khugepaged.c 54.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/mm.h>
#include <linux/sched.h>
6
#include <linux/sched/mm.h>
7
#include <linux/sched/coredump.h>
8 9 10 11 12 13 14 15 16 17 18 19
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/mm_inline.h>
#include <linux/kthread.h>
#include <linux/khugepaged.h>
#include <linux/freezer.h>
#include <linux/mman.h>
#include <linux/hashtable.h>
#include <linux/userfaultfd_k.h>
#include <linux/page_idle.h>
#include <linux/swapops.h>
20
#include <linux/shmem_fs.h>
21 22 23 24 25 26 27 28 29 30 31 32

#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

enum scan_result {
	SCAN_FAIL,
	SCAN_SUCCEED,
	SCAN_PMD_NULL,
	SCAN_EXCEED_NONE_PTE,
	SCAN_PTE_NON_PRESENT,
	SCAN_PAGE_RO,
33
	SCAN_LACK_REFERENCED_PAGE,
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
	SCAN_PAGE_NULL,
	SCAN_SCAN_ABORT,
	SCAN_PAGE_COUNT,
	SCAN_PAGE_LRU,
	SCAN_PAGE_LOCK,
	SCAN_PAGE_ANON,
	SCAN_PAGE_COMPOUND,
	SCAN_ANY_PROCESS,
	SCAN_VMA_NULL,
	SCAN_VMA_CHECK,
	SCAN_ADDRESS_RANGE,
	SCAN_SWAP_CACHE_PAGE,
	SCAN_DEL_PAGE_LRU,
	SCAN_ALLOC_HUGE_PAGE_FAIL,
	SCAN_CGROUP_CHARGE_FAIL,
49 50
	SCAN_EXCEED_SWAP_PTE,
	SCAN_TRUNCATED,
51
	SCAN_PAGE_HAS_PRIVATE,
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
};

#define CREATE_TRACE_POINTS
#include <trace/events/huge_memory.h>

/* default scan 8*512 pte (or vmas) every 30 second */
static unsigned int khugepaged_pages_to_scan __read_mostly;
static unsigned int khugepaged_pages_collapsed;
static unsigned int khugepaged_full_scans;
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
/* during fragmentation poll the hugepage allocator once every minute */
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
static unsigned long khugepaged_sleep_expire;
static DEFINE_SPINLOCK(khugepaged_mm_lock);
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
/*
 * default collapse hugepages if there is at least one pte mapped like
 * it would have happened if the vma was large enough during page
 * fault.
 */
static unsigned int khugepaged_max_ptes_none __read_mostly;
static unsigned int khugepaged_max_ptes_swap __read_mostly;

#define MM_SLOTS_HASH_BITS 10
static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);

static struct kmem_cache *mm_slot_cache __read_mostly;

80 81
#define MAX_PTE_MAPPED_THP 8

82 83 84 85 86 87 88 89 90 91
/**
 * struct mm_slot - hash lookup from mm to mm_slot
 * @hash: hash collision list
 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
 * @mm: the mm that this information is valid for
 */
struct mm_slot {
	struct hlist_node hash;
	struct list_head mm_node;
	struct mm_struct *mm;
92 93 94 95

	/* pte-mapped THP in this mm */
	int nr_pte_mapped_thp;
	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
};

/**
 * struct khugepaged_scan - cursor for scanning
 * @mm_head: the head of the mm list to scan
 * @mm_slot: the current mm_slot we are scanning
 * @address: the next address inside that to be scanned
 *
 * There is only the one khugepaged_scan instance of this cursor structure.
 */
struct khugepaged_scan {
	struct list_head mm_head;
	struct mm_slot *mm_slot;
	unsigned long address;
};

static struct khugepaged_scan khugepaged_scan = {
	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
};

116
#ifdef CONFIG_SYSFS
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
					 struct kobj_attribute *attr,
					 char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
}

static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
					  struct kobj_attribute *attr,
					  const char *buf, size_t count)
{
	unsigned long msecs;
	int err;

	err = kstrtoul(buf, 10, &msecs);
	if (err || msecs > UINT_MAX)
		return -EINVAL;

	khugepaged_scan_sleep_millisecs = msecs;
	khugepaged_sleep_expire = 0;
	wake_up_interruptible(&khugepaged_wait);

	return count;
}
static struct kobj_attribute scan_sleep_millisecs_attr =
	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
	       scan_sleep_millisecs_store);

static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
					  struct kobj_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
}

static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
					   struct kobj_attribute *attr,
					   const char *buf, size_t count)
{
	unsigned long msecs;
	int err;

	err = kstrtoul(buf, 10, &msecs);
	if (err || msecs > UINT_MAX)
		return -EINVAL;

	khugepaged_alloc_sleep_millisecs = msecs;
	khugepaged_sleep_expire = 0;
	wake_up_interruptible(&khugepaged_wait);

	return count;
}
static struct kobj_attribute alloc_sleep_millisecs_attr =
	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
	       alloc_sleep_millisecs_store);

static ssize_t pages_to_scan_show(struct kobject *kobj,
				  struct kobj_attribute *attr,
				  char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
}
static ssize_t pages_to_scan_store(struct kobject *kobj,
				   struct kobj_attribute *attr,
				   const char *buf, size_t count)
{
	int err;
	unsigned long pages;

	err = kstrtoul(buf, 10, &pages);
	if (err || !pages || pages > UINT_MAX)
		return -EINVAL;

	khugepaged_pages_to_scan = pages;

	return count;
}
static struct kobj_attribute pages_to_scan_attr =
	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
	       pages_to_scan_store);

static ssize_t pages_collapsed_show(struct kobject *kobj,
				    struct kobj_attribute *attr,
				    char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
}
static struct kobj_attribute pages_collapsed_attr =
	__ATTR_RO(pages_collapsed);

static ssize_t full_scans_show(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_full_scans);
}
static struct kobj_attribute full_scans_attr =
	__ATTR_RO(full_scans);

static ssize_t khugepaged_defrag_show(struct kobject *kobj,
				      struct kobj_attribute *attr, char *buf)
{
	return single_hugepage_flag_show(kobj, attr, buf,
				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static ssize_t khugepaged_defrag_store(struct kobject *kobj,
				       struct kobj_attribute *attr,
				       const char *buf, size_t count)
{
	return single_hugepage_flag_store(kobj, attr, buf, count,
				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static struct kobj_attribute khugepaged_defrag_attr =
	__ATTR(defrag, 0644, khugepaged_defrag_show,
	       khugepaged_defrag_store);

/*
 * max_ptes_none controls if khugepaged should collapse hugepages over
 * any unmapped ptes in turn potentially increasing the memory
 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 * reduce the available free memory in the system as it
 * runs. Increasing max_ptes_none will instead potentially reduce the
 * free memory in the system during the khugepaged scan.
 */
static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
					     struct kobj_attribute *attr,
					     char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
}
static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
					      struct kobj_attribute *attr,
					      const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_none;

	err = kstrtoul(buf, 10, &max_ptes_none);
	if (err || max_ptes_none > HPAGE_PMD_NR-1)
		return -EINVAL;

	khugepaged_max_ptes_none = max_ptes_none;

	return count;
}
static struct kobj_attribute khugepaged_max_ptes_none_attr =
	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
	       khugepaged_max_ptes_none_store);

static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
					     struct kobj_attribute *attr,
					     char *buf)
{
	return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
}

static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
					      struct kobj_attribute *attr,
					      const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_swap;

	err  = kstrtoul(buf, 10, &max_ptes_swap);
	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
		return -EINVAL;

	khugepaged_max_ptes_swap = max_ptes_swap;

	return count;
}

static struct kobj_attribute khugepaged_max_ptes_swap_attr =
	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
	       khugepaged_max_ptes_swap_store);

static struct attribute *khugepaged_attr[] = {
	&khugepaged_defrag_attr.attr,
	&khugepaged_max_ptes_none_attr.attr,
	&pages_to_scan_attr.attr,
	&pages_collapsed_attr.attr,
	&full_scans_attr.attr,
	&scan_sleep_millisecs_attr.attr,
	&alloc_sleep_millisecs_attr.attr,
	&khugepaged_max_ptes_swap_attr.attr,
	NULL,
};

struct attribute_group khugepaged_attr_group = {
	.attrs = khugepaged_attr,
	.name = "khugepaged",
};
309
#endif /* CONFIG_SYSFS */
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

int hugepage_madvise(struct vm_area_struct *vma,
		     unsigned long *vm_flags, int advice)
{
	switch (advice) {
	case MADV_HUGEPAGE:
#ifdef CONFIG_S390
		/*
		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
		 * can't handle this properly after s390_enable_sie, so we simply
		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
		 */
		if (mm_has_pgste(vma->vm_mm))
			return 0;
#endif
		*vm_flags &= ~VM_NOHUGEPAGE;
		*vm_flags |= VM_HUGEPAGE;
		/*
		 * If the vma become good for khugepaged to scan,
		 * register it here without waiting a page fault that
		 * may not happen any time soon.
		 */
		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
				khugepaged_enter_vma_merge(vma, *vm_flags))
			return -ENOMEM;
		break;
	case MADV_NOHUGEPAGE:
		*vm_flags &= ~VM_HUGEPAGE;
		*vm_flags |= VM_NOHUGEPAGE;
		/*
		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
		 * this vma even if we leave the mm registered in khugepaged if
		 * it got registered before VM_NOHUGEPAGE was set.
		 */
		break;
	}

	return 0;
}

int __init khugepaged_init(void)
{
	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
					  sizeof(struct mm_slot),
					  __alignof__(struct mm_slot), 0, NULL);
	if (!mm_slot_cache)
		return -ENOMEM;

	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;

	return 0;
}

void __init khugepaged_destroy(void)
{
	kmem_cache_destroy(mm_slot_cache);
}

static inline struct mm_slot *alloc_mm_slot(void)
{
	if (!mm_slot_cache)	/* initialization failed */
		return NULL;
	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
}

static inline void free_mm_slot(struct mm_slot *mm_slot)
{
	kmem_cache_free(mm_slot_cache, mm_slot);
}

static struct mm_slot *get_mm_slot(struct mm_struct *mm)
{
	struct mm_slot *mm_slot;

	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
		if (mm == mm_slot->mm)
			return mm_slot;

	return NULL;
}

static void insert_to_mm_slots_hash(struct mm_struct *mm,
				    struct mm_slot *mm_slot)
{
	mm_slot->mm = mm;
	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
}

static inline int khugepaged_test_exit(struct mm_struct *mm)
{
	return atomic_read(&mm->mm_users) == 0;
}

405 406
static bool hugepage_vma_check(struct vm_area_struct *vma,
			       unsigned long vm_flags)
407
{
408 409
	if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
	    (vm_flags & VM_NOHUGEPAGE) ||
410 411
	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
		return false;
412 413 414 415 416

	if (shmem_file(vma->vm_file) ||
	    (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
	     vma->vm_file &&
	     (vm_flags & VM_DENYWRITE))) {
417 418 419 420 421
		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
				HPAGE_PMD_NR);
	}
	if (!vma->anon_vma || vma->vm_ops)
		return false;
422
	if (vma_is_temporary_stack(vma))
423
		return false;
424
	return !(vm_flags & VM_NO_KHUGEPAGED);
425 426
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
int __khugepaged_enter(struct mm_struct *mm)
{
	struct mm_slot *mm_slot;
	int wakeup;

	mm_slot = alloc_mm_slot();
	if (!mm_slot)
		return -ENOMEM;

	/* __khugepaged_exit() must not run from under us */
	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
		free_mm_slot(mm_slot);
		return 0;
	}

	spin_lock(&khugepaged_mm_lock);
	insert_to_mm_slots_hash(mm, mm_slot);
	/*
	 * Insert just behind the scanning cursor, to let the area settle
	 * down a little.
	 */
	wakeup = list_empty(&khugepaged_scan.mm_head);
	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
	spin_unlock(&khugepaged_mm_lock);

V
Vegard Nossum 已提交
453
	mmgrab(mm);
454 455 456 457 458 459 460 461 462 463
	if (wakeup)
		wake_up_interruptible(&khugepaged_wait);

	return 0;
}

int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
			       unsigned long vm_flags)
{
	unsigned long hstart, hend;
464 465

	/*
466 467 468
	 * khugepaged only supports read-only files for non-shmem files.
	 * khugepaged does not yet work on special mappings. And
	 * file-private shmem THP is not supported.
469
	 */
470
	if (!hugepage_vma_check(vma, vm_flags))
471
		return 0;
472

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
	hend = vma->vm_end & HPAGE_PMD_MASK;
	if (hstart < hend)
		return khugepaged_enter(vma, vm_flags);
	return 0;
}

void __khugepaged_exit(struct mm_struct *mm)
{
	struct mm_slot *mm_slot;
	int free = 0;

	spin_lock(&khugepaged_mm_lock);
	mm_slot = get_mm_slot(mm);
	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
		hash_del(&mm_slot->hash);
		list_del(&mm_slot->mm_node);
		free = 1;
	}
	spin_unlock(&khugepaged_mm_lock);

	if (free) {
		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
		free_mm_slot(mm_slot);
		mmdrop(mm);
	} else if (mm_slot) {
		/*
		 * This is required to serialize against
		 * khugepaged_test_exit() (which is guaranteed to run
		 * under mmap sem read mode). Stop here (after we
		 * return all pagetables will be destroyed) until
		 * khugepaged has finished working on the pagetables
		 * under the mmap_sem.
		 */
		down_write(&mm->mmap_sem);
		up_write(&mm->mmap_sem);
	}
}

static void release_pte_page(struct page *page)
{
514
	dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
	unlock_page(page);
	putback_lru_page(page);
}

static void release_pte_pages(pte_t *pte, pte_t *_pte)
{
	while (--_pte >= pte) {
		pte_t pteval = *_pte;
		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
			release_pte_page(pte_page(pteval));
	}
}

static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
					unsigned long address,
					pte_t *pte)
{
	struct page *page = NULL;
	pte_t *_pte;
534 535
	int none_or_zero = 0, result = 0, referenced = 0;
	bool writable = false;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
	     _pte++, address += PAGE_SIZE) {
		pte_t pteval = *_pte;
		if (pte_none(pteval) || (pte_present(pteval) &&
				is_zero_pfn(pte_pfn(pteval)))) {
			if (!userfaultfd_armed(vma) &&
			    ++none_or_zero <= khugepaged_max_ptes_none) {
				continue;
			} else {
				result = SCAN_EXCEED_NONE_PTE;
				goto out;
			}
		}
		if (!pte_present(pteval)) {
			result = SCAN_PTE_NON_PRESENT;
			goto out;
		}
		page = vm_normal_page(vma, address, pteval);
		if (unlikely(!page)) {
			result = SCAN_PAGE_NULL;
			goto out;
		}

560 561 562 563 564 565
		/* TODO: teach khugepaged to collapse THP mapped with pte */
		if (PageCompound(page)) {
			result = SCAN_PAGE_COMPOUND;
			goto out;
		}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
		VM_BUG_ON_PAGE(!PageAnon(page), page);

		/*
		 * We can do it before isolate_lru_page because the
		 * page can't be freed from under us. NOTE: PG_lock
		 * is needed to serialize against split_huge_page
		 * when invoked from the VM.
		 */
		if (!trylock_page(page)) {
			result = SCAN_PAGE_LOCK;
			goto out;
		}

		/*
		 * cannot use mapcount: can't collapse if there's a gup pin.
		 * The page must only be referenced by the scanned process
		 * and page swap cache.
		 */
584
		if (page_count(page) != 1 + PageSwapCache(page)) {
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
			unlock_page(page);
			result = SCAN_PAGE_COUNT;
			goto out;
		}
		if (pte_write(pteval)) {
			writable = true;
		} else {
			if (PageSwapCache(page) &&
			    !reuse_swap_page(page, NULL)) {
				unlock_page(page);
				result = SCAN_SWAP_CACHE_PAGE;
				goto out;
			}
			/*
			 * Page is not in the swap cache. It can be collapsed
			 * into a THP.
			 */
		}

		/*
		 * Isolate the page to avoid collapsing an hugepage
		 * currently in use by the VM.
		 */
		if (isolate_lru_page(page)) {
			unlock_page(page);
			result = SCAN_DEL_PAGE_LRU;
			goto out;
		}
613 614
		inc_node_page_state(page,
				NR_ISOLATED_ANON + page_is_file_cache(page));
615 616 617
		VM_BUG_ON_PAGE(!PageLocked(page), page);
		VM_BUG_ON_PAGE(PageLRU(page), page);

618
		/* There should be enough young pte to collapse the page */
619 620 621
		if (pte_young(pteval) ||
		    page_is_young(page) || PageReferenced(page) ||
		    mmu_notifier_test_young(vma->vm_mm, address))
622
			referenced++;
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	}
	if (likely(writable)) {
		if (likely(referenced)) {
			result = SCAN_SUCCEED;
			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
							    referenced, writable, result);
			return 1;
		}
	} else {
		result = SCAN_PAGE_RO;
	}

out:
	release_pte_pages(pte, _pte);
	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
					    referenced, writable, result);
	return 0;
}

static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
				      struct vm_area_struct *vma,
				      unsigned long address,
				      spinlock_t *ptl)
{
	pte_t *_pte;
648 649
	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
				_pte++, page++, address += PAGE_SIZE) {
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
		pte_t pteval = *_pte;
		struct page *src_page;

		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
			clear_user_highpage(page, address);
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
			if (is_zero_pfn(pte_pfn(pteval))) {
				/*
				 * ptl mostly unnecessary.
				 */
				spin_lock(ptl);
				/*
				 * paravirt calls inside pte_clear here are
				 * superfluous.
				 */
				pte_clear(vma->vm_mm, address, _pte);
				spin_unlock(ptl);
			}
		} else {
			src_page = pte_page(pteval);
			copy_user_highpage(page, src_page, address, vma);
			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
			release_pte_page(src_page);
			/*
			 * ptl mostly unnecessary, but preempt has to
			 * be disabled to update the per-cpu stats
			 * inside page_remove_rmap().
			 */
			spin_lock(ptl);
			/*
			 * paravirt calls inside pte_clear here are
			 * superfluous.
			 */
			pte_clear(vma->vm_mm, address, _pte);
			page_remove_rmap(src_page, false);
			spin_unlock(ptl);
			free_page_and_swap_cache(src_page);
		}
	}
}

static void khugepaged_alloc_sleep(void)
{
	DEFINE_WAIT(wait);

	add_wait_queue(&khugepaged_wait, &wait);
	freezable_schedule_timeout_interruptible(
		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
	remove_wait_queue(&khugepaged_wait, &wait);
}

static int khugepaged_node_load[MAX_NUMNODES];

static bool khugepaged_scan_abort(int nid)
{
	int i;

	/*
708
	 * If node_reclaim_mode is disabled, then no extra effort is made to
709 710
	 * allocate memory locally.
	 */
711
	if (!node_reclaim_mode)
712 713 714 715 716 717 718 719 720
		return false;

	/* If there is a count for this node already, it must be acceptable */
	if (khugepaged_node_load[nid])
		return false;

	for (i = 0; i < MAX_NUMNODES; i++) {
		if (!khugepaged_node_load[i])
			continue;
721
		if (node_distance(nid, i) > node_reclaim_distance)
722 723 724 725 726 727 728 729
			return true;
	}
	return false;
}

/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
{
730
	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
}

#ifdef CONFIG_NUMA
static int khugepaged_find_target_node(void)
{
	static int last_khugepaged_target_node = NUMA_NO_NODE;
	int nid, target_node = 0, max_value = 0;

	/* find first node with max normal pages hit */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		if (khugepaged_node_load[nid] > max_value) {
			max_value = khugepaged_node_load[nid];
			target_node = nid;
		}

	/* do some balance if several nodes have the same hit record */
	if (target_node <= last_khugepaged_target_node)
		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
				nid++)
			if (max_value == khugepaged_node_load[nid]) {
				target_node = nid;
				break;
			}

	last_khugepaged_target_node = target_node;
	return target_node;
}

static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
	if (IS_ERR(*hpage)) {
		if (!*wait)
			return false;

		*wait = false;
		*hpage = NULL;
		khugepaged_alloc_sleep();
	} else if (*hpage) {
		put_page(*hpage);
		*hpage = NULL;
	}

	return true;
}

static struct page *
777
khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
{
	VM_BUG_ON_PAGE(*hpage, *hpage);

	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
	if (unlikely(!*hpage)) {
		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
		*hpage = ERR_PTR(-ENOMEM);
		return NULL;
	}

	prep_transhuge_page(*hpage);
	count_vm_event(THP_COLLAPSE_ALLOC);
	return *hpage;
}
#else
static int khugepaged_find_target_node(void)
{
	return 0;
}

static inline struct page *alloc_khugepaged_hugepage(void)
{
	struct page *page;

	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
			   HPAGE_PMD_ORDER);
	if (page)
		prep_transhuge_page(page);
	return page;
}

static struct page *khugepaged_alloc_hugepage(bool *wait)
{
	struct page *hpage;

	do {
		hpage = alloc_khugepaged_hugepage();
		if (!hpage) {
			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
			if (!*wait)
				return NULL;

			*wait = false;
			khugepaged_alloc_sleep();
		} else
			count_vm_event(THP_COLLAPSE_ALLOC);
	} while (unlikely(!hpage) && likely(khugepaged_enabled()));

	return hpage;
}

static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
	if (!*hpage)
		*hpage = khugepaged_alloc_hugepage(wait);

	if (unlikely(!*hpage))
		return false;

	return true;
}

static struct page *
841
khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
842 843 844 845 846 847 848 849 850 851 852 853 854 855
{
	VM_BUG_ON(!*hpage);

	return  *hpage;
}
#endif

/*
 * If mmap_sem temporarily dropped, revalidate vma
 * before taking mmap_sem.
 * Return 0 if succeeds, otherwise return none-zero
 * value (scan code).
 */

856 857
static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
		struct vm_area_struct **vmap)
858 859 860 861 862 863 864
{
	struct vm_area_struct *vma;
	unsigned long hstart, hend;

	if (unlikely(khugepaged_test_exit(mm)))
		return SCAN_ANY_PROCESS;

865
	*vmap = vma = find_vma(mm, address);
866 867 868 869 870 871 872
	if (!vma)
		return SCAN_VMA_NULL;

	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
	hend = vma->vm_end & HPAGE_PMD_MASK;
	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
		return SCAN_ADDRESS_RANGE;
873
	if (!hugepage_vma_check(vma, vma->vm_flags))
874 875 876 877 878 879 880 881 882 883 884 885 886 887
		return SCAN_VMA_CHECK;
	return 0;
}

/*
 * Bring missing pages in from swap, to complete THP collapse.
 * Only done if khugepaged_scan_pmd believes it is worthwhile.
 *
 * Called and returns without pte mapped or spinlocks held,
 * but with mmap_sem held to protect against vma changes.
 */

static bool __collapse_huge_page_swapin(struct mm_struct *mm,
					struct vm_area_struct *vma,
888 889
					unsigned long address, pmd_t *pmd,
					int referenced)
890
{
891 892
	int swapped_in = 0;
	vm_fault_t ret = 0;
J
Jan Kara 已提交
893
	struct vm_fault vmf = {
894 895 896 897
		.vma = vma,
		.address = address,
		.flags = FAULT_FLAG_ALLOW_RETRY,
		.pmd = pmd,
898
		.pgoff = linear_page_index(vma, address),
899 900
	};

901 902 903 904 905
	/* we only decide to swapin, if there is enough young ptes */
	if (referenced < HPAGE_PMD_NR/2) {
		trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
		return false;
	}
J
Jan Kara 已提交
906 907 908
	vmf.pte = pte_offset_map(pmd, address);
	for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
			vmf.pte++, vmf.address += PAGE_SIZE) {
J
Jan Kara 已提交
909 910
		vmf.orig_pte = *vmf.pte;
		if (!is_swap_pte(vmf.orig_pte))
911 912
			continue;
		swapped_in++;
J
Jan Kara 已提交
913
		ret = do_swap_page(&vmf);
914

915 916 917
		/* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
		if (ret & VM_FAULT_RETRY) {
			down_read(&mm->mmap_sem);
J
Jan Kara 已提交
918
			if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
919
				/* vma is no longer available, don't continue to swapin */
920
				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
921
				return false;
922
			}
923
			/* check if the pmd is still valid */
924 925
			if (mm_find_pmd(mm, address) != pmd) {
				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
926
				return false;
927
			}
928 929
		}
		if (ret & VM_FAULT_ERROR) {
930
			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
931 932 933
			return false;
		}
		/* pte is unmapped now, we need to map it */
J
Jan Kara 已提交
934
		vmf.pte = pte_offset_map(pmd, vmf.address);
935
	}
J
Jan Kara 已提交
936 937
	vmf.pte--;
	pte_unmap(vmf.pte);
938
	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
939 940 941 942 943 944
	return true;
}

static void collapse_huge_page(struct mm_struct *mm,
				   unsigned long address,
				   struct page **hpage,
945
				   int node, int referenced)
946 947 948 949 950 951 952 953
{
	pmd_t *pmd, _pmd;
	pte_t *pte;
	pgtable_t pgtable;
	struct page *new_page;
	spinlock_t *pmd_ptl, *pte_ptl;
	int isolated = 0, result = 0;
	struct mem_cgroup *memcg;
954
	struct vm_area_struct *vma;
955
	struct mmu_notifier_range range;
956 957 958 959 960
	gfp_t gfp;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	/* Only allocate from the target node */
M
Michal Hocko 已提交
961
	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
962

963 964 965 966 967 968 969 970
	/*
	 * Before allocating the hugepage, release the mmap_sem read lock.
	 * The allocation can take potentially a long time if it involves
	 * sync compaction, and we do not need to hold the mmap_sem during
	 * that. We will recheck the vma after taking it again in write mode.
	 */
	up_read(&mm->mmap_sem);
	new_page = khugepaged_alloc_page(hpage, gfp, node);
971 972 973 974 975
	if (!new_page) {
		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
		goto out_nolock;
	}

976
	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
977 978 979 980 981
		result = SCAN_CGROUP_CHARGE_FAIL;
		goto out_nolock;
	}

	down_read(&mm->mmap_sem);
982
	result = hugepage_vma_revalidate(mm, address, &vma);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	if (result) {
		mem_cgroup_cancel_charge(new_page, memcg, true);
		up_read(&mm->mmap_sem);
		goto out_nolock;
	}

	pmd = mm_find_pmd(mm, address);
	if (!pmd) {
		result = SCAN_PMD_NULL;
		mem_cgroup_cancel_charge(new_page, memcg, true);
		up_read(&mm->mmap_sem);
		goto out_nolock;
	}

	/*
	 * __collapse_huge_page_swapin always returns with mmap_sem locked.
999
	 * If it fails, we release mmap_sem and jump out_nolock.
1000 1001
	 * Continuing to collapse causes inconsistency.
	 */
1002
	if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		mem_cgroup_cancel_charge(new_page, memcg, true);
		up_read(&mm->mmap_sem);
		goto out_nolock;
	}

	up_read(&mm->mmap_sem);
	/*
	 * Prevent all access to pagetables with the exception of
	 * gup_fast later handled by the ptep_clear_flush and the VM
	 * handled by the anon_vma lock + PG_lock.
	 */
	down_write(&mm->mmap_sem);
1015 1016 1017
	result = SCAN_ANY_PROCESS;
	if (!mmget_still_valid(mm))
		goto out;
1018
	result = hugepage_vma_revalidate(mm, address, &vma);
1019 1020 1021 1022 1023 1024 1025 1026
	if (result)
		goto out;
	/* check if the pmd is still valid */
	if (mm_find_pmd(mm, address) != pmd)
		goto out;

	anon_vma_lock_write(vma->anon_vma);

1027
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1028
				address, address + HPAGE_PMD_SIZE);
1029
	mmu_notifier_invalidate_range_start(&range);
1030 1031 1032 1033

	pte = pte_offset_map(pmd, address);
	pte_ptl = pte_lockptr(mm, pmd);

1034 1035 1036 1037 1038 1039 1040 1041 1042
	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
	/*
	 * After this gup_fast can't run anymore. This also removes
	 * any huge TLB entry from the CPU so we won't allow
	 * huge and small TLB entries for the same virtual address
	 * to avoid the risk of CPU bugs in that area.
	 */
	_pmd = pmdp_collapse_flush(vma, address, pmd);
	spin_unlock(pmd_ptl);
1043
	mmu_notifier_invalidate_range_end(&range);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	spin_lock(pte_ptl);
	isolated = __collapse_huge_page_isolate(vma, address, pte);
	spin_unlock(pte_ptl);

	if (unlikely(!isolated)) {
		pte_unmap(pte);
		spin_lock(pmd_ptl);
		BUG_ON(!pmd_none(*pmd));
		/*
		 * We can only use set_pmd_at when establishing
		 * hugepmds and never for establishing regular pmds that
		 * points to regular pagetables. Use pmd_populate for that
		 */
		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
		spin_unlock(pmd_ptl);
		anon_vma_unlock_write(vma->anon_vma);
		result = SCAN_FAIL;
		goto out;
	}

	/*
	 * All pages are isolated and locked so anon_vma rmap
	 * can't run anymore.
	 */
	anon_vma_unlock_write(vma->anon_vma);

	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
	pte_unmap(pte);
	__SetPageUptodate(new_page);
	pgtable = pmd_pgtable(_pmd);

	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1077
	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

	/*
	 * spin_lock() below is not the equivalent of smp_wmb(), so
	 * this is needed to avoid the copy_huge_page writes to become
	 * visible after the set_pmd_at() write.
	 */
	smp_wmb();

	spin_lock(pmd_ptl);
	BUG_ON(!pmd_none(*pmd));
	page_add_new_anon_rmap(new_page, vma, address, true);
	mem_cgroup_commit_charge(new_page, memcg, false, true);
1090
	count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	lru_cache_add_active_or_unevictable(new_page, vma);
	pgtable_trans_huge_deposit(mm, pmd, pgtable);
	set_pmd_at(mm, address, pmd, _pmd);
	update_mmu_cache_pmd(vma, address, pmd);
	spin_unlock(pmd_ptl);

	*hpage = NULL;

	khugepaged_pages_collapsed++;
	result = SCAN_SUCCEED;
out_up_write:
	up_write(&mm->mmap_sem);
out_nolock:
	trace_mm_collapse_huge_page(mm, isolated, result);
	return;
out:
	mem_cgroup_cancel_charge(new_page, memcg, true);
	goto out_up_write;
}

static int khugepaged_scan_pmd(struct mm_struct *mm,
			       struct vm_area_struct *vma,
			       unsigned long address,
			       struct page **hpage)
{
	pmd_t *pmd;
	pte_t *pte, *_pte;
1118
	int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1119 1120 1121 1122
	struct page *page = NULL;
	unsigned long _address;
	spinlock_t *ptl;
	int node = NUMA_NO_NODE, unmapped = 0;
1123
	bool writable = false;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	pmd = mm_find_pmd(mm, address);
	if (!pmd) {
		result = SCAN_PMD_NULL;
		goto out;
	}

	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
	     _pte++, _address += PAGE_SIZE) {
		pte_t pteval = *_pte;
		if (is_swap_pte(pteval)) {
			if (++unmapped <= khugepaged_max_ptes_swap) {
				continue;
			} else {
				result = SCAN_EXCEED_SWAP_PTE;
				goto out_unmap;
			}
		}
		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
			if (!userfaultfd_armed(vma) &&
			    ++none_or_zero <= khugepaged_max_ptes_none) {
				continue;
			} else {
				result = SCAN_EXCEED_NONE_PTE;
				goto out_unmap;
			}
		}
		if (!pte_present(pteval)) {
			result = SCAN_PTE_NON_PRESENT;
			goto out_unmap;
		}
		if (pte_write(pteval))
			writable = true;

		page = vm_normal_page(vma, _address, pteval);
		if (unlikely(!page)) {
			result = SCAN_PAGE_NULL;
			goto out_unmap;
		}

		/* TODO: teach khugepaged to collapse THP mapped with pte */
		if (PageCompound(page)) {
			result = SCAN_PAGE_COMPOUND;
			goto out_unmap;
		}

		/*
		 * Record which node the original page is from and save this
		 * information to khugepaged_node_load[].
		 * Khupaged will allocate hugepage from the node has the max
		 * hit record.
		 */
		node = page_to_nid(page);
		if (khugepaged_scan_abort(node)) {
			result = SCAN_SCAN_ABORT;
			goto out_unmap;
		}
		khugepaged_node_load[node]++;
		if (!PageLRU(page)) {
			result = SCAN_PAGE_LRU;
			goto out_unmap;
		}
		if (PageLocked(page)) {
			result = SCAN_PAGE_LOCK;
			goto out_unmap;
		}
		if (!PageAnon(page)) {
			result = SCAN_PAGE_ANON;
			goto out_unmap;
		}

		/*
		 * cannot use mapcount: can't collapse if there's a gup pin.
		 * The page must only be referenced by the scanned process
		 * and page swap cache.
		 */
1204
		if (page_count(page) != 1 + PageSwapCache(page)) {
1205 1206 1207 1208 1209 1210
			result = SCAN_PAGE_COUNT;
			goto out_unmap;
		}
		if (pte_young(pteval) ||
		    page_is_young(page) || PageReferenced(page) ||
		    mmu_notifier_test_young(vma->vm_mm, address))
1211
			referenced++;
1212 1213 1214 1215 1216 1217
	}
	if (writable) {
		if (referenced) {
			result = SCAN_SUCCEED;
			ret = 1;
		} else {
1218
			result = SCAN_LACK_REFERENCED_PAGE;
1219 1220 1221 1222 1223 1224 1225 1226 1227
		}
	} else {
		result = SCAN_PAGE_RO;
	}
out_unmap:
	pte_unmap_unlock(pte, ptl);
	if (ret) {
		node = khugepaged_find_target_node();
		/* collapse_huge_page will return with the mmap_sem released */
1228
		collapse_huge_page(mm, address, hpage, node, referenced);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	}
out:
	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
				     none_or_zero, result, unmapped);
	return ret;
}

static void collect_mm_slot(struct mm_slot *mm_slot)
{
	struct mm_struct *mm = mm_slot->mm;

1240
	lockdep_assert_held(&khugepaged_mm_lock);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	if (khugepaged_test_exit(mm)) {
		/* free mm_slot */
		hash_del(&mm_slot->hash);
		list_del(&mm_slot->mm_node);

		/*
		 * Not strictly needed because the mm exited already.
		 *
		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
		 */

		/* khugepaged_mm_lock actually not necessary for the below */
		free_mm_slot(mm_slot);
		mmdrop(mm);
	}
}

1259
#ifdef CONFIG_SHMEM
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
/*
 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
 * khugepaged should try to collapse the page table.
 */
static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
					 unsigned long addr)
{
	struct mm_slot *mm_slot;

	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);

	spin_lock(&khugepaged_mm_lock);
	mm_slot = get_mm_slot(mm);
	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
	spin_unlock(&khugepaged_mm_lock);
	return 0;
}

/**
 * Try to collapse a pte-mapped THP for mm at address haddr.
 *
 * This function checks whether all the PTEs in the PMD are pointing to the
 * right THP. If so, retract the page table so the THP can refault in with
 * as pmd-mapped.
 */
void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
{
	unsigned long haddr = addr & HPAGE_PMD_MASK;
	struct vm_area_struct *vma = find_vma(mm, haddr);
	struct page *hpage = NULL;
	pte_t *start_pte, *pte;
	pmd_t *pmd, _pmd;
	spinlock_t *ptl;
	int count = 0;
	int i;

	if (!vma || !vma->vm_file ||
	    vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
		return;

	/*
	 * This vm_flags may not have VM_HUGEPAGE if the page was not
	 * collapsed by this mm. But we can still collapse if the page is
	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
	 * will not fail the vma for missing VM_HUGEPAGE
	 */
	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
		return;

	pmd = mm_find_pmd(mm, haddr);
	if (!pmd)
		return;

	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);

	/* step 1: check all mapped PTEs are to the right huge page */
	for (i = 0, addr = haddr, pte = start_pte;
	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
		struct page *page;

		/* empty pte, skip */
		if (pte_none(*pte))
			continue;

		/* page swapped out, abort */
		if (!pte_present(*pte))
			goto abort;

		page = vm_normal_page(vma, addr, *pte);

		if (!page || !PageCompound(page))
			goto abort;

		if (!hpage) {
			hpage = compound_head(page);
			/*
			 * The mapping of the THP should not change.
			 *
			 * Note that uprobe, debugger, or MAP_PRIVATE may
			 * change the page table, but the new page will
			 * not pass PageCompound() check.
			 */
			if (WARN_ON(hpage->mapping != vma->vm_file->f_mapping))
				goto abort;
		}

		/*
		 * Confirm the page maps to the correct subpage.
		 *
		 * Note that uprobe, debugger, or MAP_PRIVATE may change
		 * the page table, but the new page will not pass
		 * PageCompound() check.
		 */
		if (WARN_ON(hpage + i != page))
			goto abort;
		count++;
	}

	/* step 2: adjust rmap */
	for (i = 0, addr = haddr, pte = start_pte;
	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
		struct page *page;

		if (pte_none(*pte))
			continue;
		page = vm_normal_page(vma, addr, *pte);
		page_remove_rmap(page, false);
	}

	pte_unmap_unlock(start_pte, ptl);

	/* step 3: set proper refcount and mm_counters. */
	if (hpage) {
		page_ref_sub(hpage, count);
		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
	}

	/* step 4: collapse pmd */
	ptl = pmd_lock(vma->vm_mm, pmd);
	_pmd = pmdp_collapse_flush(vma, addr, pmd);
	spin_unlock(ptl);
	mm_dec_nr_ptes(mm);
	pte_free(mm, pmd_pgtable(_pmd));
	return;

abort:
	pte_unmap_unlock(start_pte, ptl);
}

static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
{
	struct mm_struct *mm = mm_slot->mm;
	int i;

	if (likely(mm_slot->nr_pte_mapped_thp == 0))
		return 0;

	if (!down_write_trylock(&mm->mmap_sem))
		return -EBUSY;

	if (unlikely(khugepaged_test_exit(mm)))
		goto out;

	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);

out:
	mm_slot->nr_pte_mapped_thp = 0;
	up_write(&mm->mmap_sem);
	return 0;
}

1413 1414 1415 1416 1417 1418 1419 1420
static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
{
	struct vm_area_struct *vma;
	unsigned long addr;
	pmd_t *pmd, _pmd;

	i_mmap_lock_write(mapping);
	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		/*
		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
		 * got written to. These VMAs are likely not worth investing
		 * down_write(mmap_sem) as PMD-mapping is likely to be split
		 * later.
		 *
		 * Not that vma->anon_vma check is racy: it can be set up after
		 * the check but before we took mmap_sem by the fault path.
		 * But page lock would prevent establishing any new ptes of the
		 * page, so we are safe.
		 *
		 * An alternative would be drop the check, but check that page
		 * table is clear before calling pmdp_collapse_flush() under
		 * ptl. It has higher chance to recover THP for the VMA, but
		 * has higher cost too.
		 */
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
		if (vma->anon_vma)
			continue;
		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
		if (addr & ~HPAGE_PMD_MASK)
			continue;
		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
			continue;
		pmd = mm_find_pmd(vma->vm_mm, addr);
		if (!pmd)
			continue;
		/*
		 * We need exclusive mmap_sem to retract page table.
1449 1450 1451 1452
		 *
		 * We use trylock due to lock inversion: we need to acquire
		 * mmap_sem while holding page lock. Fault path does it in
		 * reverse order. Trylock is a way to avoid deadlock.
1453 1454 1455 1456 1457 1458 1459
		 */
		if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
			spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
			/* assume page table is clear */
			_pmd = pmdp_collapse_flush(vma, addr, pmd);
			spin_unlock(ptl);
			up_write(&vma->vm_mm->mmap_sem);
1460
			mm_dec_nr_ptes(vma->vm_mm);
1461
			pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1462 1463 1464
		} else {
			/* Try again later */
			khugepaged_add_pte_mapped_thp(vma->vm_mm, addr);
1465 1466 1467 1468 1469 1470
		}
	}
	i_mmap_unlock_write(mapping);
}

/**
1471
 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1472 1473
 *
 * Basic scheme is simple, details are more complex:
1474
 *  - allocate and lock a new huge page;
1475
 *  - scan page cache replacing old pages with the new one
1476
 *    + swap/gup in pages if necessary;
1477
 *    + fill in gaps;
1478 1479
 *    + keep old pages around in case rollback is required;
 *  - if replacing succeeds:
1480 1481
 *    + copy data over;
 *    + free old pages;
1482
 *    + unlock huge page;
1483 1484
 *  - if replacing failed;
 *    + put all pages back and unfreeze them;
1485
 *    + restore gaps in the page cache;
1486
 *    + unlock and free huge page;
1487
 */
1488 1489
static void collapse_file(struct mm_struct *mm,
		struct file *file, pgoff_t start,
1490 1491
		struct page **hpage, int node)
{
1492
	struct address_space *mapping = file->f_mapping;
1493
	gfp_t gfp;
1494
	struct page *new_page;
1495 1496 1497
	struct mem_cgroup *memcg;
	pgoff_t index, end = start + HPAGE_PMD_NR;
	LIST_HEAD(pagelist);
1498
	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1499
	int nr_none = 0, result = SCAN_SUCCEED;
1500
	bool is_shmem = shmem_file(file);
1501

1502
	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1503 1504 1505
	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));

	/* Only allocate from the target node */
M
Michal Hocko 已提交
1506
	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1507 1508 1509 1510 1511 1512 1513

	new_page = khugepaged_alloc_page(hpage, gfp, node);
	if (!new_page) {
		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
		goto out;
	}

1514
	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1515 1516 1517 1518
		result = SCAN_CGROUP_CHARGE_FAIL;
		goto out;
	}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	/* This will be less messy when we use multi-index entries */
	do {
		xas_lock_irq(&xas);
		xas_create_range(&xas);
		if (!xas_error(&xas))
			break;
		xas_unlock_irq(&xas);
		if (!xas_nomem(&xas, GFP_KERNEL)) {
			mem_cgroup_cancel_charge(new_page, memcg, true);
			result = SCAN_FAIL;
			goto out;
		}
	} while (1);

1533
	__SetPageLocked(new_page);
1534 1535
	if (is_shmem)
		__SetPageSwapBacked(new_page);
1536 1537 1538 1539
	new_page->index = start;
	new_page->mapping = mapping;

	/*
1540 1541 1542
	 * At this point the new_page is locked and not up-to-date.
	 * It's safe to insert it into the page cache, because nobody would
	 * be able to map it or use it in another way until we unlock it.
1543 1544
	 */

1545 1546 1547 1548 1549
	xas_set(&xas, start);
	for (index = start; index < end; index++) {
		struct page *page = xas_next(&xas);

		VM_BUG_ON(index != xas.xa_index);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
		if (is_shmem) {
			if (!page) {
				/*
				 * Stop if extent has been truncated or
				 * hole-punched, and is now completely
				 * empty.
				 */
				if (index == start) {
					if (!xas_next_entry(&xas, end - 1)) {
						result = SCAN_TRUNCATED;
						goto xa_locked;
					}
					xas_set(&xas, index);
				}
				if (!shmem_charge(mapping->host, 1)) {
					result = SCAN_FAIL;
1566
					goto xa_locked;
1567
				}
1568 1569 1570
				xas_store(&xas, new_page);
				nr_none++;
				continue;
1571
			}
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

			if (xa_is_value(page) || !PageUptodate(page)) {
				xas_unlock_irq(&xas);
				/* swap in or instantiate fallocated page */
				if (shmem_getpage(mapping->host, index, &page,
						  SGP_NOHUGE)) {
					result = SCAN_FAIL;
					goto xa_unlocked;
				}
			} else if (trylock_page(page)) {
				get_page(page);
				xas_unlock_irq(&xas);
			} else {
				result = SCAN_PAGE_LOCK;
1586
				goto xa_locked;
1587
			}
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		} else {	/* !is_shmem */
			if (!page || xa_is_value(page)) {
				xas_unlock_irq(&xas);
				page_cache_sync_readahead(mapping, &file->f_ra,
							  file, index,
							  PAGE_SIZE);
				/* drain pagevecs to help isolate_lru_page() */
				lru_add_drain();
				page = find_lock_page(mapping, index);
				if (unlikely(page == NULL)) {
					result = SCAN_FAIL;
					goto xa_unlocked;
				}
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
			} else if (PageDirty(page)) {
				/*
				 * khugepaged only works on read-only fd,
				 * so this page is dirty because it hasn't
				 * been flushed since first write. There
				 * won't be new dirty pages.
				 *
				 * Trigger async flush here and hope the
				 * writeback is done when khugepaged
				 * revisits this page.
				 *
				 * This is a one-off situation. We are not
				 * forcing writeback in loop.
				 */
				xas_unlock_irq(&xas);
				filemap_flush(mapping);
				result = SCAN_FAIL;
				goto xa_unlocked;
1619 1620 1621 1622 1623 1624
			} else if (trylock_page(page)) {
				get_page(page);
				xas_unlock_irq(&xas);
			} else {
				result = SCAN_PAGE_LOCK;
				goto xa_locked;
1625 1626 1627 1628
			}
		}

		/*
M
Matthew Wilcox 已提交
1629
		 * The page must be locked, so we can drop the i_pages lock
1630 1631 1632
		 * without racing with truncate.
		 */
		VM_BUG_ON_PAGE(!PageLocked(page), page);
1633 1634 1635 1636 1637 1638

		/* make sure the page is up to date */
		if (unlikely(!PageUptodate(page))) {
			result = SCAN_FAIL;
			goto out_unlock;
		}
1639 1640 1641 1642 1643 1644 1645 1646 1647

		/*
		 * If file was truncated then extended, or hole-punched, before
		 * we locked the first page, then a THP might be there already.
		 */
		if (PageTransCompound(page)) {
			result = SCAN_PAGE_COMPOUND;
			goto out_unlock;
		}
1648 1649 1650 1651 1652 1653

		if (page_mapping(page) != mapping) {
			result = SCAN_TRUNCATED;
			goto out_unlock;
		}

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		if (!is_shmem && PageDirty(page)) {
			/*
			 * khugepaged only works on read-only fd, so this
			 * page is dirty because it hasn't been flushed
			 * since first write.
			 */
			result = SCAN_FAIL;
			goto out_unlock;
		}

1664 1665
		if (isolate_lru_page(page)) {
			result = SCAN_DEL_PAGE_LRU;
1666
			goto out_unlock;
1667 1668
		}

1669 1670 1671 1672 1673 1674
		if (page_has_private(page) &&
		    !try_to_release_page(page, GFP_KERNEL)) {
			result = SCAN_PAGE_HAS_PRIVATE;
			goto out_unlock;
		}

1675
		if (page_mapped(page))
M
Matthew Wilcox 已提交
1676
			unmap_mapping_pages(mapping, index, 1, false);
1677

1678 1679
		xas_lock_irq(&xas);
		xas_set(&xas, index);
1680

1681
		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1682 1683 1684 1685 1686
		VM_BUG_ON_PAGE(page_mapped(page), page);

		/*
		 * The page is expected to have page_count() == 3:
		 *  - we hold a pin on it;
1687
		 *  - one reference from page cache;
1688 1689 1690 1691
		 *  - one from isolate_lru_page;
		 */
		if (!page_ref_freeze(page, 3)) {
			result = SCAN_PAGE_COUNT;
1692 1693 1694
			xas_unlock_irq(&xas);
			putback_lru_page(page);
			goto out_unlock;
1695 1696 1697 1698 1699 1700 1701 1702 1703
		}

		/*
		 * Add the page to the list to be able to undo the collapse if
		 * something go wrong.
		 */
		list_add_tail(&page->lru, &pagelist);

		/* Finally, replace with the new page. */
1704
		xas_store(&xas, new_page);
1705 1706 1707 1708
		continue;
out_unlock:
		unlock_page(page);
		put_page(page);
1709
		goto xa_unlocked;
1710 1711
	}

1712 1713
	if (is_shmem)
		__inc_node_page_state(new_page, NR_SHMEM_THPS);
1714
	else {
1715
		__inc_node_page_state(new_page, NR_FILE_THPS);
1716 1717
		filemap_nr_thps_inc(mapping);
	}
1718

1719 1720 1721 1722
	if (nr_none) {
		struct zone *zone = page_zone(new_page);

		__mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1723 1724 1725
		if (is_shmem)
			__mod_node_page_state(zone->zone_pgdat,
					      NR_SHMEM, nr_none);
1726 1727 1728 1729
	}

xa_locked:
	xas_unlock_irq(&xas);
1730
xa_unlocked:
1731

1732
	if (result == SCAN_SUCCEED) {
1733
		struct page *page, *tmp;
1734 1735

		/*
1736 1737
		 * Replacing old pages with new one has succeeded, now we
		 * need to copy the content and free the old pages.
1738
		 */
1739
		index = start;
1740
		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1741 1742 1743 1744
			while (index < page->index) {
				clear_highpage(new_page + (index % HPAGE_PMD_NR));
				index++;
			}
1745 1746 1747 1748
			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
					page);
			list_del(&page->lru);
			page->mapping = NULL;
1749
			page_ref_unfreeze(page, 1);
1750 1751
			ClearPageActive(page);
			ClearPageUnevictable(page);
1752
			unlock_page(page);
1753
			put_page(page);
1754 1755 1756 1757 1758
			index++;
		}
		while (index < end) {
			clear_highpage(new_page + (index % HPAGE_PMD_NR));
			index++;
1759 1760 1761
		}

		SetPageUptodate(new_page);
1762
		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1763
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1764 1765 1766 1767 1768 1769 1770

		if (is_shmem) {
			set_page_dirty(new_page);
			lru_cache_add_anon(new_page);
		} else {
			lru_cache_add_file(new_page);
		}
1771
		count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1772

1773 1774 1775 1776
		/*
		 * Remove pte page tables, so we can re-fault the page as huge.
		 */
		retract_page_tables(mapping, start);
1777
		*hpage = NULL;
1778 1779

		khugepaged_pages_collapsed++;
1780
	} else {
1781
		struct page *page;
1782

1783 1784
		/* Something went wrong: roll back page cache changes */
		xas_lock_irq(&xas);
1785
		mapping->nrpages -= nr_none;
1786 1787 1788

		if (is_shmem)
			shmem_uncharge(mapping->host, nr_none);
1789

1790 1791
		xas_set(&xas, start);
		xas_for_each(&xas, page, end - 1) {
1792 1793
			page = list_first_entry_or_null(&pagelist,
					struct page, lru);
1794
			if (!page || xas.xa_index < page->index) {
1795 1796 1797
				if (!nr_none)
					break;
				nr_none--;
1798
				/* Put holes back where they were */
1799
				xas_store(&xas, NULL);
1800 1801 1802
				continue;
			}

1803
			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1804 1805 1806 1807

			/* Unfreeze the page. */
			list_del(&page->lru);
			page_ref_unfreeze(page, 2);
1808 1809 1810
			xas_store(&xas, page);
			xas_pause(&xas);
			xas_unlock_irq(&xas);
1811
			unlock_page(page);
1812
			putback_lru_page(page);
1813
			xas_lock_irq(&xas);
1814 1815
		}
		VM_BUG_ON(nr_none);
1816
		xas_unlock_irq(&xas);
1817 1818 1819 1820

		mem_cgroup_cancel_charge(new_page, memcg, true);
		new_page->mapping = NULL;
	}
1821 1822

	unlock_page(new_page);
1823 1824 1825 1826 1827
out:
	VM_BUG_ON(!list_empty(&pagelist));
	/* TODO: tracepoints */
}

1828 1829
static void khugepaged_scan_file(struct mm_struct *mm,
		struct file *file, pgoff_t start, struct page **hpage)
1830 1831
{
	struct page *page = NULL;
1832
	struct address_space *mapping = file->f_mapping;
1833
	XA_STATE(xas, &mapping->i_pages, start);
1834 1835 1836 1837 1838 1839 1840 1841
	int present, swap;
	int node = NUMA_NO_NODE;
	int result = SCAN_SUCCEED;

	present = 0;
	swap = 0;
	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
	rcu_read_lock();
1842 1843
	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
		if (xas_retry(&xas, page))
1844 1845
			continue;

1846
		if (xa_is_value(page)) {
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
			if (++swap > khugepaged_max_ptes_swap) {
				result = SCAN_EXCEED_SWAP_PTE;
				break;
			}
			continue;
		}

		if (PageTransCompound(page)) {
			result = SCAN_PAGE_COMPOUND;
			break;
		}

		node = page_to_nid(page);
		if (khugepaged_scan_abort(node)) {
			result = SCAN_SCAN_ABORT;
			break;
		}
		khugepaged_node_load[node]++;

		if (!PageLRU(page)) {
			result = SCAN_PAGE_LRU;
			break;
		}

1871 1872
		if (page_count(page) !=
		    1 + page_mapcount(page) + page_has_private(page)) {
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
			result = SCAN_PAGE_COUNT;
			break;
		}

		/*
		 * We probably should check if the page is referenced here, but
		 * nobody would transfer pte_young() to PageReferenced() for us.
		 * And rmap walk here is just too costly...
		 */

		present++;

		if (need_resched()) {
1886
			xas_pause(&xas);
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
			cond_resched_rcu();
		}
	}
	rcu_read_unlock();

	if (result == SCAN_SUCCEED) {
		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
			result = SCAN_EXCEED_NONE_PTE;
		} else {
			node = khugepaged_find_target_node();
1897
			collapse_file(mm, file, start, hpage, node);
1898 1899 1900 1901 1902 1903
		}
	}

	/* TODO: tracepoints */
}
#else
1904 1905
static void khugepaged_scan_file(struct mm_struct *mm,
		struct file *file, pgoff_t start, struct page **hpage)
1906 1907 1908
{
	BUILD_BUG();
}
1909 1910 1911 1912 1913

static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
{
	return 0;
}
1914 1915
#endif

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
					    struct page **hpage)
	__releases(&khugepaged_mm_lock)
	__acquires(&khugepaged_mm_lock)
{
	struct mm_slot *mm_slot;
	struct mm_struct *mm;
	struct vm_area_struct *vma;
	int progress = 0;

	VM_BUG_ON(!pages);
1927
	lockdep_assert_held(&khugepaged_mm_lock);
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

	if (khugepaged_scan.mm_slot)
		mm_slot = khugepaged_scan.mm_slot;
	else {
		mm_slot = list_entry(khugepaged_scan.mm_head.next,
				     struct mm_slot, mm_node);
		khugepaged_scan.address = 0;
		khugepaged_scan.mm_slot = mm_slot;
	}
	spin_unlock(&khugepaged_mm_lock);
1938
	khugepaged_collapse_pte_mapped_thps(mm_slot);
1939 1940

	mm = mm_slot->mm;
1941 1942 1943 1944 1945 1946 1947 1948
	/*
	 * Don't wait for semaphore (to avoid long wait times).  Just move to
	 * the next mm on the list.
	 */
	vma = NULL;
	if (unlikely(!down_read_trylock(&mm->mmap_sem)))
		goto breakouterloop_mmap_sem;
	if (likely(!khugepaged_test_exit(mm)))
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
		vma = find_vma(mm, khugepaged_scan.address);

	progress++;
	for (; vma; vma = vma->vm_next) {
		unsigned long hstart, hend;

		cond_resched();
		if (unlikely(khugepaged_test_exit(mm))) {
			progress++;
			break;
		}
1960
		if (!hugepage_vma_check(vma, vma->vm_flags)) {
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
skip:
			progress++;
			continue;
		}
		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
		hend = vma->vm_end & HPAGE_PMD_MASK;
		if (hstart >= hend)
			goto skip;
		if (khugepaged_scan.address > hend)
			goto skip;
		if (khugepaged_scan.address < hstart)
			khugepaged_scan.address = hstart;
		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1974 1975
		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
			goto skip;
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

		while (khugepaged_scan.address < hend) {
			int ret;
			cond_resched();
			if (unlikely(khugepaged_test_exit(mm)))
				goto breakouterloop;

			VM_BUG_ON(khugepaged_scan.address < hstart ||
				  khugepaged_scan.address + HPAGE_PMD_SIZE >
				  hend);
1986
			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
1987
				struct file *file = get_file(vma->vm_file);
1988 1989
				pgoff_t pgoff = linear_page_index(vma,
						khugepaged_scan.address);
1990

1991 1992
				up_read(&mm->mmap_sem);
				ret = 1;
1993
				khugepaged_scan_file(mm, file, pgoff, hpage);
1994 1995 1996 1997 1998 1999
				fput(file);
			} else {
				ret = khugepaged_scan_pmd(mm, vma,
						khugepaged_scan.address,
						hpage);
			}
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
			/* move to next address */
			khugepaged_scan.address += HPAGE_PMD_SIZE;
			progress += HPAGE_PMD_NR;
			if (ret)
				/* we released mmap_sem so break loop */
				goto breakouterloop_mmap_sem;
			if (progress >= pages)
				goto breakouterloop;
		}
	}
breakouterloop:
	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
breakouterloop_mmap_sem:

	spin_lock(&khugepaged_mm_lock);
	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
	/*
	 * Release the current mm_slot if this mm is about to die, or
	 * if we scanned all vmas of this mm.
	 */
	if (khugepaged_test_exit(mm) || !vma) {
		/*
		 * Make sure that if mm_users is reaching zero while
		 * khugepaged runs here, khugepaged_exit will find
		 * mm_slot not pointing to the exiting mm.
		 */
		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
			khugepaged_scan.mm_slot = list_entry(
				mm_slot->mm_node.next,
				struct mm_slot, mm_node);
			khugepaged_scan.address = 0;
		} else {
			khugepaged_scan.mm_slot = NULL;
			khugepaged_full_scans++;
		}

		collect_mm_slot(mm_slot);
	}

	return progress;
}

static int khugepaged_has_work(void)
{
	return !list_empty(&khugepaged_scan.mm_head) &&
		khugepaged_enabled();
}

static int khugepaged_wait_event(void)
{
	return !list_empty(&khugepaged_scan.mm_head) ||
		kthread_should_stop();
}

static void khugepaged_do_scan(void)
{
	struct page *hpage = NULL;
	unsigned int progress = 0, pass_through_head = 0;
	unsigned int pages = khugepaged_pages_to_scan;
	bool wait = true;

	barrier(); /* write khugepaged_pages_to_scan to local stack */

	while (progress < pages) {
		if (!khugepaged_prealloc_page(&hpage, &wait))
			break;

		cond_resched();

		if (unlikely(kthread_should_stop() || try_to_freeze()))
			break;

		spin_lock(&khugepaged_mm_lock);
		if (!khugepaged_scan.mm_slot)
			pass_through_head++;
		if (khugepaged_has_work() &&
		    pass_through_head < 2)
			progress += khugepaged_scan_mm_slot(pages - progress,
							    &hpage);
		else
			progress = pages;
		spin_unlock(&khugepaged_mm_lock);
	}

	if (!IS_ERR_OR_NULL(hpage))
		put_page(hpage);
}

static bool khugepaged_should_wakeup(void)
{
	return kthread_should_stop() ||
	       time_after_eq(jiffies, khugepaged_sleep_expire);
}

static void khugepaged_wait_work(void)
{
	if (khugepaged_has_work()) {
		const unsigned long scan_sleep_jiffies =
			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);

		if (!scan_sleep_jiffies)
			return;

		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
		wait_event_freezable_timeout(khugepaged_wait,
					     khugepaged_should_wakeup(),
					     scan_sleep_jiffies);
		return;
	}

	if (khugepaged_enabled())
		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
}

static int khugepaged(void *none)
{
	struct mm_slot *mm_slot;

	set_freezable();
	set_user_nice(current, MAX_NICE);

	while (!kthread_should_stop()) {
		khugepaged_do_scan();
		khugepaged_wait_work();
	}

	spin_lock(&khugepaged_mm_lock);
	mm_slot = khugepaged_scan.mm_slot;
	khugepaged_scan.mm_slot = NULL;
	if (mm_slot)
		collect_mm_slot(mm_slot);
	spin_unlock(&khugepaged_mm_lock);
	return 0;
}

static void set_recommended_min_free_kbytes(void)
{
	struct zone *zone;
	int nr_zones = 0;
	unsigned long recommended_min;

2141 2142 2143 2144 2145 2146 2147 2148
	for_each_populated_zone(zone) {
		/*
		 * We don't need to worry about fragmentation of
		 * ZONE_MOVABLE since it only has movable pages.
		 */
		if (zone_idx(zone) > gfp_zone(GFP_USER))
			continue;

2149
		nr_zones++;
2150
	}
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
	recommended_min = pageblock_nr_pages * nr_zones * 2;

	/*
	 * Make sure that on average at least two pageblocks are almost free
	 * of another type, one for a migratetype to fall back to and a
	 * second to avoid subsequent fallbacks of other types There are 3
	 * MIGRATE_TYPES we care about.
	 */
	recommended_min += pageblock_nr_pages * nr_zones *
			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;

	/* don't ever allow to reserve more than 5% of the lowmem */
	recommended_min = min(recommended_min,
			      (unsigned long) nr_free_buffer_pages() / 20);
	recommended_min <<= (PAGE_SHIFT-10);

	if (recommended_min > min_free_kbytes) {
		if (user_min_free_kbytes >= 0)
			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
				min_free_kbytes, recommended_min);

		min_free_kbytes = recommended_min;
	}
	setup_per_zone_wmarks();
}

int start_stop_khugepaged(void)
{
	static struct task_struct *khugepaged_thread __read_mostly;
	static DEFINE_MUTEX(khugepaged_mutex);
	int err = 0;

	mutex_lock(&khugepaged_mutex);
	if (khugepaged_enabled()) {
		if (!khugepaged_thread)
			khugepaged_thread = kthread_run(khugepaged, NULL,
							"khugepaged");
		if (IS_ERR(khugepaged_thread)) {
			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
			err = PTR_ERR(khugepaged_thread);
			khugepaged_thread = NULL;
			goto fail;
		}

		if (!list_empty(&khugepaged_scan.mm_head))
			wake_up_interruptible(&khugepaged_wait);

		set_recommended_min_free_kbytes();
	} else if (khugepaged_thread) {
		kthread_stop(khugepaged_thread);
		khugepaged_thread = NULL;
	}
fail:
	mutex_unlock(&khugepaged_mutex);
	return err;
}