rtrs-clt.c 79.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * RDMA Transport Layer
 *
 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
 */

#undef pr_fmt
#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt

#include <linux/module.h>
#include <linux/rculist.h>
15
#include <linux/random.h>
16 17 18 19 20 21 22 23 24 25 26

#include "rtrs-clt.h"
#include "rtrs-log.h"

#define RTRS_CONNECT_TIMEOUT_MS 30000
/*
 * Wait a bit before trying to reconnect after a failure
 * in order to give server time to finish clean up which
 * leads to "false positives" failed reconnect attempts
 */
#define RTRS_RECONNECT_BACKOFF 1000
27 28 29 30 31 32
/*
 * Wait for additional random time between 0 and 8 seconds
 * before starting to reconnect to avoid clients reconnecting
 * all at once in case of a major network outage
 */
#define RTRS_RECONNECT_SEED 8
33

34 35
#define FIRST_CONN 0x01

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
MODULE_DESCRIPTION("RDMA Transport Client");
MODULE_LICENSE("GPL");

static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
static struct rtrs_rdma_dev_pd dev_pd = {
	.ops = &dev_pd_ops
};

static struct workqueue_struct *rtrs_wq;
static struct class *rtrs_clt_dev_class;

static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt)
{
	struct rtrs_clt_sess *sess;
	bool connected = false;

	rcu_read_lock();
	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry)
		connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED;
	rcu_read_unlock();

	return connected;
}

static struct rtrs_permit *
__rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type)
{
	size_t max_depth = clt->queue_depth;
	struct rtrs_permit *permit;
	int bit;

	/*
	 * Adapted from null_blk get_tag(). Callers from different cpus may
	 * grab the same bit, since find_first_zero_bit is not atomic.
	 * But then the test_and_set_bit_lock will fail for all the
	 * callers but one, so that they will loop again.
	 * This way an explicit spinlock is not required.
	 */
	do {
		bit = find_first_zero_bit(clt->permits_map, max_depth);
		if (unlikely(bit >= max_depth))
			return NULL;
	} while (unlikely(test_and_set_bit_lock(bit, clt->permits_map)));

	permit = get_permit(clt, bit);
	WARN_ON(permit->mem_id != bit);
	permit->cpu_id = raw_smp_processor_id();
	permit->con_type = con_type;

	return permit;
}

static inline void __rtrs_put_permit(struct rtrs_clt *clt,
				      struct rtrs_permit *permit)
{
	clear_bit_unlock(permit->mem_id, clt->permits_map);
}

/**
 * rtrs_clt_get_permit() - allocates permit for future RDMA operation
 * @clt:	Current session
 * @con_type:	Type of connection to use with the permit
 * @can_wait:	Wait type
 *
 * Description:
 *    Allocates permit for the following RDMA operation.  Permit is used
 *    to preallocate all resources and to propagate memory pressure
 *    up earlier.
 *
 * Context:
106
 *    Can sleep if @wait == RTRS_PERMIT_WAIT
107 108 109
 */
struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt,
					  enum rtrs_clt_con_type con_type,
110
					  enum wait_type can_wait)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
{
	struct rtrs_permit *permit;
	DEFINE_WAIT(wait);

	permit = __rtrs_get_permit(clt, con_type);
	if (likely(permit) || !can_wait)
		return permit;

	do {
		prepare_to_wait(&clt->permits_wait, &wait,
				TASK_UNINTERRUPTIBLE);
		permit = __rtrs_get_permit(clt, con_type);
		if (likely(permit))
			break;

		io_schedule();
	} while (1);

	finish_wait(&clt->permits_wait, &wait);

	return permit;
}
EXPORT_SYMBOL(rtrs_clt_get_permit);

/**
 * rtrs_clt_put_permit() - puts allocated permit
 * @clt:	Current session
 * @permit:	Permit to be freed
 *
 * Context:
 *    Does not matter
 */
void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit)
{
	if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
		return;

	__rtrs_put_permit(clt, permit);

	/*
	 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
	 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
	 * it must have added itself to &clt->permits_wait before
	 * __rtrs_put_permit() finished.
	 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
	 */
	if (waitqueue_active(&clt->permits_wait))
		wake_up(&clt->permits_wait);
}
EXPORT_SYMBOL(rtrs_clt_put_permit);

/**
 * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
 * @sess: client session pointer
 * @permit: permit for the allocation of the RDMA buffer
 * Note:
 *     IO connection starts from 1.
 *     0 connection is for user messages.
 */
static
struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess,
					    struct rtrs_permit *permit)
{
	int id = 0;

	if (likely(permit->con_type == RTRS_IO_CON))
177
		id = (permit->cpu_id % (sess->s.irq_con_num - 1)) + 1;
178 179 180 181 182

	return to_clt_con(sess->s.con[id]);
}

/**
183
 * rtrs_clt_change_state() - change the session state through session state
184 185 186 187 188
 * machine.
 *
 * @sess: client session to change the state of.
 * @new_state: state to change to.
 *
189
 * returns true if sess's state is changed to new state, otherwise return false.
190 191 192 193
 *
 * Locks:
 * state_wq lock must be hold.
 */
194
static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess,
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
				     enum rtrs_clt_state new_state)
{
	enum rtrs_clt_state old_state;
	bool changed = false;

	lockdep_assert_held(&sess->state_wq.lock);

	old_state = sess->state;
	switch (new_state) {
	case RTRS_CLT_CONNECTING:
		switch (old_state) {
		case RTRS_CLT_RECONNECTING:
			changed = true;
			fallthrough;
		default:
			break;
		}
		break;
	case RTRS_CLT_RECONNECTING:
		switch (old_state) {
		case RTRS_CLT_CONNECTED:
		case RTRS_CLT_CONNECTING_ERR:
		case RTRS_CLT_CLOSED:
			changed = true;
			fallthrough;
		default:
			break;
		}
		break;
	case RTRS_CLT_CONNECTED:
		switch (old_state) {
		case RTRS_CLT_CONNECTING:
			changed = true;
			fallthrough;
		default:
			break;
		}
		break;
	case RTRS_CLT_CONNECTING_ERR:
		switch (old_state) {
		case RTRS_CLT_CONNECTING:
			changed = true;
			fallthrough;
		default:
			break;
		}
		break;
	case RTRS_CLT_CLOSING:
		switch (old_state) {
		case RTRS_CLT_CONNECTING:
		case RTRS_CLT_CONNECTING_ERR:
		case RTRS_CLT_RECONNECTING:
		case RTRS_CLT_CONNECTED:
			changed = true;
			fallthrough;
		default:
			break;
		}
		break;
	case RTRS_CLT_CLOSED:
		switch (old_state) {
		case RTRS_CLT_CLOSING:
			changed = true;
			fallthrough;
		default:
			break;
		}
		break;
	case RTRS_CLT_DEAD:
		switch (old_state) {
		case RTRS_CLT_CLOSED:
			changed = true;
			fallthrough;
		default:
			break;
		}
		break;
	default:
		break;
	}
	if (changed) {
		sess->state = new_state;
		wake_up_locked(&sess->state_wq);
	}

	return changed;
}

static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess,
					   enum rtrs_clt_state old_state,
					   enum rtrs_clt_state new_state)
{
	bool changed = false;

	spin_lock_irq(&sess->state_wq.lock);
	if (sess->state == old_state)
291
		changed = rtrs_clt_change_state(sess, new_state);
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
	spin_unlock_irq(&sess->state_wq.lock);

	return changed;
}

static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
{
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);

	if (rtrs_clt_change_state_from_to(sess,
					   RTRS_CLT_CONNECTED,
					   RTRS_CLT_RECONNECTING)) {
		struct rtrs_clt *clt = sess->clt;
		unsigned int delay_ms;

		/*
		 * Normal scenario, reconnect if we were successfully connected
		 */
		delay_ms = clt->reconnect_delay_sec * 1000;
		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
312 313
				   msecs_to_jiffies(delay_ms +
						    prandom_u32() % RTRS_RECONNECT_SEED));
314 315 316 317 318 319 320 321 322 323 324 325 326 327
	} else {
		/*
		 * Error can happen just on establishing new connection,
		 * so notify waiter with error state, waiter is responsible
		 * for cleaning the rest and reconnect if needed.
		 */
		rtrs_clt_change_state_from_to(sess,
					       RTRS_CLT_CONNECTING,
					       RTRS_CLT_CONNECTING_ERR);
	}
}

static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
{
328
	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n",
			  ib_wc_status_msg(wc->status));
		rtrs_rdma_error_recovery(con);
	}
}

static struct ib_cqe fast_reg_cqe = {
	.done = rtrs_clt_fast_reg_done
};

static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
			      bool notify, bool can_wait);

static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct rtrs_clt_io_req *req =
		container_of(wc->wr_cqe, typeof(*req), inv_cqe);
348
	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n",
			  ib_wc_status_msg(wc->status));
		rtrs_rdma_error_recovery(con);
	}
	req->need_inv = false;
	if (likely(req->need_inv_comp))
		complete(&req->inv_comp);
	else
		/* Complete request from INV callback */
		complete_rdma_req(req, req->inv_errno, true, false);
}

static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
{
	struct rtrs_clt_con *con = req->con;
	struct ib_send_wr wr = {
		.opcode		    = IB_WR_LOCAL_INV,
		.wr_cqe		    = &req->inv_cqe,
		.send_flags	    = IB_SEND_SIGNALED,
		.ex.invalidate_rkey = req->mr->rkey,
	};
	req->inv_cqe.done = rtrs_clt_inv_rkey_done;

	return ib_post_send(con->c.qp, &wr, NULL);
}

static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
			      bool notify, bool can_wait)
{
	struct rtrs_clt_con *con = req->con;
	struct rtrs_clt_sess *sess;
	int err;

	if (WARN_ON(!req->in_use))
		return;
	if (WARN_ON(!req->con))
		return;
	sess = to_clt_sess(con->c.sess);

	if (req->sg_cnt) {
		if (unlikely(req->dir == DMA_FROM_DEVICE && req->need_inv)) {
			/*
			 * We are here to invalidate read requests
			 * ourselves.  In normal scenario server should
			 * send INV for all read requests, but
			 * we are here, thus two things could happen:
			 *
			 *    1.  this is failover, when errno != 0
			 *        and can_wait == 1,
			 *
			 *    2.  something totally bad happened and
			 *        server forgot to send INV, so we
			 *        should do that ourselves.
			 */

			if (likely(can_wait)) {
				req->need_inv_comp = true;
			} else {
				/* This should be IO path, so always notify */
				WARN_ON(!notify);
				/* Save errno for INV callback */
				req->inv_errno = errno;
			}

			err = rtrs_inv_rkey(req);
			if (unlikely(err)) {
				rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n",
					  req->mr->rkey, err);
			} else if (likely(can_wait)) {
				wait_for_completion(&req->inv_comp);
			} else {
				/*
				 * Something went wrong, so request will be
				 * completed from INV callback.
				 */
				WARN_ON_ONCE(1);

				return;
			}
		}
		ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
				req->sg_cnt, req->dir);
	}
	if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
		atomic_dec(&sess->stats->inflight);

	req->in_use = false;
	req->con = NULL;

440 441 442 443 444 445 446
	if (errno) {
		rtrs_err_rl(con->c.sess,
			    "IO request failed: error=%d path=%s [%s:%u]\n",
			    errno, kobject_name(&sess->kobj), sess->hca_name,
			    sess->hca_port);
	}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	if (notify)
		req->conf(req->priv, errno);
}

static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
				struct rtrs_clt_io_req *req,
				struct rtrs_rbuf *rbuf, u32 off,
				u32 imm, struct ib_send_wr *wr)
{
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
	enum ib_send_flags flags;
	struct ib_sge sge;

	if (unlikely(!req->sg_size)) {
		rtrs_wrn(con->c.sess,
			 "Doing RDMA Write failed, no data supplied\n");
		return -EINVAL;
	}

	/* user data and user message in the first list element */
	sge.addr   = req->iu->dma_addr;
	sge.length = req->sg_size;
	sge.lkey   = sess->s.dev->ib_pd->local_dma_lkey;

	/*
	 * From time to time we have to post signalled sends,
	 * or send queue will fill up and only QP reset can help.
	 */
	flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
			0 : IB_SEND_SIGNALED;

	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
				      req->sg_size, DMA_TO_DEVICE);

	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
					    rbuf->rkey, rbuf->addr + off,
					    imm, flags, wr);
}

static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id,
			   s16 errno, bool w_inval)
{
	struct rtrs_clt_io_req *req;

	if (WARN_ON(msg_id >= sess->queue_depth))
		return;

	req = &sess->reqs[msg_id];
	/* Drop need_inv if server responded with send with invalidation */
	req->need_inv &= !w_inval;
	complete_rdma_req(req, errno, true, false);
}

static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
{
	struct rtrs_iu *iu;
	int err;
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);

506
	WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	iu = container_of(wc->wr_cqe, struct rtrs_iu,
			  cqe);
	err = rtrs_iu_post_recv(&con->c, iu);
	if (unlikely(err)) {
		rtrs_err(con->c.sess, "post iu failed %d\n", err);
		rtrs_rdma_error_recovery(con);
	}
}

static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
{
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
	struct rtrs_msg_rkey_rsp *msg;
	u32 imm_type, imm_payload;
	bool w_inval = false;
	struct rtrs_iu *iu;
	u32 buf_id;
	int err;

526
	WARN_ON((sess->flags & RTRS_MSG_NEW_RKEY_F) == 0);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);

	if (unlikely(wc->byte_len < sizeof(*msg))) {
		rtrs_err(con->c.sess, "rkey response is malformed: size %d\n",
			  wc->byte_len);
		goto out;
	}
	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
				   iu->size, DMA_FROM_DEVICE);
	msg = iu->buf;
	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP)) {
		rtrs_err(sess->clt, "rkey response is malformed: type %d\n",
			  le16_to_cpu(msg->type));
		goto out;
	}
	buf_id = le16_to_cpu(msg->buf_id);
	if (WARN_ON(buf_id >= sess->queue_depth))
		goto out;

	rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
	if (likely(imm_type == RTRS_IO_RSP_IMM ||
		   imm_type == RTRS_IO_RSP_W_INV_IMM)) {
		u32 msg_id;

		w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
		rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);

		if (WARN_ON(buf_id != msg_id))
			goto out;
		sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
		process_io_rsp(sess, msg_id, err, w_inval);
	}
	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr,
				      iu->size, DMA_FROM_DEVICE);
	return rtrs_clt_recv_done(con, wc);
out:
	rtrs_rdma_error_recovery(con);
}

static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);

static struct ib_cqe io_comp_cqe = {
	.done = rtrs_clt_rdma_done
};

/*
 * Post x2 empty WRs: first is for this RDMA with IMM,
 * second is for RECV with INV, which happened earlier.
 */
static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
{
	struct ib_recv_wr wr_arr[2], *wr;
	int i;

	memset(wr_arr, 0, sizeof(wr_arr));
	for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
		wr = &wr_arr[i];
		wr->wr_cqe  = cqe;
		if (i)
			/* Chain backwards */
			wr->next = &wr_arr[i - 1];
	}

	return ib_post_recv(con->qp, wr, NULL);
}

static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
{
596
	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
	u32 imm_type, imm_payload;
	bool w_inval = false;
	int err;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		if (wc->status != IB_WC_WR_FLUSH_ERR) {
			rtrs_err(sess->clt, "RDMA failed: %s\n",
				  ib_wc_status_msg(wc->status));
			rtrs_rdma_error_recovery(con);
		}
		return;
	}
	rtrs_clt_update_wc_stats(con);

	switch (wc->opcode) {
	case IB_WC_RECV_RDMA_WITH_IMM:
		/*
		 * post_recv() RDMA write completions of IO reqs (read/write)
		 * and hb
		 */
		if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
			return;
		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
			       &imm_type, &imm_payload);
		if (likely(imm_type == RTRS_IO_RSP_IMM ||
			   imm_type == RTRS_IO_RSP_W_INV_IMM)) {
			u32 msg_id;

			w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
			rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);

			process_io_rsp(sess, msg_id, err, w_inval);
		} else if (imm_type == RTRS_HB_MSG_IMM) {
			WARN_ON(con->c.cid);
			rtrs_send_hb_ack(&sess->s);
633
			if (sess->flags & RTRS_MSG_NEW_RKEY_F)
634 635 636 637
				return  rtrs_clt_recv_done(con, wc);
		} else if (imm_type == RTRS_HB_ACK_IMM) {
			WARN_ON(con->c.cid);
			sess->s.hb_missed_cnt = 0;
638 639
			sess->s.hb_cur_latency =
				ktime_sub(ktime_get(), sess->s.hb_last_sent);
640
			if (sess->flags & RTRS_MSG_NEW_RKEY_F)
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
				return  rtrs_clt_recv_done(con, wc);
		} else {
			rtrs_wrn(con->c.sess, "Unknown IMM type %u\n",
				  imm_type);
		}
		if (w_inval)
			/*
			 * Post x2 empty WRs: first is for this RDMA with IMM,
			 * second is for RECV with INV, which happened earlier.
			 */
			err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
		else
			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
		if (unlikely(err)) {
			rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n",
				  err);
			rtrs_rdma_error_recovery(con);
		}
		break;
	case IB_WC_RECV:
		/*
		 * Key invalidations from server side
		 */
		WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
			  wc->wc_flags & IB_WC_WITH_IMM));
		WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
667
		if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
			if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
				return  rtrs_clt_recv_done(con, wc);

			return  rtrs_clt_rkey_rsp_done(con, wc);
		}
		break;
	case IB_WC_RDMA_WRITE:
		/*
		 * post_send() RDMA write completions of IO reqs (read/write)
		 */
		break;

	default:
		rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode);
		return;
	}
}

static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
{
	int err, i;
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);

	for (i = 0; i < q_size; i++) {
692
		if (sess->flags & RTRS_MSG_NEW_RKEY_F) {
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
			struct rtrs_iu *iu = &con->rsp_ius[i];

			err = rtrs_iu_post_recv(&con->c, iu);
		} else {
			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
		}
		if (unlikely(err))
			return err;
	}

	return 0;
}

static int post_recv_sess(struct rtrs_clt_sess *sess)
{
	size_t q_size = 0;
	int err, cid;

	for (cid = 0; cid < sess->s.con_num; cid++) {
		if (cid == 0)
			q_size = SERVICE_CON_QUEUE_DEPTH;
		else
			q_size = sess->queue_depth;

		/*
		 * x2 for RDMA read responses + FR key invalidations,
		 * RDMA writes do not require any FR registrations.
		 */
		q_size *= 2;

		err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size);
		if (unlikely(err)) {
			rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err);
			return err;
		}
	}

	return 0;
}

struct path_it {
	int i;
	struct list_head skip_list;
	struct rtrs_clt *clt;
	struct rtrs_clt_sess *(*next_path)(struct path_it *it);
};

/**
 * list_next_or_null_rr_rcu - get next list element in round-robin fashion.
 * @head:	the head for the list.
 * @ptr:        the list head to take the next element from.
 * @type:       the type of the struct this is embedded in.
 * @memb:       the name of the list_head within the struct.
 *
 * Next element returned in round-robin fashion, i.e. head will be skipped,
 * but if list is observed as empty, NULL will be returned.
 *
 * This primitive may safely run concurrently with the _rcu list-mutation
 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 */
#define list_next_or_null_rr_rcu(head, ptr, type, memb) \
({ \
	list_next_or_null_rcu(head, ptr, type, memb) ?: \
		list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \
				      type, memb); \
})

/**
 * get_next_path_rr() - Returns path in round-robin fashion.
 * @it:	the path pointer
 *
 * Related to @MP_POLICY_RR
 *
 * Locks:
 *    rcu_read_lock() must be hold.
 */
static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it)
{
	struct rtrs_clt_sess __rcu **ppcpu_path;
	struct rtrs_clt_sess *path;
	struct rtrs_clt *clt;

	clt = it->clt;

	/*
	 * Here we use two RCU objects: @paths_list and @pcpu_path
	 * pointer.  See rtrs_clt_remove_path_from_arr() for details
	 * how that is handled.
	 */

	ppcpu_path = this_cpu_ptr(clt->pcpu_path);
	path = rcu_dereference(*ppcpu_path);
	if (unlikely(!path))
		path = list_first_or_null_rcu(&clt->paths_list,
					      typeof(*path), s.entry);
	else
		path = list_next_or_null_rr_rcu(&clt->paths_list,
						&path->s.entry,
						typeof(*path),
						s.entry);
	rcu_assign_pointer(*ppcpu_path, path);

	return path;
}

/**
 * get_next_path_min_inflight() - Returns path with minimal inflight count.
 * @it:	the path pointer
 *
 * Related to @MP_POLICY_MIN_INFLIGHT
 *
 * Locks:
 *    rcu_read_lock() must be hold.
 */
static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it)
{
	struct rtrs_clt_sess *min_path = NULL;
	struct rtrs_clt *clt = it->clt;
	struct rtrs_clt_sess *sess;
	int min_inflight = INT_MAX;
	int inflight;

	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
		if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry))))
			continue;

		inflight = atomic_read(&sess->stats->inflight);

		if (inflight < min_inflight) {
			min_inflight = inflight;
			min_path = sess;
		}
	}

	/*
	 * add the path to the skip list, so that next time we can get
	 * a different one
	 */
	if (min_path)
		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);

	return min_path;
}

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/**
 * get_next_path_min_latency() - Returns path with minimal latency.
 * @it:	the path pointer
 *
 * Return: a path with the lowest latency or NULL if all paths are tried
 *
 * Locks:
 *    rcu_read_lock() must be hold.
 *
 * Related to @MP_POLICY_MIN_LATENCY
 *
 * This DOES skip an already-tried path.
 * There is a skip-list to skip a path if the path has tried but failed.
 * It will try the minimum latency path and then the second minimum latency
 * path and so on. Finally it will return NULL if all paths are tried.
 * Therefore the caller MUST check the returned
 * path is NULL and trigger the IO error.
 */
static struct rtrs_clt_sess *get_next_path_min_latency(struct path_it *it)
{
	struct rtrs_clt_sess *min_path = NULL;
	struct rtrs_clt *clt = it->clt;
	struct rtrs_clt_sess *sess;
	ktime_t min_latency = INT_MAX;
	ktime_t latency;

	list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
		if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
			continue;

		if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry))))
			continue;

		latency = sess->s.hb_cur_latency;

		if (latency < min_latency) {
			min_latency = latency;
			min_path = sess;
		}
	}

	/*
	 * add the path to the skip list, so that next time we can get
	 * a different one
	 */
	if (min_path)
		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);

	return min_path;
}

888 889 890 891 892 893 894 895
static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt)
{
	INIT_LIST_HEAD(&it->skip_list);
	it->clt = clt;
	it->i = 0;

	if (clt->mp_policy == MP_POLICY_RR)
		it->next_path = get_next_path_rr;
896
	else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
897
		it->next_path = get_next_path_min_inflight;
898 899
	else
		it->next_path = get_next_path_min_latency;
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
}

static inline void path_it_deinit(struct path_it *it)
{
	struct list_head *skip, *tmp;
	/*
	 * The skip_list is used only for the MIN_INFLIGHT policy.
	 * We need to remove paths from it, so that next IO can insert
	 * paths (->mp_skip_entry) into a skip_list again.
	 */
	list_for_each_safe(skip, tmp, &it->skip_list)
		list_del_init(skip);
}

/**
 * rtrs_clt_init_req() Initialize an rtrs_clt_io_req holding information
 * about an inflight IO.
 * The user buffer holding user control message (not data) is copied into
 * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
 * also hold the control message of rtrs.
 * @req: an io request holding information about IO.
 * @sess: client session
 * @conf: conformation callback function to notify upper layer.
 * @permit: permit for allocation of RDMA remote buffer
 * @priv: private pointer
 * @vec: kernel vector containing control message
 * @usr_len: length of the user message
 * @sg: scater list for IO data
 * @sg_cnt: number of scater list entries
 * @data_len: length of the IO data
 * @dir: direction of the IO.
 */
static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
			      struct rtrs_clt_sess *sess,
			      void (*conf)(void *priv, int errno),
			      struct rtrs_permit *permit, void *priv,
			      const struct kvec *vec, size_t usr_len,
			      struct scatterlist *sg, size_t sg_cnt,
			      size_t data_len, int dir)
{
	struct iov_iter iter;
	size_t len;

	req->permit = permit;
	req->in_use = true;
	req->usr_len = usr_len;
	req->data_len = data_len;
	req->sglist = sg;
	req->sg_cnt = sg_cnt;
	req->priv = priv;
	req->dir = dir;
	req->con = rtrs_permit_to_clt_con(sess, permit);
	req->conf = conf;
	req->need_inv = false;
	req->need_inv_comp = false;
	req->inv_errno = 0;

	iov_iter_kvec(&iter, READ, vec, 1, usr_len);
	len = _copy_from_iter(req->iu->buf, usr_len, &iter);
	WARN_ON(len != usr_len);

	reinit_completion(&req->inv_comp);
}

static struct rtrs_clt_io_req *
rtrs_clt_get_req(struct rtrs_clt_sess *sess,
		 void (*conf)(void *priv, int errno),
		 struct rtrs_permit *permit, void *priv,
		 const struct kvec *vec, size_t usr_len,
		 struct scatterlist *sg, size_t sg_cnt,
		 size_t data_len, int dir)
{
	struct rtrs_clt_io_req *req;

	req = &sess->reqs[permit->mem_id];
	rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len,
			   sg, sg_cnt, data_len, dir);
	return req;
}

static struct rtrs_clt_io_req *
rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess,
		       struct rtrs_clt_io_req *fail_req)
{
	struct rtrs_clt_io_req *req;
	struct kvec vec = {
		.iov_base = fail_req->iu->buf,
		.iov_len  = fail_req->usr_len
	};

	req = &alive_sess->reqs[fail_req->permit->mem_id];
	rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit,
			   fail_req->priv, &vec, fail_req->usr_len,
			   fail_req->sglist, fail_req->sg_cnt,
			   fail_req->data_len, fail_req->dir);
	return req;
}

static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
				    struct rtrs_clt_io_req *req,
				    struct rtrs_rbuf *rbuf,
				    u32 size, u32 imm)
{
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
	struct ib_sge *sge = req->sge;
	enum ib_send_flags flags;
	struct scatterlist *sg;
	size_t num_sge;
	int i;

	for_each_sg(req->sglist, sg, req->sg_cnt, i) {
		sge[i].addr   = sg_dma_address(sg);
		sge[i].length = sg_dma_len(sg);
		sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
	}
	sge[i].addr   = req->iu->dma_addr;
	sge[i].length = size;
	sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;

	num_sge = 1 + req->sg_cnt;

	/*
	 * From time to time we have to post signalled sends,
	 * or send queue will fill up and only QP reset can help.
	 */
	flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
			0 : IB_SEND_SIGNALED;

	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
				      size, DMA_TO_DEVICE);

	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
					    rbuf->rkey, rbuf->addr, imm,
					    flags, NULL);
}

static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
{
	struct rtrs_clt_con *con = req->con;
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_clt_sess *sess = to_clt_sess(s);
	struct rtrs_msg_rdma_write *msg;

	struct rtrs_rbuf *rbuf;
	int ret, count = 0;
	u32 imm, buf_id;

	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;

	if (unlikely(tsize > sess->chunk_size)) {
		rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
			  tsize, sess->chunk_size);
		return -EMSGSIZE;
	}
	if (req->sg_cnt) {
		count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist,
				      req->sg_cnt, req->dir);
		if (unlikely(!count)) {
			rtrs_wrn(s, "Write request failed, map failed\n");
			return -EINVAL;
		}
	}
	/* put rtrs msg after sg and user message */
	msg = req->iu->buf + req->usr_len;
	msg->type = cpu_to_le16(RTRS_MSG_WRITE);
	msg->usr_len = cpu_to_le16(req->usr_len);

	/* rtrs message on server side will be after user data and message */
	imm = req->permit->mem_off + req->data_len + req->usr_len;
	imm = rtrs_to_io_req_imm(imm);
	buf_id = req->permit->mem_id;
	req->sg_size = tsize;
	rbuf = &sess->rbufs[buf_id];

	/*
	 * Update stats now, after request is successfully sent it is not
	 * safe anymore to touch it.
	 */
	rtrs_clt_update_all_stats(req, WRITE);

	ret = rtrs_post_rdma_write_sg(req->con, req, rbuf,
				       req->usr_len + sizeof(*msg),
				       imm);
	if (unlikely(ret)) {
1084 1085 1086 1087
		rtrs_err_rl(s,
			    "Write request failed: error=%d path=%s [%s:%u]\n",
			    ret, kobject_name(&sess->kobj), sess->hca_name,
			    sess->hca_port);
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
			atomic_dec(&sess->stats->inflight);
		if (req->sg_cnt)
			ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
					req->sg_cnt, req->dir);
	}

	return ret;
}

static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
{
	int nr;

	/* Align the MR to a 4K page size to match the block virt boundary */
	nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1104 1105 1106
	if (nr < 0)
		return nr;
	if (unlikely(nr < req->sg_cnt))
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
		return -EINVAL;
	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));

	return nr;
}

static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
{
	struct rtrs_clt_con *con = req->con;
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_clt_sess *sess = to_clt_sess(s);
	struct rtrs_msg_rdma_read *msg;
1119
	struct rtrs_ib_dev *dev = sess->s.dev;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

	struct ib_reg_wr rwr;
	struct ib_send_wr *wr = NULL;

	int ret, count = 0;
	u32 imm, buf_id;

	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;

	if (unlikely(tsize > sess->chunk_size)) {
		rtrs_wrn(s,
			  "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
			  tsize, sess->chunk_size);
		return -EMSGSIZE;
	}

	if (req->sg_cnt) {
		count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
				      req->dir);
		if (unlikely(!count)) {
			rtrs_wrn(s,
				  "Read request failed, dma map failed\n");
			return -EINVAL;
		}
	}
	/* put our message into req->buf after user message*/
	msg = req->iu->buf + req->usr_len;
	msg->type = cpu_to_le16(RTRS_MSG_READ);
	msg->usr_len = cpu_to_le16(req->usr_len);

	if (count) {
		ret = rtrs_map_sg_fr(req, count);
		if (ret < 0) {
			rtrs_err_rl(s,
				     "Read request failed, failed to map  fast reg. data, err: %d\n",
				     ret);
			ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
					req->dir);
			return ret;
		}
		rwr = (struct ib_reg_wr) {
			.wr.opcode = IB_WR_REG_MR,
			.wr.wr_cqe = &fast_reg_cqe,
			.mr = req->mr,
			.key = req->mr->rkey,
			.access = (IB_ACCESS_LOCAL_WRITE |
				   IB_ACCESS_REMOTE_WRITE),
		};
		wr = &rwr.wr;

		msg->sg_cnt = cpu_to_le16(1);
		msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);

		msg->desc[0].addr = cpu_to_le64(req->mr->iova);
		msg->desc[0].key = cpu_to_le32(req->mr->rkey);
		msg->desc[0].len = cpu_to_le32(req->mr->length);

		/* Further invalidation is required */
		req->need_inv = !!RTRS_MSG_NEED_INVAL_F;

	} else {
		msg->sg_cnt = 0;
		msg->flags = 0;
	}
	/*
	 * rtrs message will be after the space reserved for disk data and
	 * user message
	 */
	imm = req->permit->mem_off + req->data_len + req->usr_len;
	imm = rtrs_to_io_req_imm(imm);
	buf_id = req->permit->mem_id;

	req->sg_size  = sizeof(*msg);
	req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
	req->sg_size += req->usr_len;

	/*
	 * Update stats now, after request is successfully sent it is not
	 * safe anymore to touch it.
	 */
	rtrs_clt_update_all_stats(req, READ);

	ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id],
				   req->data_len, imm, wr);
	if (unlikely(ret)) {
1205 1206 1207 1208
		rtrs_err_rl(s,
			    "Read request failed: error=%d path=%s [%s:%u]\n",
			    ret, kobject_name(&sess->kobj), sess->hca_name,
			    sess->hca_port);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
		if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
			atomic_dec(&sess->stats->inflight);
		req->need_inv = false;
		if (req->sg_cnt)
			ib_dma_unmap_sg(dev->ib_dev, req->sglist,
					req->sg_cnt, req->dir);
	}

	return ret;
}

/**
 * rtrs_clt_failover_req() Try to find an active path for a failed request
 * @clt: clt context
 * @fail_req: a failed io request.
 */
static int rtrs_clt_failover_req(struct rtrs_clt *clt,
				 struct rtrs_clt_io_req *fail_req)
{
	struct rtrs_clt_sess *alive_sess;
	struct rtrs_clt_io_req *req;
	int err = -ECONNABORTED;
	struct path_it it;

1233 1234 1235 1236
	rcu_read_lock();
	for (path_it_init(&it, clt);
	     (alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num;
	     it.i++) {
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		if (unlikely(READ_ONCE(alive_sess->state) !=
			     RTRS_CLT_CONNECTED))
			continue;
		req = rtrs_clt_get_copy_req(alive_sess, fail_req);
		if (req->dir == DMA_TO_DEVICE)
			err = rtrs_clt_write_req(req);
		else
			err = rtrs_clt_read_req(req);
		if (unlikely(err)) {
			req->in_use = false;
			continue;
		}
		/* Success path */
		rtrs_clt_inc_failover_cnt(alive_sess->stats);
		break;
1252 1253 1254
	}
	path_it_deinit(&it);
	rcu_read_unlock();
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

	return err;
}

static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess)
{
	struct rtrs_clt *clt = sess->clt;
	struct rtrs_clt_io_req *req;
	int i, err;

	if (!sess->reqs)
		return;
	for (i = 0; i < sess->queue_depth; ++i) {
		req = &sess->reqs[i];
		if (!req->in_use)
			continue;

		/*
		 * Safely (without notification) complete failed request.
		 * After completion this request is still useble and can
		 * be failovered to another path.
		 */
		complete_rdma_req(req, -ECONNABORTED, false, true);

		err = rtrs_clt_failover_req(clt, req);
		if (unlikely(err))
			/* Failover failed, notify anyway */
			req->conf(req->priv, err);
	}
}

static void free_sess_reqs(struct rtrs_clt_sess *sess)
{
	struct rtrs_clt_io_req *req;
	int i;

	if (!sess->reqs)
		return;
	for (i = 0; i < sess->queue_depth; ++i) {
		req = &sess->reqs[i];
		if (req->mr)
			ib_dereg_mr(req->mr);
		kfree(req->sge);
1298
		rtrs_iu_free(req->iu, sess->s.dev->ib_dev, 1);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	}
	kfree(sess->reqs);
	sess->reqs = NULL;
}

static int alloc_sess_reqs(struct rtrs_clt_sess *sess)
{
	struct rtrs_clt_io_req *req;
	struct rtrs_clt *clt = sess->clt;
	int i, err = -ENOMEM;

	sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs),
			     GFP_KERNEL);
	if (!sess->reqs)
		return -ENOMEM;

	for (i = 0; i < sess->queue_depth; ++i) {
		req = &sess->reqs[i];
		req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL,
					 sess->s.dev->ib_dev,
					 DMA_TO_DEVICE,
					 rtrs_clt_rdma_done);
		if (!req->iu)
			goto out;

		req->sge = kmalloc_array(clt->max_segments + 1,
					 sizeof(*req->sge), GFP_KERNEL);
		if (!req->sge)
			goto out;

		req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
				      sess->max_pages_per_mr);
		if (IS_ERR(req->mr)) {
			err = PTR_ERR(req->mr);
			req->mr = NULL;
			pr_err("Failed to alloc sess->max_pages_per_mr %d\n",
			       sess->max_pages_per_mr);
			goto out;
		}

		init_completion(&req->inv_comp);
	}

	return 0;

out:
	free_sess_reqs(sess);

	return err;
}

static int alloc_permits(struct rtrs_clt *clt)
{
	unsigned int chunk_bits;
	int err, i;

	clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth),
				   sizeof(long), GFP_KERNEL);
	if (!clt->permits_map) {
		err = -ENOMEM;
		goto out_err;
	}
	clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
	if (!clt->permits) {
		err = -ENOMEM;
		goto err_map;
	}
	chunk_bits = ilog2(clt->queue_depth - 1) + 1;
	for (i = 0; i < clt->queue_depth; i++) {
		struct rtrs_permit *permit;

		permit = get_permit(clt, i);
		permit->mem_id = i;
		permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
	}

	return 0;

err_map:
	kfree(clt->permits_map);
	clt->permits_map = NULL;
out_err:
	return err;
}

static void free_permits(struct rtrs_clt *clt)
{
1386 1387 1388 1389 1390 1391
	if (clt->permits_map) {
		size_t sz = clt->queue_depth;

		wait_event(clt->permits_wait,
			   find_first_bit(clt->permits_map, sz) >= sz);
	}
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	kfree(clt->permits_map);
	clt->permits_map = NULL;
	kfree(clt->permits);
	clt->permits = NULL;
}

static void query_fast_reg_mode(struct rtrs_clt_sess *sess)
{
	struct ib_device *ib_dev;
	u64 max_pages_per_mr;
	int mr_page_shift;

	ib_dev = sess->s.dev->ib_dev;

	/*
	 * Use the smallest page size supported by the HCA, down to a
	 * minimum of 4096 bytes. We're unlikely to build large sglists
	 * out of smaller entries.
	 */
	mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
	max_pages_per_mr   = ib_dev->attrs.max_mr_size;
	do_div(max_pages_per_mr, (1ull << mr_page_shift));
	sess->max_pages_per_mr =
		min3(sess->max_pages_per_mr, (u32)max_pages_per_mr,
		     ib_dev->attrs.max_fast_reg_page_list_len);
	sess->max_send_sge = ib_dev->attrs.max_send_sge;
}

static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess,
					   enum rtrs_clt_state new_state,
					   enum rtrs_clt_state *old_state)
{
	bool changed;

	spin_lock_irq(&sess->state_wq.lock);
1427 1428
	if (old_state)
		*old_state = sess->state;
1429
	changed = rtrs_clt_change_state(sess, new_state);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	spin_unlock_irq(&sess->state_wq.lock);

	return changed;
}

static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
{
	struct rtrs_clt_con *con = container_of(c, typeof(*con), c);

	rtrs_rdma_error_recovery(con);
}

static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess)
{
	rtrs_init_hb(&sess->s, &io_comp_cqe,
		      RTRS_HB_INTERVAL_MS,
		      RTRS_HB_MISSED_MAX,
		      rtrs_clt_hb_err_handler,
		      rtrs_wq);
}

static void rtrs_clt_reconnect_work(struct work_struct *work);
static void rtrs_clt_close_work(struct work_struct *work);

static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt,
					 const struct rtrs_addr *path,
1456
					 size_t con_num, u16 max_segments,
1457
					 u32 nr_poll_queues)
1458 1459 1460 1461
{
	struct rtrs_clt_sess *sess;
	int err = -ENOMEM;
	int cpu;
1462
	size_t total_con;
1463 1464 1465 1466 1467

	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
	if (!sess)
		goto err;

1468 1469 1470 1471 1472 1473
	/*
	 * irqmode and poll
	 * +1: Extra connection for user messages
	 */
	total_con = con_num + nr_poll_queues + 1;
	sess->s.con = kcalloc(total_con, sizeof(*sess->s.con), GFP_KERNEL);
1474 1475 1476
	if (!sess->s.con)
		goto err_free_sess;

1477 1478 1479
	sess->s.con_num = total_con;
	sess->s.irq_con_num = con_num + 1;

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
	if (!sess->stats)
		goto err_free_con;

	mutex_init(&sess->init_mutex);
	uuid_gen(&sess->s.uuid);
	memcpy(&sess->s.dst_addr, path->dst,
	       rdma_addr_size((struct sockaddr *)path->dst));

	/*
	 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
	 * checks the sa_family to be non-zero. If user passed src_addr=NULL
	 * the sess->src_addr will contain only zeros, which is then fine.
	 */
	if (path->src)
		memcpy(&sess->s.src_addr, path->src,
		       rdma_addr_size((struct sockaddr *)path->src));
1497
	strscpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname));
1498
	sess->clt = clt;
1499
	sess->max_pages_per_mr = max_segments;
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	init_waitqueue_head(&sess->state_wq);
	sess->state = RTRS_CLT_CONNECTING;
	atomic_set(&sess->connected_cnt, 0);
	INIT_WORK(&sess->close_work, rtrs_clt_close_work);
	INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work);
	rtrs_clt_init_hb(sess);

	sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry));
	if (!sess->mp_skip_entry)
		goto err_free_stats;

	for_each_possible_cpu(cpu)
		INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu));

	err = rtrs_clt_init_stats(sess->stats);
	if (err)
		goto err_free_percpu;

	return sess;

err_free_percpu:
	free_percpu(sess->mp_skip_entry);
err_free_stats:
	kfree(sess->stats);
err_free_con:
	kfree(sess->s.con);
err_free_sess:
	kfree(sess);
err:
	return ERR_PTR(err);
}

void free_sess(struct rtrs_clt_sess *sess)
{
	free_percpu(sess->mp_skip_entry);
	mutex_destroy(&sess->init_mutex);
	kfree(sess->s.con);
	kfree(sess->rbufs);
	kfree(sess);
}

static int create_con(struct rtrs_clt_sess *sess, unsigned int cid)
{
	struct rtrs_clt_con *con;

	con = kzalloc(sizeof(*con), GFP_KERNEL);
	if (!con)
		return -ENOMEM;

	/* Map first two connections to the first CPU */
	con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
	con->c.cid = cid;
	con->c.sess = &sess->s;
	atomic_set(&con->io_cnt, 0);
1554
	mutex_init(&con->con_mutex);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

	sess->s.con[cid] = &con->c;

	return 0;
}

static void destroy_con(struct rtrs_clt_con *con)
{
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);

	sess->s.con[con->c.cid] = NULL;
1566
	mutex_destroy(&con->con_mutex);
1567 1568 1569 1570 1571 1572
	kfree(con);
}

static int create_con_cq_qp(struct rtrs_clt_con *con)
{
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1573
	u32 max_send_wr, max_recv_wr, cq_size;
1574 1575 1576
	int err, cq_vector;
	struct rtrs_msg_rkey_rsp *rsp;

1577
	lockdep_assert_held(&con->con_mutex);
1578 1579 1580 1581 1582 1583 1584
	if (con->c.cid == 0) {
		/*
		 * One completion for each receive and two for each send
		 * (send request + registration)
		 * + 2 for drain and heartbeat
		 * in case qp gets into error state
		 */
1585 1586
		max_send_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2;
		max_recv_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2;
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
		/* We must be the first here */
		if (WARN_ON(sess->s.dev))
			return -EINVAL;

		/*
		 * The whole session uses device from user connection.
		 * Be careful not to close user connection before ib dev
		 * is gracefully put.
		 */
		sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
						       &dev_pd);
		if (!sess->s.dev) {
			rtrs_wrn(sess->clt,
				  "rtrs_ib_dev_find_get_or_add(): no memory\n");
			return -ENOMEM;
		}
		sess->s.dev_ref = 1;
		query_fast_reg_mode(sess);
	} else {
		/*
		 * Here we assume that session members are correctly set.
		 * This is always true if user connection (cid == 0) is
		 * established first.
		 */
		if (WARN_ON(!sess->s.dev))
			return -EINVAL;
		if (WARN_ON(!sess->queue_depth))
			return -EINVAL;

		/* Shared between connections */
		sess->s.dev_ref++;
1618
		max_send_wr =
1619 1620 1621
			min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
			      /* QD * (REQ + RSP + FR REGS or INVS) + drain */
			      sess->queue_depth * 3 + 1);
1622 1623 1624
		max_recv_wr =
			min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
			      sess->queue_depth * 3 + 1);
1625 1626
	}
	/* alloc iu to recv new rkey reply when server reports flags set */
1627
	if (sess->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1628
		con->rsp_ius = rtrs_iu_alloc(max_recv_wr, sizeof(*rsp),
1629 1630 1631 1632 1633
					      GFP_KERNEL, sess->s.dev->ib_dev,
					      DMA_FROM_DEVICE,
					      rtrs_clt_rdma_done);
		if (!con->rsp_ius)
			return -ENOMEM;
1634
		con->queue_size = max_recv_wr;
1635
	}
1636
	cq_size = max_send_wr + max_recv_wr;
1637
	cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors;
1638 1639 1640 1641 1642 1643 1644 1645
	if (con->c.cid >= sess->s.irq_con_num)
		err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge,
					cq_vector, cq_size, max_send_wr,
					max_recv_wr, IB_POLL_DIRECT);
	else
		err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge,
					cq_vector, cq_size, max_send_wr,
					max_recv_wr, IB_POLL_SOFTIRQ);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	/*
	 * In case of error we do not bother to clean previous allocations,
	 * since destroy_con_cq_qp() must be called.
	 */
	return err;
}

static void destroy_con_cq_qp(struct rtrs_clt_con *con)
{
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);

	/*
	 * Be careful here: destroy_con_cq_qp() can be called even
	 * create_con_cq_qp() failed, see comments there.
	 */
1661
	lockdep_assert_held(&con->con_mutex);
1662 1663
	rtrs_cq_qp_destroy(&con->c);
	if (con->rsp_ius) {
1664
		rtrs_iu_free(con->rsp_ius, sess->s.dev->ib_dev, con->queue_size);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		con->rsp_ius = NULL;
		con->queue_size = 0;
	}
	if (sess->s.dev_ref && !--sess->s.dev_ref) {
		rtrs_ib_dev_put(sess->s.dev);
		sess->s.dev = NULL;
	}
}

static void stop_cm(struct rtrs_clt_con *con)
{
	rdma_disconnect(con->c.cm_id);
	if (con->c.qp)
		ib_drain_qp(con->c.qp);
}

static void destroy_cm(struct rtrs_clt_con *con)
{
	rdma_destroy_id(con->c.cm_id);
	con->c.cm_id = NULL;
}

static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
{
	struct rtrs_sess *s = con->c.sess;
	int err;

1692
	mutex_lock(&con->con_mutex);
1693
	err = create_con_cq_qp(con);
1694
	mutex_unlock(&con->con_mutex);
1695 1696 1697 1698 1699
	if (err) {
		rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
		return err;
	}
	err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1700
	if (err)
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		rtrs_err(s, "Resolving route failed, err: %d\n", err);

	return err;
}

static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
{
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
	struct rtrs_clt *clt = sess->clt;
	struct rtrs_msg_conn_req msg;
	struct rdma_conn_param param;

	int err;

	param = (struct rdma_conn_param) {
		.retry_count = 7,
		.rnr_retry_count = 7,
		.private_data = &msg,
		.private_data_len = sizeof(msg),
	};

	msg = (struct rtrs_msg_conn_req) {
		.magic = cpu_to_le16(RTRS_MAGIC),
		.version = cpu_to_le16(RTRS_PROTO_VER),
		.cid = cpu_to_le16(con->c.cid),
		.cid_num = cpu_to_le16(sess->s.con_num),
		.recon_cnt = cpu_to_le16(sess->s.recon_cnt),
	};
1729
	msg.first_conn = sess->for_new_clt ? FIRST_CONN : 0;
1730 1731 1732
	uuid_copy(&msg.sess_uuid, &sess->s.uuid);
	uuid_copy(&msg.paths_uuid, &clt->paths_uuid);

J
Jason Gunthorpe 已提交
1733
	err = rdma_connect_locked(con->c.cm_id, &param);
1734
	if (err)
J
Jason Gunthorpe 已提交
1735
		rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

	return err;
}

static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
				       struct rdma_cm_event *ev)
{
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
	struct rtrs_clt *clt = sess->clt;
	const struct rtrs_msg_conn_rsp *msg;
	u16 version, queue_depth;
	int errno;
	u8 len;

	msg = ev->param.conn.private_data;
	len = ev->param.conn.private_data_len;
	if (len < sizeof(*msg)) {
		rtrs_err(clt, "Invalid RTRS connection response\n");
		return -ECONNRESET;
	}
	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
		rtrs_err(clt, "Invalid RTRS magic\n");
		return -ECONNRESET;
	}
	version = le16_to_cpu(msg->version);
	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
		rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
			  version >> 8, RTRS_PROTO_VER_MAJOR);
		return -ECONNRESET;
	}
	errno = le16_to_cpu(msg->errno);
	if (errno) {
		rtrs_err(clt, "Invalid RTRS message: errno %d\n",
			  errno);
		return -ECONNRESET;
	}
	if (con->c.cid == 0) {
		queue_depth = le16_to_cpu(msg->queue_depth);

		if (queue_depth > MAX_SESS_QUEUE_DEPTH) {
			rtrs_err(clt, "Invalid RTRS message: queue=%d\n",
				  queue_depth);
			return -ECONNRESET;
		}
		if (!sess->rbufs || sess->queue_depth < queue_depth) {
			kfree(sess->rbufs);
			sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs),
					      GFP_KERNEL);
			if (!sess->rbufs)
				return -ENOMEM;
		}
		sess->queue_depth = queue_depth;
		sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
		sess->max_io_size = le32_to_cpu(msg->max_io_size);
		sess->flags = le32_to_cpu(msg->flags);
		sess->chunk_size = sess->max_io_size + sess->max_hdr_size;

		/*
		 * Global queue depth and IO size is always a minimum.
		 * If while a reconnection server sends us a value a bit
		 * higher - client does not care and uses cached minimum.
		 *
		 * Since we can have several sessions (paths) restablishing
		 * connections in parallel, use lock.
		 */
		mutex_lock(&clt->paths_mutex);
		clt->queue_depth = min_not_zero(sess->queue_depth,
						clt->queue_depth);
		clt->max_io_size = min_not_zero(sess->max_io_size,
						clt->max_io_size);
		mutex_unlock(&clt->paths_mutex);

		/*
		 * Cache the hca_port and hca_name for sysfs
		 */
		sess->hca_port = con->c.cm_id->port_num;
		scnprintf(sess->hca_name, sizeof(sess->hca_name),
			  sess->s.dev->ib_dev->name);
		sess->s.src_addr = con->c.cm_id->route.addr.src_addr;
1815 1816
		/* set for_new_clt, to allow future reconnect on any path */
		sess->for_new_clt = 1;
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	}

	return 0;
}

static inline void flag_success_on_conn(struct rtrs_clt_con *con)
{
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);

	atomic_inc(&sess->connected_cnt);
	con->cm_err = 1;
}

static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
				    struct rdma_cm_event *ev)
{
	struct rtrs_sess *s = con->c.sess;
	const struct rtrs_msg_conn_rsp *msg;
	const char *rej_msg;
	int status, errno;
	u8 data_len;

	status = ev->status;
	rej_msg = rdma_reject_msg(con->c.cm_id, status);
	msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);

	if (msg && data_len >= sizeof(*msg)) {
		errno = (int16_t)le16_to_cpu(msg->errno);
		if (errno == -EBUSY)
			rtrs_err(s,
				  "Previous session is still exists on the server, please reconnect later\n");
		else
			rtrs_err(s,
				  "Connect rejected: status %d (%s), rtrs errno %d\n",
				  status, rej_msg, errno);
	} else {
		rtrs_err(s,
			  "Connect rejected but with malformed message: status %d (%s)\n",
			  status, rej_msg);
	}

	return -ECONNRESET;
}

1861
void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait)
1862
{
1863
	if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSING, NULL))
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
		queue_work(rtrs_wq, &sess->close_work);
	if (wait)
		flush_work(&sess->close_work);
}

static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
{
	if (con->cm_err == 1) {
		struct rtrs_clt_sess *sess;

		sess = to_clt_sess(con->c.sess);
		if (atomic_dec_and_test(&sess->connected_cnt))

			wake_up(&sess->state_wq);
	}
	con->cm_err = cm_err;
}

static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
				     struct rdma_cm_event *ev)
{
	struct rtrs_clt_con *con = cm_id->context;
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_clt_sess *sess = to_clt_sess(s);
	int cm_err = 0;

	switch (ev->event) {
	case RDMA_CM_EVENT_ADDR_RESOLVED:
		cm_err = rtrs_rdma_addr_resolved(con);
		break;
	case RDMA_CM_EVENT_ROUTE_RESOLVED:
		cm_err = rtrs_rdma_route_resolved(con);
		break;
	case RDMA_CM_EVENT_ESTABLISHED:
1898 1899
		cm_err = rtrs_rdma_conn_established(con, ev);
		if (likely(!cm_err)) {
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
			/*
			 * Report success and wake up. Here we abuse state_wq,
			 * i.e. wake up without state change, but we set cm_err.
			 */
			flag_success_on_conn(con);
			wake_up(&sess->state_wq);
			return 0;
		}
		break;
	case RDMA_CM_EVENT_REJECTED:
		cm_err = rtrs_rdma_conn_rejected(con, ev);
		break;
1912 1913 1914 1915
	case RDMA_CM_EVENT_DISCONNECTED:
		/* No message for disconnecting */
		cm_err = -ECONNRESET;
		break;
1916 1917
	case RDMA_CM_EVENT_CONNECT_ERROR:
	case RDMA_CM_EVENT_UNREACHABLE:
1918 1919
	case RDMA_CM_EVENT_ADDR_CHANGE:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1920 1921
		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
			 rdma_event_msg(ev->event), ev->status);
1922 1923 1924 1925
		cm_err = -ECONNRESET;
		break;
	case RDMA_CM_EVENT_ADDR_ERROR:
	case RDMA_CM_EVENT_ROUTE_ERROR:
1926 1927
		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
			 rdma_event_msg(ev->event), ev->status);
1928 1929 1930 1931 1932 1933 1934 1935 1936
		cm_err = -EHOSTUNREACH;
		break;
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
		/*
		 * Device removal is a special case.  Queue close and return 0.
		 */
		rtrs_clt_close_conns(sess, false);
		return 0;
	default:
1937 1938
		rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n",
			 rdma_event_msg(ev->event), ev->status);
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
		cm_err = -ECONNRESET;
		break;
	}

	if (cm_err) {
		/*
		 * cm error makes sense only on connection establishing,
		 * in other cases we rely on normal procedure of reconnecting.
		 */
		flag_error_on_conn(con, cm_err);
		rtrs_rdma_error_recovery(con);
	}

	return 0;
}

static int create_cm(struct rtrs_clt_con *con)
{
	struct rtrs_sess *s = con->c.sess;
	struct rtrs_clt_sess *sess = to_clt_sess(s);
	struct rdma_cm_id *cm_id;
	int err;

	cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
			       sess->s.dst_addr.ss_family == AF_IB ?
			       RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(cm_id)) {
		err = PTR_ERR(cm_id);
		rtrs_err(s, "Failed to create CM ID, err: %d\n", err);

		return err;
	}
	con->c.cm_id = cm_id;
	con->cm_err = 0;
	/* allow the port to be reused */
	err = rdma_set_reuseaddr(cm_id, 1);
	if (err != 0) {
		rtrs_err(s, "Set address reuse failed, err: %d\n", err);
		goto destroy_cm;
	}
	err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr,
				(struct sockaddr *)&sess->s.dst_addr,
				RTRS_CONNECT_TIMEOUT_MS);
	if (err) {
		rtrs_err(s, "Failed to resolve address, err: %d\n", err);
		goto destroy_cm;
	}
	/*
	 * Combine connection status and session events. This is needed
	 * for waiting two possible cases: cm_err has something meaningful
	 * or session state was really changed to error by device removal.
	 */
	err = wait_event_interruptible_timeout(
			sess->state_wq,
			con->cm_err || sess->state != RTRS_CLT_CONNECTING,
			msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
	if (err == 0 || err == -ERESTARTSYS) {
		if (err == 0)
			err = -ETIMEDOUT;
		/* Timedout or interrupted */
		goto errr;
	}
	if (con->cm_err < 0) {
		err = con->cm_err;
		goto errr;
	}
	if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) {
		/* Device removal */
		err = -ECONNABORTED;
		goto errr;
	}

	return 0;

errr:
	stop_cm(con);
2015
	mutex_lock(&con->con_mutex);
2016
	destroy_con_cq_qp(con);
2017
	mutex_unlock(&con->con_mutex);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
destroy_cm:
	destroy_cm(con);

	return err;
}

static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess)
{
	struct rtrs_clt *clt = sess->clt;
	int up;

	/*
	 * We can fire RECONNECTED event only when all paths were
	 * connected on rtrs_clt_open(), then each was disconnected
	 * and the first one connected again.  That's why this nasty
	 * game with counter value.
	 */

	mutex_lock(&clt->paths_ev_mutex);
	up = ++clt->paths_up;
	/*
	 * Here it is safe to access paths num directly since up counter
	 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
	 * in progress, thus paths removals are impossible.
	 */
	if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
		clt->paths_up = clt->paths_num;
	else if (up == 1)
		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
	mutex_unlock(&clt->paths_ev_mutex);

	/* Mark session as established */
	sess->established = true;
	sess->reconnect_attempts = 0;
	sess->stats->reconnects.successful_cnt++;
}

static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess)
{
	struct rtrs_clt *clt = sess->clt;

	if (!sess->established)
		return;

	sess->established = false;
	mutex_lock(&clt->paths_ev_mutex);
	WARN_ON(!clt->paths_up);
	if (--clt->paths_up == 0)
		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
	mutex_unlock(&clt->paths_ev_mutex);
}

static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess)
{
	struct rtrs_clt_con *con;
	unsigned int cid;

	WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED);

	/*
	 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
	 * exactly in between.  Start destroying after it finishes.
	 */
	mutex_lock(&sess->init_mutex);
	mutex_unlock(&sess->init_mutex);

	/*
	 * All IO paths must observe !CONNECTED state before we
	 * free everything.
	 */
	synchronize_rcu();

2090
	rtrs_stop_hb(&sess->s);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

	/*
	 * The order it utterly crucial: firstly disconnect and complete all
	 * rdma requests with error (thus set in_use=false for requests),
	 * then fail outstanding requests checking in_use for each, and
	 * eventually notify upper layer about session disconnection.
	 */

	for (cid = 0; cid < sess->s.con_num; cid++) {
		if (!sess->s.con[cid])
			break;
		con = to_clt_con(sess->s.con[cid]);
		stop_cm(con);
	}
	fail_all_outstanding_reqs(sess);
	free_sess_reqs(sess);
	rtrs_clt_sess_down(sess);

	/*
	 * Wait for graceful shutdown, namely when peer side invokes
	 * rdma_disconnect(). 'connected_cnt' is decremented only on
	 * CM events, thus if other side had crashed and hb has detected
	 * something is wrong, here we will stuck for exactly timeout ms,
	 * since CM does not fire anything.  That is fine, we are not in
	 * hurry.
	 */
	wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt),
			   msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));

	for (cid = 0; cid < sess->s.con_num; cid++) {
		if (!sess->s.con[cid])
			break;
		con = to_clt_con(sess->s.con[cid]);
2124
		mutex_lock(&con->con_mutex);
2125
		destroy_con_cq_qp(con);
2126
		mutex_unlock(&con->con_mutex);
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
		destroy_cm(con);
		destroy_con(con);
	}
}

static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path,
				 struct rtrs_clt_sess *sess,
				 struct rtrs_clt_sess *next)
{
	struct rtrs_clt_sess **ppcpu_path;

	/* Call cmpxchg() without sparse warnings */
	ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
	return sess == cmpxchg(ppcpu_path, sess, next);
}

static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess)
{
	struct rtrs_clt *clt = sess->clt;
	struct rtrs_clt_sess *next;
	bool wait_for_grace = false;
	int cpu;

	mutex_lock(&clt->paths_mutex);
	list_del_rcu(&sess->s.entry);

	/* Make sure everybody observes path removal. */
	synchronize_rcu();

	/*
	 * At this point nobody sees @sess in the list, but still we have
	 * dangling pointer @pcpu_path which _can_ point to @sess.  Since
	 * nobody can observe @sess in the list, we guarantee that IO path
	 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
	 * to @sess, but can never again become @sess.
	 */

	/*
	 * Decrement paths number only after grace period, because
	 * caller of do_each_path() must firstly observe list without
	 * path and only then decremented paths number.
	 *
	 * Otherwise there can be the following situation:
	 *    o Two paths exist and IO is coming.
	 *    o One path is removed:
	 *      CPU#0                          CPU#1
	 *      do_each_path():                rtrs_clt_remove_path_from_arr():
	 *          path = get_next_path()
	 *          ^^^                            list_del_rcu(path)
	 *          [!CONNECTED path]              clt->paths_num--
	 *                                              ^^^^^^^^^
	 *          load clt->paths_num                 from 2 to 1
	 *                    ^^^^^^^^^
	 *                    sees 1
	 *
	 *      path is observed as !CONNECTED, but do_each_path() loop
	 *      ends, because expression i < clt->paths_num is false.
	 */
	clt->paths_num--;

	/*
	 * Get @next connection from current @sess which is going to be
	 * removed.  If @sess is the last element, then @next is NULL.
	 */
	rcu_read_lock();
	next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry,
					typeof(*next), s.entry);
	rcu_read_unlock();

	/*
	 * @pcpu paths can still point to the path which is going to be
	 * removed, so change the pointer manually.
	 */
	for_each_possible_cpu(cpu) {
		struct rtrs_clt_sess __rcu **ppcpu_path;

		ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
		if (rcu_dereference_protected(*ppcpu_path,
			lockdep_is_held(&clt->paths_mutex)) != sess)
			/*
			 * synchronize_rcu() was called just after deleting
			 * entry from the list, thus IO code path cannot
			 * change pointer back to the pointer which is going
			 * to be removed, we are safe here.
			 */
			continue;

		/*
		 * We race with IO code path, which also changes pointer,
		 * thus we have to be careful not to overwrite it.
		 */
		if (xchg_sessions(ppcpu_path, sess, next))
			/*
			 * @ppcpu_path was successfully replaced with @next,
			 * that means that someone could also pick up the
			 * @sess and dereferencing it right now, so wait for
			 * a grace period is required.
			 */
			wait_for_grace = true;
	}
	if (wait_for_grace)
		synchronize_rcu();

	mutex_unlock(&clt->paths_mutex);
}

2233
static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess)
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
{
	struct rtrs_clt *clt = sess->clt;

	mutex_lock(&clt->paths_mutex);
	clt->paths_num++;

	list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
	mutex_unlock(&clt->paths_mutex);
}

static void rtrs_clt_close_work(struct work_struct *work)
{
	struct rtrs_clt_sess *sess;

	sess = container_of(work, struct rtrs_clt_sess, close_work);

	cancel_delayed_work_sync(&sess->reconnect_dwork);
	rtrs_clt_stop_and_destroy_conns(sess);
2252
	rtrs_clt_change_state_get_old(sess, RTRS_CLT_CLOSED, NULL);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
}

static int init_conns(struct rtrs_clt_sess *sess)
{
	unsigned int cid;
	int err;

	/*
	 * On every new session connections increase reconnect counter
	 * to avoid clashes with previous sessions not yet closed
	 * sessions on a server side.
	 */
	sess->s.recon_cnt++;

	/* Establish all RDMA connections  */
	for (cid = 0; cid < sess->s.con_num; cid++) {
		err = create_con(sess, cid);
		if (err)
			goto destroy;

		err = create_cm(to_clt_con(sess->s.con[cid]));
		if (err) {
			destroy_con(to_clt_con(sess->s.con[cid]));
			goto destroy;
		}
	}
	err = alloc_sess_reqs(sess);
	if (err)
		goto destroy;

2283
	rtrs_start_hb(&sess->s);
2284 2285 2286 2287 2288 2289 2290 2291

	return 0;

destroy:
	while (cid--) {
		struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]);

		stop_cm(con);
2292 2293

		mutex_lock(&con->con_mutex);
2294
		destroy_con_cq_qp(con);
2295
		mutex_unlock(&con->con_mutex);
2296 2297 2298 2299 2300 2301 2302 2303
		destroy_cm(con);
		destroy_con(con);
	}
	/*
	 * If we've never taken async path and got an error, say,
	 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
	 * manually to keep reconnecting.
	 */
2304
	rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
2305 2306 2307 2308 2309 2310

	return err;
}

static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
{
2311
	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2312 2313 2314 2315
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
	struct rtrs_iu *iu;

	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2316
	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2317 2318 2319 2320

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		rtrs_err(sess->clt, "Sess info request send failed: %s\n",
			  ib_wc_status_msg(wc->status));
2321
		rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		return;
	}

	rtrs_clt_update_wc_stats(con);
}

static int process_info_rsp(struct rtrs_clt_sess *sess,
			    const struct rtrs_msg_info_rsp *msg)
{
	unsigned int sg_cnt, total_len;
	int i, sgi;

	sg_cnt = le16_to_cpu(msg->sg_cnt);
G
Gioh Kim 已提交
2335 2336 2337
	if (unlikely(!sg_cnt || (sess->queue_depth % sg_cnt))) {
		rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n",
			  sg_cnt);
2338
		return -EINVAL;
G
Gioh Kim 已提交
2339 2340
	}

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	/*
	 * Check if IB immediate data size is enough to hold the mem_id and
	 * the offset inside the memory chunk.
	 */
	if (unlikely((ilog2(sg_cnt - 1) + 1) +
		     (ilog2(sess->chunk_size - 1) + 1) >
		     MAX_IMM_PAYL_BITS)) {
		rtrs_err(sess->clt,
			  "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
			  MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size);
		return -EINVAL;
	}
	total_len = 0;
	for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) {
		const struct rtrs_sg_desc *desc = &msg->desc[sgi];
		u32 len, rkey;
		u64 addr;

		addr = le64_to_cpu(desc->addr);
		rkey = le32_to_cpu(desc->key);
		len  = le32_to_cpu(desc->len);

		total_len += len;

		if (unlikely(!len || (len % sess->chunk_size))) {
			rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi,
				  len);
			return -EINVAL;
		}
		for ( ; len && i < sess->queue_depth; i++) {
			sess->rbufs[i].addr = addr;
			sess->rbufs[i].rkey = rkey;

			len  -= sess->chunk_size;
			addr += sess->chunk_size;
		}
	}
	/* Sanity check */
	if (unlikely(sgi != sg_cnt || i != sess->queue_depth)) {
		rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n");
		return -EINVAL;
	}
	if (unlikely(total_len != sess->chunk_size * sess->queue_depth)) {
		rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len);
		return -EINVAL;
	}

	return 0;
}

static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
{
2393
	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
	struct rtrs_msg_info_rsp *msg;
	enum rtrs_clt_state state;
	struct rtrs_iu *iu;
	size_t rx_sz;
	int err;

	state = RTRS_CLT_CONNECTING_ERR;

	WARN_ON(con->c.cid);
	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		rtrs_err(sess->clt, "Sess info response recv failed: %s\n",
			  ib_wc_status_msg(wc->status));
		goto out;
	}
	WARN_ON(wc->opcode != IB_WC_RECV);

	if (unlikely(wc->byte_len < sizeof(*msg))) {
		rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
			  wc->byte_len);
		goto out;
	}
	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
				   iu->size, DMA_FROM_DEVICE);
	msg = iu->buf;
	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP)) {
		rtrs_err(sess->clt, "Sess info response is malformed: type %d\n",
			  le16_to_cpu(msg->type));
		goto out;
	}
	rx_sz  = sizeof(*msg);
	rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
	if (unlikely(wc->byte_len < rx_sz)) {
		rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
			  wc->byte_len);
		goto out;
	}
	err = process_info_rsp(sess, msg);
	if (unlikely(err))
		goto out;

	err = post_recv_sess(sess);
	if (unlikely(err))
		goto out;

	state = RTRS_CLT_CONNECTED;

out:
	rtrs_clt_update_wc_stats(con);
2444
	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2445
	rtrs_clt_change_state_get_old(sess, state, NULL);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
}

static int rtrs_send_sess_info(struct rtrs_clt_sess *sess)
{
	struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]);
	struct rtrs_msg_info_req *msg;
	struct rtrs_iu *tx_iu, *rx_iu;
	size_t rx_sz;
	int err;

	rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2457
	rx_sz += sizeof(struct rtrs_sg_desc) * sess->queue_depth;
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504

	tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
			       sess->s.dev->ib_dev, DMA_TO_DEVICE,
			       rtrs_clt_info_req_done);
	rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
			       DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
	if (unlikely(!tx_iu || !rx_iu)) {
		err = -ENOMEM;
		goto out;
	}
	/* Prepare for getting info response */
	err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
	if (unlikely(err)) {
		rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err);
		goto out;
	}
	rx_iu = NULL;

	msg = tx_iu->buf;
	msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
	memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname));

	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
				      tx_iu->size, DMA_TO_DEVICE);

	/* Send info request */
	err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
	if (unlikely(err)) {
		rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err);
		goto out;
	}
	tx_iu = NULL;

	/* Wait for state change */
	wait_event_interruptible_timeout(sess->state_wq,
					 sess->state != RTRS_CLT_CONNECTING,
					 msecs_to_jiffies(
						 RTRS_CONNECT_TIMEOUT_MS));
	if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) {
		if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR)
			err = -ECONNRESET;
		else
			err = -ETIMEDOUT;
	}

out:
	if (tx_iu)
2505
		rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
2506
	if (rx_iu)
2507
		rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
2508 2509
	if (unlikely(err))
		/* If we've never taken async path because of malloc problems */
2510
		rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING_ERR, NULL);
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

	return err;
}

/**
 * init_sess() - establishes all session connections and does handshake
 * @sess: client session.
 * In case of error full close or reconnect procedure should be taken,
 * because reconnect or close async works can be started.
 */
static int init_sess(struct rtrs_clt_sess *sess)
{
	int err;
G
Gioh Kim 已提交
2524 2525 2526 2527 2528 2529 2530
	char str[NAME_MAX];
	struct rtrs_addr path = {
		.src = &sess->s.src_addr,
		.dst = &sess->s.dst_addr,
	};

	rtrs_addr_to_str(&path, str, sizeof(str));
2531 2532 2533 2534

	mutex_lock(&sess->init_mutex);
	err = init_conns(sess);
	if (err) {
2535 2536 2537
		rtrs_err(sess->clt,
			 "init_conns() failed: err=%d path=%s [%s:%u]\n", err,
			 str, sess->hca_name, sess->hca_port);
2538 2539 2540 2541
		goto out;
	}
	err = rtrs_send_sess_info(sess);
	if (err) {
2542 2543 2544 2545
		rtrs_err(
			sess->clt,
			"rtrs_send_sess_info() failed: err=%d path=%s [%s:%u]\n",
			err, str, sess->hca_name, sess->hca_port);
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
		goto out;
	}
	rtrs_clt_sess_up(sess);
out:
	mutex_unlock(&sess->init_mutex);

	return err;
}

static void rtrs_clt_reconnect_work(struct work_struct *work)
{
	struct rtrs_clt_sess *sess;
	struct rtrs_clt *clt;
	unsigned int delay_ms;
	int err;

	sess = container_of(to_delayed_work(work), struct rtrs_clt_sess,
			    reconnect_dwork);
	clt = sess->clt;

	if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING)
		return;

	if (sess->reconnect_attempts >= clt->max_reconnect_attempts) {
		/* Close a session completely if max attempts is reached */
		rtrs_clt_close_conns(sess, false);
		return;
	}
	sess->reconnect_attempts++;

	/* Stop everything */
	rtrs_clt_stop_and_destroy_conns(sess);
	msleep(RTRS_RECONNECT_BACKOFF);
2579
	if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_CONNECTING, NULL)) {
2580 2581 2582 2583 2584 2585 2586 2587
		err = init_sess(sess);
		if (err)
			goto reconnect_again;
	}

	return;

reconnect_again:
2588
	if (rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING, NULL)) {
2589 2590 2591
		sess->stats->reconnects.fail_cnt++;
		delay_ms = clt->reconnect_delay_sec * 1000;
		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
2592 2593 2594
				   msecs_to_jiffies(delay_ms +
						    prandom_u32() %
						    RTRS_RECONNECT_SEED));
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
	}
}

static void rtrs_clt_dev_release(struct device *dev)
{
	struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev);

	kfree(clt);
}

static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num,
				  u16 port, size_t pdu_sz, void *priv,
				  void	(*link_ev)(void *priv,
						   enum rtrs_clt_link_ev ev),
				  unsigned int max_segments,
				  unsigned int reconnect_delay_sec,
				  unsigned int max_reconnect_attempts)
{
	struct rtrs_clt *clt;
	int err;

	if (!paths_num || paths_num > MAX_PATHS_NUM)
		return ERR_PTR(-EINVAL);

	if (strlen(sessname) >= sizeof(clt->sessname))
		return ERR_PTR(-EINVAL);

	clt = kzalloc(sizeof(*clt), GFP_KERNEL);
	if (!clt)
		return ERR_PTR(-ENOMEM);

	clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
	if (!clt->pcpu_path) {
		kfree(clt);
		return ERR_PTR(-ENOMEM);
	}

	uuid_gen(&clt->paths_uuid);
	INIT_LIST_HEAD_RCU(&clt->paths_list);
	clt->paths_num = paths_num;
	clt->paths_up = MAX_PATHS_NUM;
	clt->port = port;
	clt->pdu_sz = pdu_sz;
	clt->max_segments = max_segments;
	clt->reconnect_delay_sec = reconnect_delay_sec;
	clt->max_reconnect_attempts = max_reconnect_attempts;
	clt->priv = priv;
	clt->link_ev = link_ev;
	clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2644
	strscpy(clt->sessname, sessname, sizeof(clt->sessname));
2645 2646 2647 2648 2649 2650 2651
	init_waitqueue_head(&clt->permits_wait);
	mutex_init(&clt->paths_ev_mutex);
	mutex_init(&clt->paths_mutex);

	clt->dev.class = rtrs_clt_dev_class;
	clt->dev.release = rtrs_clt_dev_release;
	err = dev_set_name(&clt->dev, "%s", sessname);
2652 2653
	if (err)
		goto err;
2654 2655 2656 2657 2658 2659 2660 2661
	/*
	 * Suppress user space notification until
	 * sysfs files are created
	 */
	dev_set_uevent_suppress(&clt->dev, true);
	err = device_register(&clt->dev);
	if (err) {
		put_device(&clt->dev);
2662
		goto err;
2663 2664 2665 2666
	}

	clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
	if (!clt->kobj_paths) {
2667 2668
		err = -ENOMEM;
		goto err_dev;
2669 2670 2671 2672 2673
	}
	err = rtrs_clt_create_sysfs_root_files(clt);
	if (err) {
		kobject_del(clt->kobj_paths);
		kobject_put(clt->kobj_paths);
2674
		goto err_dev;
2675 2676 2677 2678 2679
	}
	dev_set_uevent_suppress(&clt->dev, false);
	kobject_uevent(&clt->dev.kobj, KOBJ_ADD);

	return clt;
2680 2681 2682 2683 2684 2685
err_dev:
	device_unregister(&clt->dev);
err:
	free_percpu(clt->pcpu_path);
	kfree(clt);
	return ERR_PTR(err);
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
}

static void free_clt(struct rtrs_clt *clt)
{
	free_permits(clt);
	free_percpu(clt->pcpu_path);
	mutex_destroy(&clt->paths_ev_mutex);
	mutex_destroy(&clt->paths_mutex);
	/* release callback will free clt in last put */
	device_unregister(&clt->dev);
}

/**
 * rtrs_clt_open() - Open a session to an RTRS server
 * @ops: holds the link event callback and the private pointer.
 * @sessname: name of the session
 * @paths: Paths to be established defined by their src and dst addresses
 * @paths_num: Number of elements in the @paths array
 * @port: port to be used by the RTRS session
 * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
 * @reconnect_delay_sec: time between reconnect tries
 * @max_segments: Max. number of segments per IO request
 * @max_reconnect_attempts: Number of times to reconnect on error before giving
 *			    up, 0 for * disabled, -1 for forever
2710
 * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
 *
 * Starts session establishment with the rtrs_server. The function can block
 * up to ~2000ms before it returns.
 *
 * Return a valid pointer on success otherwise PTR_ERR.
 */
struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops,
				 const char *sessname,
				 const struct rtrs_addr *paths,
				 size_t paths_num, u16 port,
				 size_t pdu_sz, u8 reconnect_delay_sec,
				 u16 max_segments,
2723
				 s16 max_reconnect_attempts, u32 nr_poll_queues)
2724 2725 2726 2727 2728 2729 2730
{
	struct rtrs_clt_sess *sess, *tmp;
	struct rtrs_clt *clt;
	int err, i;

	clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv,
			ops->link_ev,
2731
			max_segments, reconnect_delay_sec,
2732 2733 2734 2735 2736 2737 2738 2739 2740
			max_reconnect_attempts);
	if (IS_ERR(clt)) {
		err = PTR_ERR(clt);
		goto out;
	}
	for (i = 0; i < paths_num; i++) {
		struct rtrs_clt_sess *sess;

		sess = alloc_sess(clt, &paths[i], nr_cpu_ids,
2741
				  max_segments, nr_poll_queues);
2742 2743 2744 2745
		if (IS_ERR(sess)) {
			err = PTR_ERR(sess);
			goto close_all_sess;
		}
2746 2747
		if (!i)
			sess->for_new_clt = 1;
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
		list_add_tail_rcu(&sess->s.entry, &clt->paths_list);

		err = init_sess(sess);
		if (err) {
			list_del_rcu(&sess->s.entry);
			rtrs_clt_close_conns(sess, true);
			free_sess(sess);
			goto close_all_sess;
		}

		err = rtrs_clt_create_sess_files(sess);
		if (err) {
			list_del_rcu(&sess->s.entry);
			rtrs_clt_close_conns(sess, true);
			free_sess(sess);
			goto close_all_sess;
		}
	}
	err = alloc_permits(clt);
	if (err)
		goto close_all_sess;

	return clt;

close_all_sess:
	list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
		rtrs_clt_destroy_sess_files(sess, NULL);
		rtrs_clt_close_conns(sess, true);
		kobject_put(&sess->kobj);
	}
2778
	rtrs_clt_destroy_sysfs_root(clt);
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	free_clt(clt);

out:
	return ERR_PTR(err);
}
EXPORT_SYMBOL(rtrs_clt_open);

/**
 * rtrs_clt_close() - Close a session
 * @clt: Session handle. Session is freed upon return.
 */
void rtrs_clt_close(struct rtrs_clt *clt)
{
	struct rtrs_clt_sess *sess, *tmp;

	/* Firstly forbid sysfs access */
2795
	rtrs_clt_destroy_sysfs_root(clt);
2796 2797 2798 2799

	/* Now it is safe to iterate over all paths without locks */
	list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
		rtrs_clt_close_conns(sess, true);
2800
		rtrs_clt_destroy_sess_files(sess, NULL);
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
		kobject_put(&sess->kobj);
	}
	free_clt(clt);
}
EXPORT_SYMBOL(rtrs_clt_close);

int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess)
{
	enum rtrs_clt_state old_state;
	int err = -EBUSY;
	bool changed;

	changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING,
						 &old_state);
	if (changed) {
		sess->reconnect_attempts = 0;
		queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0);
	}
	if (changed || old_state == RTRS_CLT_RECONNECTING) {
		/*
		 * flush_delayed_work() queues pending work for immediate
		 * execution, so do the flush if we have queued something
		 * right now or work is pending.
		 */
		flush_delayed_work(&sess->reconnect_dwork);
		err = (READ_ONCE(sess->state) ==
		       RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
	}

	return err;
}

int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess,
				     const struct attribute *sysfs_self)
{
	enum rtrs_clt_state old_state;
	bool changed;

	/*
	 * Continue stopping path till state was changed to DEAD or
	 * state was observed as DEAD:
	 * 1. State was changed to DEAD - we were fast and nobody
	 *    invoked rtrs_clt_reconnect(), which can again start
	 *    reconnecting.
	 * 2. State was observed as DEAD - we have someone in parallel
	 *    removing the path.
	 */
	do {
		rtrs_clt_close_conns(sess, true);
		changed = rtrs_clt_change_state_get_old(sess,
							RTRS_CLT_DEAD,
							&old_state);
	} while (!changed && old_state != RTRS_CLT_DEAD);

	if (likely(changed)) {
		rtrs_clt_remove_path_from_arr(sess);
2857
		rtrs_clt_destroy_sess_files(sess, sysfs_self);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
		kobject_put(&sess->kobj);
	}

	return 0;
}

void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value)
{
	clt->max_reconnect_attempts = (unsigned int)value;
}

int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt)
{
	return (int)clt->max_reconnect_attempts;
}

/**
 * rtrs_clt_request() - Request data transfer to/from server via RDMA.
 *
 * @dir:	READ/WRITE
 * @ops:	callback function to be called as confirmation, and the pointer.
 * @clt:	Session
 * @permit:	Preallocated permit
 * @vec:	Message that is sent to server together with the request.
 *		Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
 *		Since the msg is copied internally it can be allocated on stack.
 * @nr:		Number of elements in @vec.
 * @data_len:	length of data sent to/from server
 * @sg:		Pages to be sent/received to/from server.
 * @sg_cnt:	Number of elements in the @sg
 *
 * Return:
 * 0:		Success
 * <0:		Error
 *
 * On dir=READ rtrs client will request a data transfer from Server to client.
 * The data that the server will respond with will be stored in @sg when
 * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
 * On dir=WRITE rtrs client will rdma write data in sg to server side.
 */
int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
		     struct rtrs_clt *clt, struct rtrs_permit *permit,
		      const struct kvec *vec, size_t nr, size_t data_len,
		      struct scatterlist *sg, unsigned int sg_cnt)
{
	struct rtrs_clt_io_req *req;
	struct rtrs_clt_sess *sess;

	enum dma_data_direction dma_dir;
	int err = -ECONNABORTED, i;
	size_t usr_len, hdr_len;
	struct path_it it;

	/* Get kvec length */
	for (i = 0, usr_len = 0; i < nr; i++)
		usr_len += vec[i].iov_len;

	if (dir == READ) {
		hdr_len = sizeof(struct rtrs_msg_rdma_read) +
			  sg_cnt * sizeof(struct rtrs_sg_desc);
		dma_dir = DMA_FROM_DEVICE;
	} else {
		hdr_len = sizeof(struct rtrs_msg_rdma_write);
		dma_dir = DMA_TO_DEVICE;
	}

2924 2925 2926
	rcu_read_lock();
	for (path_it_init(&it, clt);
	     (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
		if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
			continue;

		if (unlikely(usr_len + hdr_len > sess->max_hdr_size)) {
			rtrs_wrn_rl(sess->clt,
				     "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
				     dir == READ ? "Read" : "Write",
				     usr_len, hdr_len, sess->max_hdr_size);
			err = -EMSGSIZE;
			break;
		}
		req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv,
				       vec, usr_len, sg, sg_cnt, data_len,
				       dma_dir);
		if (dir == READ)
			err = rtrs_clt_read_req(req);
		else
			err = rtrs_clt_write_req(req);
		if (unlikely(err)) {
			req->in_use = false;
			continue;
		}
		/* Success path */
		break;
2951 2952 2953
	}
	path_it_deinit(&it);
	rcu_read_unlock();
2954 2955 2956 2957 2958

	return err;
}
EXPORT_SYMBOL(rtrs_clt_request);

2959 2960
int rtrs_clt_rdma_cq_direct(struct rtrs_clt *clt, unsigned int index)
{
2961 2962
	/* If no path, return -1 for block layer not to try again */
	int cnt = -1;
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
	struct rtrs_con *con;
	struct rtrs_clt_sess *sess;
	struct path_it it;

	rcu_read_lock();
	for (path_it_init(&it, clt);
	     (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
		if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)
			continue;

		con = sess->s.con[index + 1];
		cnt = ib_process_cq_direct(con->cq, -1);
		if (cnt)
			break;
	}
	path_it_deinit(&it);
	rcu_read_unlock();

	return cnt;
}
EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct);

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
/**
 * rtrs_clt_query() - queries RTRS session attributes
 *@clt: session pointer
 *@attr: query results for session attributes.
 * Returns:
 *    0 on success
 *    -ECOMM		no connection to the server
 */
int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr)
{
	if (!rtrs_clt_is_connected(clt))
		return -ECOMM;

	attr->queue_depth      = clt->queue_depth;
J
Jack Wang 已提交
2999 3000 3001
	/* Cap max_io_size to min of remote buffer size and the fr pages */
	attr->max_io_size = min_t(int, clt->max_io_size,
				  clt->max_segments * SZ_4K);
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

	return 0;
}
EXPORT_SYMBOL(rtrs_clt_query);

int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt,
				     struct rtrs_addr *addr)
{
	struct rtrs_clt_sess *sess;
	int err;

3013
	sess = alloc_sess(clt, addr, nr_cpu_ids, clt->max_segments, 0);
3014 3015 3016 3017 3018 3019 3020 3021
	if (IS_ERR(sess))
		return PTR_ERR(sess);

	/*
	 * It is totally safe to add path in CONNECTING state: coming
	 * IO will never grab it.  Also it is very important to add
	 * path before init, since init fires LINK_CONNECTED event.
	 */
3022
	rtrs_clt_add_path_to_arr(sess);
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

	err = init_sess(sess);
	if (err)
		goto close_sess;

	err = rtrs_clt_create_sess_files(sess);
	if (err)
		goto close_sess;

	return 0;

close_sess:
	rtrs_clt_remove_path_from_arr(sess);
	rtrs_clt_close_conns(sess, true);
	free_sess(sess);

	return err;
}

static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
{
	if (!(dev->ib_dev->attrs.device_cap_flags &
	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
		pr_err("Memory registrations not supported.\n");
		return -ENOTSUPP;
	}

	return 0;
}

static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
	.init = rtrs_clt_ib_dev_init
};

static int __init rtrs_client_init(void)
{
	rtrs_rdma_dev_pd_init(0, &dev_pd);

	rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
	if (IS_ERR(rtrs_clt_dev_class)) {
		pr_err("Failed to create rtrs-client dev class\n");
		return PTR_ERR(rtrs_clt_dev_class);
	}
3066
	rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
	if (!rtrs_wq) {
		class_destroy(rtrs_clt_dev_class);
		return -ENOMEM;
	}

	return 0;
}

static void __exit rtrs_client_exit(void)
{
	destroy_workqueue(rtrs_wq);
	class_destroy(rtrs_clt_dev_class);
	rtrs_rdma_dev_pd_deinit(&dev_pd);
}

module_init(rtrs_client_init);
module_exit(rtrs_client_exit);