cipher.c 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Cipher algorithms supported by the CESA: DES, 3DES and AES.
 *
 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
 * Author: Arnaud Ebalard <arno@natisbad.org>
 *
 * This work is based on an initial version written by
 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 */

#include <crypto/aes.h>
16
#include <crypto/des.h>
17 18 19

#include "cesa.h"

20 21 22 23 24
struct mv_cesa_des_ctx {
	struct mv_cesa_ctx base;
	u8 key[DES_KEY_SIZE];
};

25 26 27 28 29
struct mv_cesa_aes_ctx {
	struct mv_cesa_ctx base;
	struct crypto_aes_ctx aes;
};

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
struct mv_cesa_ablkcipher_dma_iter {
	struct mv_cesa_dma_iter base;
	struct mv_cesa_sg_dma_iter src;
	struct mv_cesa_sg_dma_iter dst;
};

static inline void
mv_cesa_ablkcipher_req_iter_init(struct mv_cesa_ablkcipher_dma_iter *iter,
				 struct ablkcipher_request *req)
{
	mv_cesa_req_dma_iter_init(&iter->base, req->nbytes);
	mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
	mv_cesa_sg_dma_iter_init(&iter->dst, req->dst, DMA_FROM_DEVICE);
}

static inline bool
mv_cesa_ablkcipher_req_iter_next_op(struct mv_cesa_ablkcipher_dma_iter *iter)
{
	iter->src.op_offset = 0;
	iter->dst.op_offset = 0;

	return mv_cesa_req_dma_iter_next_op(&iter->base);
}

static inline void
mv_cesa_ablkcipher_dma_cleanup(struct ablkcipher_request *req)
{
	struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);

	if (req->dst != req->src) {
		dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents,
			     DMA_FROM_DEVICE);
		dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents,
			     DMA_TO_DEVICE);
	} else {
		dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents,
			     DMA_BIDIRECTIONAL);
	}
	mv_cesa_dma_cleanup(&creq->req.dma);
}

static inline void mv_cesa_ablkcipher_cleanup(struct ablkcipher_request *req)
{
	struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);

	if (creq->req.base.type == CESA_DMA_REQ)
		mv_cesa_ablkcipher_dma_cleanup(req);
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static void mv_cesa_ablkcipher_std_step(struct ablkcipher_request *req)
{
	struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
	struct mv_cesa_ablkcipher_std_req *sreq = &creq->req.std;
	struct mv_cesa_engine *engine = sreq->base.engine;
	size_t  len = min_t(size_t, req->nbytes - sreq->offset,
			    CESA_SA_SRAM_PAYLOAD_SIZE);

	len = sg_pcopy_to_buffer(req->src, creq->src_nents,
				 engine->sram + CESA_SA_DATA_SRAM_OFFSET,
				 len, sreq->offset);

	sreq->size = len;
	mv_cesa_set_crypt_op_len(&sreq->op, len);

	/* FIXME: only update enc_len field */
	if (!sreq->skip_ctx) {
		memcpy(engine->sram, &sreq->op, sizeof(sreq->op));
		sreq->skip_ctx = true;
	} else {
		memcpy(engine->sram, &sreq->op, sizeof(sreq->op.desc));
	}

	mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
	writel(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
	writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
}

static int mv_cesa_ablkcipher_std_process(struct ablkcipher_request *req,
					  u32 status)
{
	struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
	struct mv_cesa_ablkcipher_std_req *sreq = &creq->req.std;
	struct mv_cesa_engine *engine = sreq->base.engine;
	size_t len;

	len = sg_pcopy_from_buffer(req->dst, creq->dst_nents,
				   engine->sram + CESA_SA_DATA_SRAM_OFFSET,
				   sreq->size, sreq->offset);

	sreq->offset += len;
	if (sreq->offset < req->nbytes)
		return -EINPROGRESS;

	return 0;
}

static int mv_cesa_ablkcipher_process(struct crypto_async_request *req,
				      u32 status)
{
	struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
	struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(ablkreq);
	struct mv_cesa_ablkcipher_std_req *sreq = &creq->req.std;
	struct mv_cesa_engine *engine = sreq->base.engine;
	int ret;

135 136 137 138 139
	if (creq->req.base.type == CESA_DMA_REQ)
		ret = mv_cesa_dma_process(&creq->req.dma, status);
	else
		ret = mv_cesa_ablkcipher_std_process(ablkreq, status);

140 141 142 143 144 145 146 147 148 149 150 151
	if (ret)
		return ret;

	memcpy(ablkreq->info, engine->sram + CESA_SA_CRYPT_IV_SRAM_OFFSET,
	       crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(ablkreq)));

	return 0;
}

static void mv_cesa_ablkcipher_step(struct crypto_async_request *req)
{
	struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
152
	struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(ablkreq);
153

154 155 156 157 158 159 160 161 162 163 164 165 166
	if (creq->req.base.type == CESA_DMA_REQ)
		mv_cesa_dma_step(&creq->req.dma);
	else
		mv_cesa_ablkcipher_std_step(ablkreq);
}

static inline void
mv_cesa_ablkcipher_dma_prepare(struct ablkcipher_request *req)
{
	struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
	struct mv_cesa_tdma_req *dreq = &creq->req.dma;

	mv_cesa_dma_prepare(dreq, dreq->base.engine);
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
}

static inline void
mv_cesa_ablkcipher_std_prepare(struct ablkcipher_request *req)
{
	struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
	struct mv_cesa_ablkcipher_std_req *sreq = &creq->req.std;
	struct mv_cesa_engine *engine = sreq->base.engine;

	sreq->size = 0;
	sreq->offset = 0;
	mv_cesa_adjust_op(engine, &sreq->op);
	memcpy(engine->sram, &sreq->op, sizeof(sreq->op));
}

static inline void mv_cesa_ablkcipher_prepare(struct crypto_async_request *req,
					      struct mv_cesa_engine *engine)
{
	struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
	struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(ablkreq);

	creq->req.base.engine = engine;

190 191 192 193
	if (creq->req.base.type == CESA_DMA_REQ)
		mv_cesa_ablkcipher_dma_prepare(ablkreq);
	else
		mv_cesa_ablkcipher_std_prepare(ablkreq);
194 195 196 197 198
}

static inline void
mv_cesa_ablkcipher_req_cleanup(struct crypto_async_request *req)
{
199 200 201
	struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);

	mv_cesa_ablkcipher_cleanup(ablkreq);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
}

static const struct mv_cesa_req_ops mv_cesa_ablkcipher_req_ops = {
	.step = mv_cesa_ablkcipher_step,
	.process = mv_cesa_ablkcipher_process,
	.prepare = mv_cesa_ablkcipher_prepare,
	.cleanup = mv_cesa_ablkcipher_req_cleanup,
};

static int mv_cesa_ablkcipher_cra_init(struct crypto_tfm *tfm)
{
	struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(tfm);

	ctx->base.ops = &mv_cesa_ablkcipher_req_ops;

	tfm->crt_ablkcipher.reqsize = sizeof(struct mv_cesa_ablkcipher_req);

	return 0;
}

static int mv_cesa_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
			      unsigned int len)
{
	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
	struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(tfm);
	int remaining;
	int offset;
	int ret;
	int i;

	ret = crypto_aes_expand_key(&ctx->aes, key, len);
	if (ret) {
		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return ret;
	}

	remaining = (ctx->aes.key_length - 16) / 4;
	offset = ctx->aes.key_length + 24 - remaining;
	for (i = 0; i < remaining; i++)
		ctx->aes.key_dec[4 + i] =
			cpu_to_le32(ctx->aes.key_enc[offset + i]);

	return 0;
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
static int mv_cesa_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
			      unsigned int len)
{
	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
	struct mv_cesa_des_ctx *ctx = crypto_tfm_ctx(tfm);
	u32 tmp[DES_EXPKEY_WORDS];
	int ret;

	if (len != DES_KEY_SIZE) {
		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	ret = des_ekey(tmp, key);
	if (!ret && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
		return -EINVAL;
	}

	memcpy(ctx->key, key, DES_KEY_SIZE);

	return 0;
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static int mv_cesa_ablkcipher_dma_req_init(struct ablkcipher_request *req,
				const struct mv_cesa_op_ctx *op_templ)
{
	struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
		      GFP_KERNEL : GFP_ATOMIC;
	struct mv_cesa_tdma_req *dreq = &creq->req.dma;
	struct mv_cesa_ablkcipher_dma_iter iter;
	struct mv_cesa_tdma_chain chain;
	bool skip_ctx = false;
	int ret;

	dreq->base.type = CESA_DMA_REQ;
	dreq->chain.first = NULL;
	dreq->chain.last = NULL;

	if (req->src != req->dst) {
		ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
				 DMA_TO_DEVICE);
		if (!ret)
			return -ENOMEM;

		ret = dma_map_sg(cesa_dev->dev, req->dst, creq->dst_nents,
				 DMA_FROM_DEVICE);
		if (!ret) {
			ret = -ENOMEM;
			goto err_unmap_src;
		}
	} else {
		ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
				 DMA_BIDIRECTIONAL);
		if (!ret)
			return -ENOMEM;
	}

	mv_cesa_tdma_desc_iter_init(&chain);
	mv_cesa_ablkcipher_req_iter_init(&iter, req);

	do {
		struct mv_cesa_op_ctx *op;

		op = mv_cesa_dma_add_op(&chain, op_templ, skip_ctx, flags);
		if (IS_ERR(op)) {
			ret = PTR_ERR(op);
			goto err_free_tdma;
		}
		skip_ctx = true;

		mv_cesa_set_crypt_op_len(op, iter.base.op_len);

		/* Add input transfers */
		ret = mv_cesa_dma_add_op_transfers(&chain, &iter.base,
						   &iter.src, flags);
		if (ret)
			goto err_free_tdma;

		/* Add dummy desc to launch the crypto operation */
		ret = mv_cesa_dma_add_dummy_launch(&chain, flags);
		if (ret)
			goto err_free_tdma;

		/* Add output transfers */
		ret = mv_cesa_dma_add_op_transfers(&chain, &iter.base,
						   &iter.dst, flags);
		if (ret)
			goto err_free_tdma;

	} while (mv_cesa_ablkcipher_req_iter_next_op(&iter));

	dreq->chain = chain;

	return 0;

err_free_tdma:
	mv_cesa_dma_cleanup(dreq);
	if (req->dst != req->src)
		dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents,
			     DMA_FROM_DEVICE);

err_unmap_src:
	dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents,
		     req->dst != req->src ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL);

	return ret;
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static inline int
mv_cesa_ablkcipher_std_req_init(struct ablkcipher_request *req,
				const struct mv_cesa_op_ctx *op_templ)
{
	struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
	struct mv_cesa_ablkcipher_std_req *sreq = &creq->req.std;

	sreq->base.type = CESA_STD_REQ;
	sreq->op = *op_templ;
	sreq->skip_ctx = false;

	return 0;
}

static int mv_cesa_ablkcipher_req_init(struct ablkcipher_request *req,
				       struct mv_cesa_op_ctx *tmpl)
{
	struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
	unsigned int blksize = crypto_ablkcipher_blocksize(tfm);
377
	int ret;
378 379 380 381 382 383 384 385 386 387

	if (!IS_ALIGNED(req->nbytes, blksize))
		return -EINVAL;

	creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
	creq->dst_nents = sg_nents_for_len(req->dst, req->nbytes);

	mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_OP_CRYPT_ONLY,
			      CESA_SA_DESC_CFG_OP_MSK);

388 389 390 391 392 393 394
	/* TODO: add a threshold for DMA usage */
	if (cesa_dev->caps->has_tdma)
		ret = mv_cesa_ablkcipher_dma_req_init(req, tmpl);
	else
		ret = mv_cesa_ablkcipher_std_req_init(req, tmpl);

	return ret;
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
static int mv_cesa_des_op(struct ablkcipher_request *req,
			  struct mv_cesa_op_ctx *tmpl)
{
	struct mv_cesa_des_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	int ret;

	mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_DES,
			      CESA_SA_DESC_CFG_CRYPTM_MSK);

	memcpy(tmpl->ctx.blkcipher.key, ctx->key, DES_KEY_SIZE);

	ret = mv_cesa_ablkcipher_req_init(req, tmpl);
	if (ret)
		return ret;

	ret = mv_cesa_queue_req(&req->base);
	if (ret && ret != -EINPROGRESS)
		mv_cesa_ablkcipher_cleanup(req);

	return ret;
}

static int mv_cesa_ecb_des_encrypt(struct ablkcipher_request *req)
{
	struct mv_cesa_op_ctx tmpl;

	mv_cesa_set_op_cfg(&tmpl,
			   CESA_SA_DESC_CFG_CRYPTCM_ECB |
			   CESA_SA_DESC_CFG_DIR_ENC);

	return mv_cesa_des_op(req, &tmpl);
}

static int mv_cesa_ecb_des_decrypt(struct ablkcipher_request *req)
{
	struct mv_cesa_op_ctx tmpl;

	mv_cesa_set_op_cfg(&tmpl,
			   CESA_SA_DESC_CFG_CRYPTCM_ECB |
			   CESA_SA_DESC_CFG_DIR_DEC);

	return mv_cesa_des_op(req, &tmpl);
}

struct crypto_alg mv_cesa_ecb_des_alg = {
	.cra_name = "ecb(des)",
	.cra_driver_name = "mv-ecb-des",
	.cra_priority = 300,
	.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
		     CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
	.cra_blocksize = DES_BLOCK_SIZE,
	.cra_ctxsize = sizeof(struct mv_cesa_des_ctx),
	.cra_alignmask = 0,
	.cra_type = &crypto_ablkcipher_type,
	.cra_module = THIS_MODULE,
	.cra_init = mv_cesa_ablkcipher_cra_init,
	.cra_u = {
		.ablkcipher = {
			.min_keysize = DES_KEY_SIZE,
			.max_keysize = DES_KEY_SIZE,
			.setkey = mv_cesa_des_setkey,
			.encrypt = mv_cesa_ecb_des_encrypt,
			.decrypt = mv_cesa_ecb_des_decrypt,
		},
	},
};

static int mv_cesa_cbc_des_op(struct ablkcipher_request *req,
			      struct mv_cesa_op_ctx *tmpl)
{
	mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC,
			      CESA_SA_DESC_CFG_CRYPTCM_MSK);

	memcpy(tmpl->ctx.blkcipher.iv, req->info, DES_BLOCK_SIZE);

	return mv_cesa_des_op(req, tmpl);
}

static int mv_cesa_cbc_des_encrypt(struct ablkcipher_request *req)
{
	struct mv_cesa_op_ctx tmpl;

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC);

	return mv_cesa_cbc_des_op(req, &tmpl);
}

static int mv_cesa_cbc_des_decrypt(struct ablkcipher_request *req)
{
	struct mv_cesa_op_ctx tmpl;

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC);

	return mv_cesa_cbc_des_op(req, &tmpl);
}

struct crypto_alg mv_cesa_cbc_des_alg = {
	.cra_name = "cbc(des)",
	.cra_driver_name = "mv-cbc-des",
	.cra_priority = 300,
	.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
		     CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
	.cra_blocksize = DES_BLOCK_SIZE,
	.cra_ctxsize = sizeof(struct mv_cesa_des_ctx),
	.cra_alignmask = 0,
	.cra_type = &crypto_ablkcipher_type,
	.cra_module = THIS_MODULE,
	.cra_init = mv_cesa_ablkcipher_cra_init,
	.cra_u = {
		.ablkcipher = {
			.min_keysize = DES_KEY_SIZE,
			.max_keysize = DES_KEY_SIZE,
			.ivsize	     = DES_BLOCK_SIZE,
			.setkey = mv_cesa_des_setkey,
			.encrypt = mv_cesa_cbc_des_encrypt,
			.decrypt = mv_cesa_cbc_des_decrypt,
		},
	},
};

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
static int mv_cesa_aes_op(struct ablkcipher_request *req,
			  struct mv_cesa_op_ctx *tmpl)
{
	struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	int ret, i;
	u32 *key;
	u32 cfg;

	cfg = CESA_SA_DESC_CFG_CRYPTM_AES;

	if (mv_cesa_get_op_cfg(tmpl) & CESA_SA_DESC_CFG_DIR_DEC)
		key = ctx->aes.key_dec;
	else
		key = ctx->aes.key_enc;

	for (i = 0; i < ctx->aes.key_length / sizeof(u32); i++)
		tmpl->ctx.blkcipher.key[i] = cpu_to_le32(key[i]);

	if (ctx->aes.key_length == 24)
		cfg |= CESA_SA_DESC_CFG_AES_LEN_192;
	else if (ctx->aes.key_length == 32)
		cfg |= CESA_SA_DESC_CFG_AES_LEN_256;

	mv_cesa_update_op_cfg(tmpl, cfg,
			      CESA_SA_DESC_CFG_CRYPTM_MSK |
			      CESA_SA_DESC_CFG_AES_LEN_MSK);

	ret = mv_cesa_ablkcipher_req_init(req, tmpl);
	if (ret)
		return ret;

548 549 550 551 552
	ret = mv_cesa_queue_req(&req->base);
	if (ret && ret != -EINPROGRESS)
		mv_cesa_ablkcipher_cleanup(req);

	return ret;
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
}

static int mv_cesa_ecb_aes_encrypt(struct ablkcipher_request *req)
{
	struct mv_cesa_op_ctx tmpl;

	mv_cesa_set_op_cfg(&tmpl,
			   CESA_SA_DESC_CFG_CRYPTCM_ECB |
			   CESA_SA_DESC_CFG_DIR_ENC);

	return mv_cesa_aes_op(req, &tmpl);
}

static int mv_cesa_ecb_aes_decrypt(struct ablkcipher_request *req)
{
	struct mv_cesa_op_ctx tmpl;

	mv_cesa_set_op_cfg(&tmpl,
			   CESA_SA_DESC_CFG_CRYPTCM_ECB |
			   CESA_SA_DESC_CFG_DIR_DEC);

	return mv_cesa_aes_op(req, &tmpl);
}

struct crypto_alg mv_cesa_ecb_aes_alg = {
	.cra_name = "ecb(aes)",
	.cra_driver_name = "mv-ecb-aes",
	.cra_priority = 300,
	.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
		     CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
	.cra_blocksize = AES_BLOCK_SIZE,
	.cra_ctxsize = sizeof(struct mv_cesa_aes_ctx),
	.cra_alignmask = 0,
	.cra_type = &crypto_ablkcipher_type,
	.cra_module = THIS_MODULE,
	.cra_init = mv_cesa_ablkcipher_cra_init,
	.cra_u = {
		.ablkcipher = {
			.min_keysize = AES_MIN_KEY_SIZE,
			.max_keysize = AES_MAX_KEY_SIZE,
			.setkey = mv_cesa_aes_setkey,
			.encrypt = mv_cesa_ecb_aes_encrypt,
			.decrypt = mv_cesa_ecb_aes_decrypt,
		},
	},
};

static int mv_cesa_cbc_aes_op(struct ablkcipher_request *req,
			      struct mv_cesa_op_ctx *tmpl)
{
	mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC,
			      CESA_SA_DESC_CFG_CRYPTCM_MSK);
	memcpy(tmpl->ctx.blkcipher.iv, req->info, AES_BLOCK_SIZE);

	return mv_cesa_aes_op(req, tmpl);
}

static int mv_cesa_cbc_aes_encrypt(struct ablkcipher_request *req)
{
	struct mv_cesa_op_ctx tmpl;

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC);

	return mv_cesa_cbc_aes_op(req, &tmpl);
}

static int mv_cesa_cbc_aes_decrypt(struct ablkcipher_request *req)
{
	struct mv_cesa_op_ctx tmpl;

	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC);

	return mv_cesa_cbc_aes_op(req, &tmpl);
}

struct crypto_alg mv_cesa_cbc_aes_alg = {
	.cra_name = "cbc(aes)",
	.cra_driver_name = "mv-cbc-aes",
	.cra_priority = 300,
	.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
		     CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
	.cra_blocksize = AES_BLOCK_SIZE,
	.cra_ctxsize = sizeof(struct mv_cesa_aes_ctx),
	.cra_alignmask = 0,
	.cra_type = &crypto_ablkcipher_type,
	.cra_module = THIS_MODULE,
	.cra_init = mv_cesa_ablkcipher_cra_init,
	.cra_u = {
		.ablkcipher = {
			.min_keysize = AES_MIN_KEY_SIZE,
			.max_keysize = AES_MAX_KEY_SIZE,
			.ivsize = AES_BLOCK_SIZE,
			.setkey = mv_cesa_aes_setkey,
			.encrypt = mv_cesa_cbc_aes_encrypt,
			.decrypt = mv_cesa_cbc_aes_decrypt,
		},
	},
};