mem.c 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 *    Copyright (C) 1996 Paul Mackerras
 *  Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
 *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
 *
 *  Derived from "arch/i386/mm/init.c"
 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
 */

#include <linux/config.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/initrd.h>
#include <linux/pagemap.h>

#include <asm/pgalloc.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/btext.h>
#include <asm/tlb.h>
#include <asm/bootinfo.h>
#include <asm/prom.h>
48 49
#include <asm/lmb.h>
#include <asm/sections.h>
50 51 52 53 54 55 56 57

#include "mmu_decl.h"

#ifndef CPU_FTR_COHERENT_ICACHE
#define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */
#define CPU_FTR_NOEXECUTE	0
#endif

58 59 60
int init_bootmem_done;
int mem_init_done;

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/*
 * This is called by /dev/mem to know if a given address has to
 * be mapped non-cacheable or not
 */
int page_is_ram(unsigned long pfn)
{
	unsigned long paddr = (pfn << PAGE_SHIFT);

#ifndef CONFIG_PPC64	/* XXX for now */
	return paddr < __pa(high_memory);
#else
	int i;
	for (i=0; i < lmb.memory.cnt; i++) {
		unsigned long base;

		base = lmb.memory.region[i].base;

		if ((paddr >= base) &&
			(paddr < (base + lmb.memory.region[i].size))) {
			return 1;
		}
	}

	return 0;
#endif
}
EXPORT_SYMBOL(page_is_ram);

pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
			      unsigned long size, pgprot_t vma_prot)
{
	if (ppc_md.phys_mem_access_prot)
		return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);

	if (!page_is_ram(addr >> PAGE_SHIFT))
		vma_prot = __pgprot(pgprot_val(vma_prot)
				    | _PAGE_GUARDED | _PAGE_NO_CACHE);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);

void show_mem(void)
{
	unsigned long total = 0, reserved = 0;
	unsigned long shared = 0, cached = 0;
	unsigned long highmem = 0;
	struct page *page;
	pg_data_t *pgdat;
	unsigned long i;

	printk("Mem-info:\n");
	show_free_areas();
	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
	for_each_pgdat(pgdat) {
		for (i = 0; i < pgdat->node_spanned_pages; i++) {
			page = pgdat_page_nr(pgdat, i);
			total++;
			if (PageHighMem(page))
				highmem++;
			if (PageReserved(page))
				reserved++;
			else if (PageSwapCache(page))
				cached++;
			else if (page_count(page))
				shared += page_count(page) - 1;
		}
	}
	printk("%ld pages of RAM\n", total);
#ifdef CONFIG_HIGHMEM
	printk("%ld pages of HIGHMEM\n", highmem);
#endif
	printk("%ld reserved pages\n", reserved);
	printk("%ld pages shared\n", shared);
	printk("%ld pages swap cached\n", cached);
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
/*
 * Initialize the bootmem system and give it all the memory we
 * have available.  If we are using highmem, we only put the
 * lowmem into the bootmem system.
 */
#ifndef CONFIG_NEED_MULTIPLE_NODES
void __init do_init_bootmem(void)
{
	unsigned long i;
	unsigned long start, bootmap_pages;
	unsigned long total_pages;
	int boot_mapsize;

	max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
#ifdef CONFIG_HIGHMEM
	total_pages = total_lowmem >> PAGE_SHIFT;
#endif

	/*
	 * Find an area to use for the bootmem bitmap.  Calculate the size of
	 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
	 * Add 1 additional page in case the address isn't page-aligned.
	 */
	bootmap_pages = bootmem_bootmap_pages(total_pages);

	start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
	BUG_ON(!start);

	boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);

	/* Add all physical memory to the bootmem map, mark each area
	 * present.
	 */
	for (i = 0; i < lmb.memory.cnt; i++) {
		unsigned long base = lmb.memory.region[i].base;
		unsigned long size = lmb_size_bytes(&lmb.memory, i);
#ifdef CONFIG_HIGHMEM
		if (base >= total_lowmem)
			continue;
		if (base + size > total_lowmem)
			size = total_lowmem - base;
#endif
		free_bootmem(base, size);
	}

	/* reserve the sections we're already using */
	for (i = 0; i < lmb.reserved.cnt; i++)
		reserve_bootmem(lmb.reserved.region[i].base,
				lmb_size_bytes(&lmb.reserved, i));

	/* XXX need to clip this if using highmem? */
	for (i = 0; i < lmb.memory.cnt; i++)
		memory_present(0, lmb_start_pfn(&lmb.memory, i),
			       lmb_end_pfn(&lmb.memory, i));
	init_bootmem_done = 1;
}

/*
 * paging_init() sets up the page tables - in fact we've already done this.
 */
void __init paging_init(void)
{
	unsigned long zones_size[MAX_NR_ZONES];
	unsigned long zholes_size[MAX_NR_ZONES];
	unsigned long total_ram = lmb_phys_mem_size();
	unsigned long top_of_ram = lmb_end_of_DRAM();

#ifdef CONFIG_HIGHMEM
	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */
	pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
			(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
	map_page(KMAP_FIX_BEGIN, 0, 0);	/* XXX gross */
	kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
			(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
	kmap_prot = PAGE_KERNEL;
#endif /* CONFIG_HIGHMEM */

	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
	       top_of_ram, total_ram);
	printk(KERN_INFO "Memory hole size: %ldMB\n",
	       (top_of_ram - total_ram) >> 20);
	/*
	 * All pages are DMA-able so we put them all in the DMA zone.
	 */
	memset(zones_size, 0, sizeof(zones_size));
	memset(zholes_size, 0, sizeof(zholes_size));

	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;

#ifdef CONFIG_HIGHMEM
	zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
	zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
	zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
#else
	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
#endif /* CONFIG_HIGHMEM */

	free_area_init_node(0, NODE_DATA(0), zones_size,
			    __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
}
#endif /* ! CONFIG_NEED_MULTIPLE_NODES */

void __init mem_init(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
	int nid;
#endif
	pg_data_t *pgdat;
	unsigned long i;
	struct page *page;
	unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;

	num_physpages = max_pfn;	/* RAM is assumed contiguous */
	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);

#ifdef CONFIG_NEED_MULTIPLE_NODES
        for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages != 0) {
			printk("freeing bootmem node %x\n", nid);
			totalram_pages +=
				free_all_bootmem_node(NODE_DATA(nid));
		}
	}
#else
	max_mapnr = num_physpages;
	totalram_pages += free_all_bootmem();
#endif
	for_each_pgdat(pgdat) {
		for (i = 0; i < pgdat->node_spanned_pages; i++) {
			page = pgdat_page_nr(pgdat, i);
			if (PageReserved(page))
				reservedpages++;
		}
	}

	codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
	datasize = (unsigned long)&__init_begin - (unsigned long)&_sdata;
	initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
	bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;

#ifdef CONFIG_HIGHMEM
	{
		unsigned long pfn, highmem_mapnr;

		highmem_mapnr = total_lowmem >> PAGE_SHIFT;
		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
			struct page *page = pfn_to_page(pfn);

			ClearPageReserved(page);
			set_page_count(page, 1);
			__free_page(page);
			totalhigh_pages++;
		}
		totalram_pages += totalhigh_pages;
		printk(KERN_INFO "High memory: %luk\n",
		       totalhigh_pages << (PAGE_SHIFT-10));
	}
#endif /* CONFIG_HIGHMEM */

	printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
	       "%luk reserved, %luk data, %luk bss, %luk init)\n",
		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
		num_physpages << (PAGE_SHIFT-10),
		codesize >> 10,
		reservedpages << (PAGE_SHIFT-10),
		datasize >> 10,
		bsssize >> 10,
		initsize >> 10);

	mem_init_done = 1;

#ifdef CONFIG_PPC64
	/* Initialize the vDSO */
	vdso_init();
#endif
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/*
 * This is called when a page has been modified by the kernel.
 * It just marks the page as not i-cache clean.  We do the i-cache
 * flush later when the page is given to a user process, if necessary.
 */
void flush_dcache_page(struct page *page)
{
	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
		return;
	/* avoid an atomic op if possible */
	if (test_bit(PG_arch_1, &page->flags))
		clear_bit(PG_arch_1, &page->flags);
}
EXPORT_SYMBOL(flush_dcache_page);

void flush_dcache_icache_page(struct page *page)
{
#ifdef CONFIG_BOOKE
	void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
	__flush_dcache_icache(start);
	kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
#elif defined(CONFIG_8xx)
	/* On 8xx there is no need to kmap since highmem is not supported */
	__flush_dcache_icache(page_address(page)); 
#else
	__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
#endif

}
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
{
	clear_page(page);

	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
		return;
	/*
	 * We shouldnt have to do this, but some versions of glibc
	 * require it (ld.so assumes zero filled pages are icache clean)
	 * - Anton
	 */

	/* avoid an atomic op if possible */
	if (test_bit(PG_arch_1, &pg->flags))
		clear_bit(PG_arch_1, &pg->flags);
}
EXPORT_SYMBOL(clear_user_page);

void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
		    struct page *pg)
{
	copy_page(vto, vfrom);

	/*
	 * We should be able to use the following optimisation, however
	 * there are two problems.
	 * Firstly a bug in some versions of binutils meant PLT sections
	 * were not marked executable.
	 * Secondly the first word in the GOT section is blrl, used
	 * to establish the GOT address. Until recently the GOT was
	 * not marked executable.
	 * - Anton
	 */
#if 0
	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
		return;
#endif

	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
		return;

	/* avoid an atomic op if possible */
	if (test_bit(PG_arch_1, &pg->flags))
		clear_bit(PG_arch_1, &pg->flags);
}

void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
			     unsigned long addr, int len)
{
	unsigned long maddr;

	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
	flush_icache_range(maddr, maddr + len);
	kunmap(page);
}
EXPORT_SYMBOL(flush_icache_user_range);

/*
 * This is called at the end of handling a user page fault, when the
 * fault has been handled by updating a PTE in the linux page tables.
 * We use it to preload an HPTE into the hash table corresponding to
 * the updated linux PTE.
 * 
 * This must always be called with the mm->page_table_lock held
 */
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
		      pte_t pte)
{
	/* handle i-cache coherency */
	unsigned long pfn = pte_pfn(pte);
#ifdef CONFIG_PPC32
	pmd_t *pmd;
#else
	unsigned long vsid;
	void *pgdir;
	pte_t *ptep;
	int local = 0;
	cpumask_t tmp;
	unsigned long flags;
#endif

	/* handle i-cache coherency */
	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
	    !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
	    pfn_valid(pfn)) {
		struct page *page = pfn_to_page(pfn);
		if (!PageReserved(page)
		    && !test_bit(PG_arch_1, &page->flags)) {
			if (vma->vm_mm == current->active_mm) {
#ifdef CONFIG_8xx
			/* On 8xx, cache control instructions (particularly 
		 	 * "dcbst" from flush_dcache_icache) fault as write 
			 * operation if there is an unpopulated TLB entry 
			 * for the address in question. To workaround that, 
			 * we invalidate the TLB here, thus avoiding dcbst 
			 * misbehaviour.
			 */
				_tlbie(address);
#endif
				__flush_dcache_icache((void *) address);
			} else
				flush_dcache_icache_page(page);
			set_bit(PG_arch_1, &page->flags);
		}
	}

#ifdef CONFIG_PPC_STD_MMU
	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
	if (!pte_young(pte) || address >= TASK_SIZE)
		return;
#ifdef CONFIG_PPC32
	if (Hash == 0)
		return;
	pmd = pmd_offset(pgd_offset(vma->vm_mm, address), address);
	if (!pmd_none(*pmd))
		add_hash_page(vma->vm_mm->context, address, pmd_val(*pmd));
#else
	pgdir = vma->vm_mm->pgd;
	if (pgdir == NULL)
		return;

	ptep = find_linux_pte(pgdir, ea);
	if (!ptep)
		return;

	vsid = get_vsid(vma->vm_mm->context.id, ea);

	local_irq_save(flags);
	tmp = cpumask_of_cpu(smp_processor_id());
	if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
		local = 1;

	__hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
		    0x300, local);
	local_irq_restore(flags);
#endif
#endif
}