nvme.c 26.6 KB
Newer Older
M
Matthew Wilcox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * NVM Express device driver
 * Copyright (c) 2011, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include <linux/nvme.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kdev_t.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/version.h>

#define NVME_Q_DEPTH 1024
#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
#define NVME_MINORS 64

static int nvme_major;
module_param(nvme_major, int, 0);

/*
 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
 */
struct nvme_dev {
	struct list_head node;
	struct nvme_queue **queues;
	u32 __iomem *dbs;
	struct pci_dev *pci_dev;
	int instance;
	int queue_count;
	u32 ctrl_config;
	struct msix_entry *entry;
	struct nvme_bar __iomem *bar;
	struct list_head namespaces;
};

/*
 * An NVM Express namespace is equivalent to a SCSI LUN
 */
struct nvme_ns {
	struct list_head list;

	struct nvme_dev *dev;
	struct request_queue *queue;
	struct gendisk *disk;

	int ns_id;
	int lba_shift;
};

/*
 * An NVM Express queue.  Each device has at least two (one for admin
 * commands and one for I/O commands).
 */
struct nvme_queue {
	struct device *q_dmadev;
	spinlock_t q_lock;
	struct nvme_command *sq_cmds;
	volatile struct nvme_completion *cqes;
	dma_addr_t sq_dma_addr;
	dma_addr_t cq_dma_addr;
	wait_queue_head_t sq_full;
	struct bio_list sq_cong;
	u32 __iomem *q_db;
	u16 q_depth;
	u16 cq_vector;
	u16 sq_head;
	u16 sq_tail;
	u16 cq_head;
M
Matthew Wilcox 已提交
96
	u16 cq_phase;
M
Matthew Wilcox 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	unsigned long cmdid_data[];
};

/*
 * Check we didin't inadvertently grow the command struct
 */
static inline void _nvme_check_size(void)
{
	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
}

/**
 * alloc_cmdid - Allocate a Command ID
 * @param nvmeq The queue that will be used for this command
 * @param ctx A pointer that will be passed to the handler
 * @param handler The ID of the handler to call
 *
 * Allocate a Command ID for a queue.  The data passed in will
 * be passed to the completion handler.  This is implemented by using
 * the bottom two bits of the ctx pointer to store the handler ID.
 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
 * We can change this if it becomes a problem.
 */
static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
{
	int depth = nvmeq->q_depth;
	unsigned long data = (unsigned long)ctx | handler;
	int cmdid;

	BUG_ON((unsigned long)ctx & 3);

	do {
		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
		if (cmdid >= depth)
			return -EBUSY;
	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));

	nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
	return cmdid;
}

static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
								int handler)
{
	int cmdid;
	wait_event_killable(nvmeq->sq_full,
			(cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
	return (cmdid < 0) ? -EINTR : cmdid;
}

/* If you need more than four handlers, you'll need to change how
 * alloc_cmdid and nvme_process_cq work
 */
enum {
	sync_completion_id = 0,
	bio_completion_id,
};

static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
{
	unsigned long data;

	data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
	clear_bit(cmdid, nvmeq->cmdid_data);
	wake_up(&nvmeq->sq_full);
	return data;
}

static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
{
M
Matthew Wilcox 已提交
175 176 177 178 179 180
	int qid, cpu = get_cpu();
	if (cpu < ns->dev->queue_count)
		qid = cpu + 1;
	else
		qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
	return ns->dev->queues[qid];
M
Matthew Wilcox 已提交
181 182 183 184
}

static void put_nvmeq(struct nvme_queue *nvmeq)
{
M
Matthew Wilcox 已提交
185
	put_cpu();
M
Matthew Wilcox 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
}

/**
 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
 * @nvmeq: The queue to use
 * @cmd: The command to send
 *
 * Safe to use from interrupt context
 */
static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
{
	unsigned long flags;
	u16 tail;
	/* XXX: Need to check tail isn't going to overrun head */
	spin_lock_irqsave(&nvmeq->q_lock, flags);
	tail = nvmeq->sq_tail;
	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
	writel(tail, nvmeq->q_db);
	if (++tail == nvmeq->q_depth)
		tail = 0;
	nvmeq->sq_tail = tail;
	spin_unlock_irqrestore(&nvmeq->q_lock, flags);

	return 0;
}

struct nvme_req_info {
	struct bio *bio;
	int nents;
	struct scatterlist sg[0];
};

/* XXX: use a mempool */
static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
{
	return kmalloc(sizeof(struct nvme_req_info) +
			sizeof(struct scatterlist) * nseg, gfp);
}

static void free_info(struct nvme_req_info *info)
{
	kfree(info);
}

static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
						struct nvme_completion *cqe)
{
	struct nvme_req_info *info = ctx;
	struct bio *bio = info->bio;
	u16 status = le16_to_cpup(&cqe->status) >> 1;

	dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
	free_info(info);
	bio_endio(bio, status ? -EIO : 0);
}

static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
{
	struct bio_vec *bvec;
	struct scatterlist *sg = info->sg;
	int i, nsegs;

	sg_init_table(sg, psegs);
	bio_for_each_segment(bvec, bio, i) {
		sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
		/* XXX: handle non-mergable here */
		nsegs++;
	}
	info->nents = nsegs;

	return dma_map_sg(dev, info->sg, info->nents, dma_dir);
}

static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
								struct bio *bio)
{
	struct nvme_rw_command *cmnd;
	struct nvme_req_info *info;
	enum dma_data_direction dma_dir;
	int cmdid;
	u16 control;
	u32 dsmgmt;
	unsigned long flags;
	int psegs = bio_phys_segments(ns->queue, bio);

	info = alloc_info(psegs, GFP_NOIO);
	if (!info)
		goto congestion;
	info->bio = bio;

	cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
	if (unlikely(cmdid < 0))
		goto free_info;

	control = 0;
	if (bio->bi_rw & REQ_FUA)
		control |= NVME_RW_FUA;
	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	dsmgmt = 0;
	if (bio->bi_rw & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	spin_lock_irqsave(&nvmeq->q_lock, flags);
	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail].rw;

	if (bio_data_dir(bio)) {
		cmnd->opcode = nvme_cmd_write;
		dma_dir = DMA_TO_DEVICE;
	} else {
		cmnd->opcode = nvme_cmd_read;
		dma_dir = DMA_FROM_DEVICE;
	}

	nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);

	cmnd->flags = 1;
	cmnd->command_id = cmdid;
	cmnd->nsid = cpu_to_le32(ns->ns_id);
	cmnd->prp1 = cpu_to_le64(sg_phys(info->sg));
	/* XXX: Support more than one PRP */
	cmnd->slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
	cmnd->length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
	cmnd->control = cpu_to_le16(control);
	cmnd->dsmgmt = cpu_to_le32(dsmgmt);

	writel(nvmeq->sq_tail, nvmeq->q_db);
	if (++nvmeq->sq_tail == nvmeq->q_depth)
		nvmeq->sq_tail = 0;

	spin_unlock_irqrestore(&nvmeq->q_lock, flags);

	return 0;

 free_info:
	free_info(info);
 congestion:
	return -EBUSY;
}

/*
 * NB: return value of non-zero would mean that we were a stacking driver.
 * make_request must always succeed.
 */
static int nvme_make_request(struct request_queue *q, struct bio *bio)
{
	struct nvme_ns *ns = q->queuedata;
	struct nvme_queue *nvmeq = get_nvmeq(ns);

	if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
		blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
		bio_list_add(&nvmeq->sq_cong, bio);
	}
	put_nvmeq(nvmeq);

	return 0;
}

struct sync_cmd_info {
	struct task_struct *task;
	u32 result;
	int status;
};

static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
						struct nvme_completion *cqe)
{
	struct sync_cmd_info *cmdinfo = ctx;
	cmdinfo->result = le32_to_cpup(&cqe->result);
	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
	wake_up_process(cmdinfo->task);
}

typedef void (*completion_fn)(struct nvme_queue *, void *,
						struct nvme_completion *);

static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
{
M
Matthew Wilcox 已提交
367
	u16 head, phase;
M
Matthew Wilcox 已提交
368 369 370 371 372 373 374

	static const completion_fn completions[4] = {
		[sync_completion_id] = sync_completion,
		[bio_completion_id]  = bio_completion,
	};

	head = nvmeq->cq_head;
M
Matthew Wilcox 已提交
375
	phase = nvmeq->cq_phase;
M
Matthew Wilcox 已提交
376 377 378 379 380 381

	for (;;) {
		unsigned long data;
		void *ptr;
		unsigned char handler;
		struct nvme_completion cqe = nvmeq->cqes[head];
M
Matthew Wilcox 已提交
382
		if ((le16_to_cpu(cqe.status) & 1) != phase)
M
Matthew Wilcox 已提交
383 384 385 386
			break;
		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
		if (++head == nvmeq->q_depth) {
			head = 0;
M
Matthew Wilcox 已提交
387
			phase = !phase;
M
Matthew Wilcox 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401
		}

		data = free_cmdid(nvmeq, cqe.command_id);
		handler = data & 3;
		ptr = (void *)(data & ~3UL);
		completions[handler](nvmeq, ptr, &cqe);
	}

	/* If the controller ignores the cq head doorbell and continuously
	 * writes to the queue, it is theoretically possible to wrap around
	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
	 * requires that 0.1% of your interrupts are handled, so this isn't
	 * a big problem.
	 */
M
Matthew Wilcox 已提交
402
	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
M
Matthew Wilcox 已提交
403 404 405 406
		return IRQ_NONE;

	writel(head, nvmeq->q_db + 1);
	nvmeq->cq_head = head;
M
Matthew Wilcox 已提交
407
	nvmeq->cq_phase = phase;
M
Matthew Wilcox 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

	return IRQ_HANDLED;
}

static irqreturn_t nvme_irq(int irq, void *data)
{
	return nvme_process_cq(data);
}

/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
static int nvme_submit_sync_cmd(struct nvme_queue *q, struct nvme_command *cmd,
								u32 *result)
{
	int cmdid;
	struct sync_cmd_info cmdinfo;

	cmdinfo.task = current;
	cmdinfo.status = -EINTR;

	cmdid = alloc_cmdid_killable(q, &cmdinfo, sync_completion_id);
	if (cmdid < 0)
		return cmdid;
	cmd->common.command_id = cmdid;

	set_current_state(TASK_UNINTERRUPTIBLE);
	nvme_submit_cmd(q, cmd);
	schedule();

	if (result)
		*result = cmdinfo.result;

	return cmdinfo.status;
}

static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
								u32 *result)
{
	return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
}

static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
{
	int status;
	struct nvme_command c;

	memset(&c, 0, sizeof(c));
	c.delete_queue.opcode = opcode;
	c.delete_queue.qid = cpu_to_le16(id);

	status = nvme_submit_admin_cmd(dev, &c, NULL);
	if (status)
		return -EIO;
	return 0;
}

static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
						struct nvme_queue *nvmeq)
{
	int status;
	struct nvme_command c;
	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;

	memset(&c, 0, sizeof(c));
	c.create_cq.opcode = nvme_admin_create_cq;
	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
	c.create_cq.cqid = cpu_to_le16(qid);
	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
	c.create_cq.cq_flags = cpu_to_le16(flags);
	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);

	status = nvme_submit_admin_cmd(dev, &c, NULL);
	if (status)
		return -EIO;
	return 0;
}

static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
						struct nvme_queue *nvmeq)
{
	int status;
	struct nvme_command c;
	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;

	memset(&c, 0, sizeof(c));
	c.create_sq.opcode = nvme_admin_create_sq;
	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
	c.create_sq.sqid = cpu_to_le16(qid);
	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
	c.create_sq.sq_flags = cpu_to_le16(flags);
	c.create_sq.cqid = cpu_to_le16(qid);

	status = nvme_submit_admin_cmd(dev, &c, NULL);
	if (status)
		return -EIO;
	return 0;
}

static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
{
	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
}

static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
{
	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
}

static void nvme_free_queue(struct nvme_dev *dev, int qid)
{
	struct nvme_queue *nvmeq = dev->queues[qid];

	free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);

	/* Don't tell the adapter to delete the admin queue */
	if (qid) {
		adapter_delete_sq(dev, qid);
		adapter_delete_cq(dev, qid);
	}

	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
	kfree(nvmeq);
}

static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
							int depth, int vector)
{
	struct device *dmadev = &dev->pci_dev->dev;
	unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
	if (!nvmeq)
		return NULL;

	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
					&nvmeq->cq_dma_addr, GFP_KERNEL);
	if (!nvmeq->cqes)
		goto free_nvmeq;
	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));

	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
					&nvmeq->sq_dma_addr, GFP_KERNEL);
	if (!nvmeq->sq_cmds)
		goto free_cqdma;

	nvmeq->q_dmadev = dmadev;
	spin_lock_init(&nvmeq->q_lock);
	nvmeq->cq_head = 0;
M
Matthew Wilcox 已提交
560
	nvmeq->cq_phase = 1;
M
Matthew Wilcox 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	init_waitqueue_head(&nvmeq->sq_full);
	bio_list_init(&nvmeq->sq_cong);
	nvmeq->q_db = &dev->dbs[qid * 2];
	nvmeq->q_depth = depth;
	nvmeq->cq_vector = vector;

	return nvmeq;

 free_cqdma:
	dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
							nvmeq->cq_dma_addr);
 free_nvmeq:
	kfree(nvmeq);
	return NULL;
}

577 578 579 580 581 582 583
static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
							const char *name)
{
	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
				IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
}

M
Matthew Wilcox 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597
static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
					int qid, int cq_size, int vector)
{
	int result;
	struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);

	result = adapter_alloc_cq(dev, qid, nvmeq);
	if (result < 0)
		goto free_nvmeq;

	result = adapter_alloc_sq(dev, qid, nvmeq);
	if (result < 0)
		goto release_cq;

598
	result = queue_request_irq(dev, nvmeq, "nvme");
M
Matthew Wilcox 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	if (result < 0)
		goto release_sq;

	return nvmeq;

 release_sq:
	adapter_delete_sq(dev, qid);
 release_cq:
	adapter_delete_cq(dev, qid);
 free_nvmeq:
	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
	kfree(nvmeq);
	return NULL;
}

static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
{
	int result;
	u32 aqa;
	struct nvme_queue *nvmeq;

	dev->dbs = ((void __iomem *)dev->bar) + 4096;

	nvmeq = nvme_alloc_queue(dev, 0, 64, 0);

	aqa = nvmeq->q_depth - 1;
	aqa |= aqa << 16;

	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;

	writel(aqa, &dev->bar->aqa);
	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
	writel(dev->ctrl_config, &dev->bar->cc);

	while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
	}

645
	result = queue_request_irq(dev, nvmeq, "nvme admin");
M
Matthew Wilcox 已提交
646 647 648 649
	dev->queues[0] = nvmeq;
	return result;
}

650
static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
M
Matthew Wilcox 已提交
651 652
{
	struct nvme_dev *dev = ns->dev;
653
	int i, err, count, nents, offset;
M
Matthew Wilcox 已提交
654
	struct nvme_command c;
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	struct scatterlist sg[2];
	struct page *pages[2];

	if (addr & 3)
		return -EINVAL;
	offset = offset_in_page(addr);
	count = offset ? 2 : 1;

	err = get_user_pages_fast(addr, count, 1, pages);
	if (err < count) {
		count = err;
		err = -EFAULT;
		goto put_pages;
	}
	sg_init_table(sg, count);
	for (i = 0; i < count; i++)
		sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
	nents = dma_map_sg(&dev->pci_dev->dev, sg, count, DMA_FROM_DEVICE);
	if (!nents)
		goto put_pages;
M
Matthew Wilcox 已提交
675 676 677 678

	memset(&c, 0, sizeof(c));
	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
679 680 681 682 683 684 685 686 687
	c.identify.prp1 = cpu_to_le64(sg_dma_address(&sg[0]) + offset);
	if (count > 1) {
		u64 dma_addr;
		if (nents > 1)
			dma_addr = sg_dma_address(&sg[1]);
		else
			dma_addr = sg_dma_address(&sg[0]) + PAGE_SIZE;
		c.identify.prp2 = cpu_to_le64(dma_addr);
	}
M
Matthew Wilcox 已提交
688 689
	c.identify.cns = cpu_to_le32(cns);

690
	err = nvme_submit_admin_cmd(dev, &c, NULL);
M
Matthew Wilcox 已提交
691

692 693
	if (err)
		err = -EIO;
M
Matthew Wilcox 已提交
694

695 696 697 698
	dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
 put_pages:
	for (i = 0; i < count; i++)
		put_page(pages[i]);
M
Matthew Wilcox 已提交
699

700
	return err;
M
Matthew Wilcox 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
}

static int nvme_get_range_type(struct nvme_ns *ns, void __user *addr)
{
	struct nvme_dev *dev = ns->dev;
	int status;
	struct nvme_command c;
	void *page;
	dma_addr_t dma_addr;

	page = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
								GFP_KERNEL);

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(ns->ns_id);
	c.features.prp1 = cpu_to_le64(dma_addr);
	c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);

	status = nvme_submit_admin_cmd(dev, &c, NULL);

	/* XXX: Assuming first range for now */
	if (status)
		status = -EIO;
	else if (copy_to_user(addr, page, 64))
		status = -EFAULT;

	dma_free_coherent(&dev->pci_dev->dev, 4096, page, dma_addr);

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
							unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_IDENTIFY_NS:
740
		return nvme_identify(ns, arg, 0);
M
Matthew Wilcox 已提交
741
	case NVME_IOCTL_IDENTIFY_CTRL:
742
		return nvme_identify(ns, arg, 1);
M
Matthew Wilcox 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	case NVME_IOCTL_GET_RANGE_TYPE:
		return nvme_get_range_type(ns, (void __user *)arg);
	default:
		return -ENOTTY;
	}
}

static const struct block_device_operations nvme_fops = {
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
};

static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
	int lbaf;

	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
		return NULL;

	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
	if (!ns)
		return NULL;
	ns->queue = blk_alloc_queue(GFP_KERNEL);
	if (!ns->queue)
		goto out_free_ns;
	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
				QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
	blk_queue_make_request(ns->queue, nvme_make_request);
	ns->dev = dev;
	ns->queue->queuedata = ns;

	disk = alloc_disk(NVME_MINORS);
	if (!disk)
		goto out_free_queue;
	ns->ns_id = index;
	ns->disk = disk;
	lbaf = id->flbas & 0xf;
	ns->lba_shift = id->lbaf[lbaf].ds;

	disk->major = nvme_major;
	disk->minors = NVME_MINORS;
	disk->first_minor = NVME_MINORS * index;
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	return ns;

 out_free_queue:
	blk_cleanup_queue(ns->queue);
 out_free_ns:
	kfree(ns);
	return NULL;
}

static void nvme_ns_free(struct nvme_ns *ns)
{
	put_disk(ns->disk);
	blk_cleanup_queue(ns->queue);
	kfree(ns);
}

810
static int set_queue_count(struct nvme_dev *dev, int count)
M
Matthew Wilcox 已提交
811 812 813 814
{
	int status;
	u32 result;
	struct nvme_command c;
815
	u32 q_count = (count - 1) | ((count - 1) << 16);
M
Matthew Wilcox 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
	c.features.dword11 = cpu_to_le32(q_count);

	status = nvme_submit_admin_cmd(dev, &c, &result);
	if (status)
		return -EIO;
	return min(result & 0xffff, result >> 16) + 1;
}

static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
{
M
Matthew Wilcox 已提交
830
	int result, cpu, i, nr_queues;
M
Matthew Wilcox 已提交
831

M
Matthew Wilcox 已提交
832 833 834 835 836 837
	nr_queues = num_online_cpus();
	result = set_queue_count(dev, nr_queues);
	if (result < 0)
		return result;
	if (result < nr_queues)
		nr_queues = result;
M
Matthew Wilcox 已提交
838

M
Matthew Wilcox 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
	/* Deregister the admin queue's interrupt */
	free_irq(dev->entry[0].vector, dev->queues[0]);

	for (i = 0; i < nr_queues; i++)
		dev->entry[i].entry = i;
	for (;;) {
		result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
		if (result == 0) {
			break;
		} else if (result > 0) {
			nr_queues = result;
			continue;
		} else {
			nr_queues = 1;
			break;
		}
	}

	result = queue_request_irq(dev, dev->queues[0], "nvme admin");
	/* XXX: handle failure here */

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < nr_queues; i++) {
		irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
		cpu = cpumask_next(cpu, cpu_online_mask);
	}

	for (i = 0; i < nr_queues; i++) {
		dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
							NVME_Q_DEPTH, i);
		if (!dev->queues[i + 1])
			return -ENOMEM;
		dev->queue_count++;
	}
M
Matthew Wilcox 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995

	return 0;
}

static void nvme_free_queues(struct nvme_dev *dev)
{
	int i;

	for (i = dev->queue_count - 1; i >= 0; i--)
		nvme_free_queue(dev, i);
}

static int __devinit nvme_dev_add(struct nvme_dev *dev)
{
	int res, nn, i;
	struct nvme_ns *ns, *next;
	void *id;
	dma_addr_t dma_addr;
	struct nvme_command cid, crt;

	res = nvme_setup_io_queues(dev);
	if (res)
		return res;

	/* XXX: Switch to a SG list once prp2 works */
	id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
								GFP_KERNEL);

	memset(&cid, 0, sizeof(cid));
	cid.identify.opcode = nvme_admin_identify;
	cid.identify.nsid = 0;
	cid.identify.prp1 = cpu_to_le64(dma_addr);
	cid.identify.cns = cpu_to_le32(1);

	res = nvme_submit_admin_cmd(dev, &cid, NULL);
	if (res) {
		res = -EIO;
		goto out_free;
	}

	nn = le32_to_cpup(&((struct nvme_id_ctrl *)id)->nn);

	cid.identify.cns = 0;
	memset(&crt, 0, sizeof(crt));
	crt.features.opcode = nvme_admin_get_features;
	crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
	crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);

	for (i = 0; i < nn; i++) {
		cid.identify.nsid = cpu_to_le32(i);
		res = nvme_submit_admin_cmd(dev, &cid, NULL);
		if (res)
			continue;

		if (((struct nvme_id_ns *)id)->ncap == 0)
			continue;

		crt.features.nsid = cpu_to_le32(i);
		res = nvme_submit_admin_cmd(dev, &crt, NULL);
		if (res)
			continue;

		ns = nvme_alloc_ns(dev, i, id, id + 4096);
		if (ns)
			list_add_tail(&ns->list, &dev->namespaces);
	}
	list_for_each_entry(ns, &dev->namespaces, list)
		add_disk(ns->disk);

	dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
	return 0;

 out_free:
	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
		list_del(&ns->list);
		nvme_ns_free(ns);
	}

	dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
	return res;
}

static int nvme_dev_remove(struct nvme_dev *dev)
{
	struct nvme_ns *ns, *next;

	/* TODO: wait all I/O finished or cancel them */

	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
		list_del(&ns->list);
		del_gendisk(ns->disk);
		nvme_ns_free(ns);
	}

	nvme_free_queues(dev);

	return 0;
}

/* XXX: Use an ida or something to let remove / add work correctly */
static void nvme_set_instance(struct nvme_dev *dev)
{
	static int instance;
	dev->instance = instance++;
}

static void nvme_release_instance(struct nvme_dev *dev)
{
}

static int __devinit nvme_probe(struct pci_dev *pdev,
						const struct pci_device_id *id)
{
	int result = -ENOMEM;
	struct nvme_dev *dev;

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return -ENOMEM;
	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
								GFP_KERNEL);
	if (!dev->entry)
		goto free;
M
Matthew Wilcox 已提交
996 997
	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
								GFP_KERNEL);
M
Matthew Wilcox 已提交
998 999 1000 1001 1002 1003 1004 1005
	if (!dev->queues)
		goto free;

	INIT_LIST_HEAD(&dev->namespaces);
	dev->pci_dev = pdev;
	pci_set_drvdata(pdev, dev);
	dma_set_mask(&dev->pci_dev->dev, DMA_BIT_MASK(64));
	nvme_set_instance(dev);
1006
	dev->entry[0].vector = pdev->irq;
M
Matthew Wilcox 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
	if (!dev->bar) {
		result = -ENOMEM;
		goto disable;
	}

	result = nvme_configure_admin_queue(dev);
	if (result)
		goto unmap;
	dev->queue_count++;

	result = nvme_dev_add(dev);
	if (result)
		goto delete;
	return 0;

 delete:
	nvme_free_queues(dev);
 unmap:
	iounmap(dev->bar);
 disable:
	pci_disable_msix(pdev);
	nvme_release_instance(dev);
 free:
	kfree(dev->queues);
	kfree(dev->entry);
	kfree(dev);
	return result;
}

static void __devexit nvme_remove(struct pci_dev *pdev)
{
	struct nvme_dev *dev = pci_get_drvdata(pdev);
	nvme_dev_remove(dev);
	pci_disable_msix(pdev);
	iounmap(dev->bar);
	nvme_release_instance(dev);
	kfree(dev->queues);
	kfree(dev->entry);
	kfree(dev);
}

/* These functions are yet to be implemented */
#define nvme_error_detected NULL
#define nvme_dump_registers NULL
#define nvme_link_reset NULL
#define nvme_slot_reset NULL
#define nvme_error_resume NULL
#define nvme_suspend NULL
#define nvme_resume NULL

static struct pci_error_handlers nvme_err_handler = {
	.error_detected	= nvme_error_detected,
	.mmio_enabled	= nvme_dump_registers,
	.link_reset	= nvme_link_reset,
	.slot_reset	= nvme_slot_reset,
	.resume		= nvme_error_resume,
};

/* Move to pci_ids.h later */
#define PCI_CLASS_STORAGE_EXPRESS	0x010802

static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
	{ 0, }
};
MODULE_DEVICE_TABLE(pci, nvme_id_table);

static struct pci_driver nvme_driver = {
	.name		= "nvme",
	.id_table	= nvme_id_table,
	.probe		= nvme_probe,
	.remove		= __devexit_p(nvme_remove),
	.suspend	= nvme_suspend,
	.resume		= nvme_resume,
	.err_handler	= &nvme_err_handler,
};

static int __init nvme_init(void)
{
	int result;

	nvme_major = register_blkdev(nvme_major, "nvme");
	if (nvme_major <= 0)
		return -EBUSY;

	result = pci_register_driver(&nvme_driver);
	if (!result)
		return 0;

	unregister_blkdev(nvme_major, "nvme");
	return result;
}

static void __exit nvme_exit(void)
{
	pci_unregister_driver(&nvme_driver);
	unregister_blkdev(nvme_major, "nvme");
}

MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("0.1");
module_init(nvme_init);
module_exit(nvme_exit);