
		return err;

	return aead_recvmsg(sock, msg, ignored, flags);
}

static struct proto_ops algif_aead_ops_nokey = {
	.family		=	PF_ALG,

	.connect	=	sock_no_connect,
	.socketpair	=	sock_no_socketpair,
	.getname	=	sock_no_getname,
	.ioctl		=	sock_no_ioctl,
	.listen		=	sock_no_listen,
	.shutdown	=	sock_no_shutdown,
	.getsockopt	=	sock_no_getsockopt,
	.mmap		=	sock_no_mmap,
	.bind		=	sock_no_bind,
	.accept		=	sock_no_accept,
	.setsockopt	=	sock_no_setsockopt,

	.release	=	af_alg_release,
	.sendmsg	=	aead_sendmsg_nokey,
	.sendpage	=	aead_sendpage_nokey,
	.recvmsg	=	aead_recvmsg_nokey,
469
	.poll		=	af_alg_poll,
470 471
};

472 473
static void *aead_bind(const char *name, u32 type, u32 mask)
{
474 475
	struct aead_tfm *tfm;
	struct crypto_aead *aead;
476
	struct crypto_skcipher *null_tfm;
477 478 479 480 481 482 483 484 485 486 487

	tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
	if (!tfm)
		return ERR_PTR(-ENOMEM);

	aead = crypto_alloc_aead(name, type, mask);
	if (IS_ERR(aead)) {
		kfree(tfm);
		return ERR_CAST(aead);
	}

488 489 490 491 492 493 494
	null_tfm = crypto_get_default_null_skcipher2();
	if (IS_ERR(null_tfm)) {
		crypto_free_aead(aead);
		kfree(tfm);
		return ERR_CAST(null_tfm);
	}

495
	tfm->aead = aead;
496
	tfm->null_tfm = null_tfm;
497 498

	return tfm;
499 500 501 502
}

static void aead_release(void *private)
{
503 504 505 506
	struct aead_tfm *tfm = private;

	crypto_free_aead(tfm->aead);
	kfree(tfm);
507 508 509 510
}

static int aead_setauthsize(void *private, unsigned int authsize)
{
511 512 513
	struct aead_tfm *tfm = private;

	return crypto_aead_setauthsize(tfm->aead, authsize);
514 515 516 517
}

static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
{
518 519 520 521 522 523 524
	struct aead_tfm *tfm = private;
	int err;

	err = crypto_aead_setkey(tfm->aead, key, keylen);
	tfm->has_key = !err;

	return err;
525 526 527 528 529
}

static void aead_sock_destruct(struct sock *sk)
{
	struct alg_sock *ask = alg_sk(sk);
530
	struct af_alg_ctx *ctx = ask->private;
531 532 533 534 535
	struct sock *psk = ask->parent;
	struct alg_sock *pask = alg_sk(psk);
	struct aead_tfm *aeadc = pask->private;
	struct crypto_aead *tfm = aeadc->aead;
	unsigned int ivlen = crypto_aead_ivsize(tfm);
536

537
	af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
538
	crypto_put_default_null_skcipher2();
539 540 541 542 543
	sock_kzfree_s(sk, ctx->iv, ivlen);
	sock_kfree_s(sk, ctx, ctx->len);
	af_alg_release_parent(sk);
}

544
static int aead_accept_parent_nokey(void *private, struct sock *sk)
545
{
546
	struct af_alg_ctx *ctx;
547
	struct alg_sock *ask = alg_sk(sk);
548 549
	struct aead_tfm *tfm = private;
	struct crypto_aead *aead = tfm->aead;
550
	unsigned int len = sizeof(*ctx);
551
	unsigned int ivlen = crypto_aead_ivsize(aead);
552 553 554 555 556 557 558 559 560 561 562 563 564

	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;
	memset(ctx, 0, len);

	ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
	if (!ctx->iv) {
		sock_kfree_s(sk, ctx, len);
		return -ENOMEM;
	}
	memset(ctx->iv, 0, ivlen);

565
	INIT_LIST_HEAD(&ctx->tsgl_list);
566 567
	ctx->len = len;
	ctx->used = 0;
568
	ctx->rcvused = 0;
569 570 571 572
	ctx->more = 0;
	ctx->merge = 0;
	ctx->enc = 0;
	ctx->aead_assoclen = 0;
573
	crypto_init_wait(&ctx->wait);
574 575 576 577 578 579 580 581

	ask->private = ctx;

	sk->sk_destruct = aead_sock_destruct;

	return 0;
}

582 583 584 585 586 587 588 589 590 591
static int aead_accept_parent(void *private, struct sock *sk)
{
	struct aead_tfm *tfm = private;

	if (!tfm->has_key)
		return -ENOKEY;

	return aead_accept_parent_nokey(private, sk);
}

592 593 594 595 596 597
static const struct af_alg_type algif_type_aead = {
	.bind		=	aead_bind,
	.release	=	aead_release,
	.setkey		=	aead_setkey,
	.setauthsize	=	aead_setauthsize,
	.accept		=	aead_accept_parent,
598
	.accept_nokey	=	aead_accept_parent_nokey,
599
	.ops		=	&algif_aead_ops,
600
	.ops_nokey	=	&algif_aead_ops_nokey,
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	.name		=	"aead",
	.owner		=	THIS_MODULE
};

static int __init algif_aead_init(void)
{
	return af_alg_register_type(&algif_type_aead);
}

static void __exit algif_aead_exit(void)
{
	int err = af_alg_unregister_type(&algif_type_aead);
	BUG_ON(err);
}

module_init(algif_aead_init);
module_exit(algif_aead_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");