xc5000.c 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
/*
 *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
 *
 *  Copyright (c) 2007 Xceive Corporation
 *  Copyright (c) 2007 Steven Toth <stoth@hauppauge.com>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>

#include "dvb_frontend.h"

#include "xc5000.h"
#include "xc5000_priv.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");

#define dprintk(level,fmt, arg...) if (debug >= level) \
	printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)

#define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw"
#define XC5000_DEFAULT_FIRMWARE_SIZE 12400

/* Misc Defines */
#define MAX_TV_STANDARD			23
#define XC_MAX_I2C_WRITE_LENGTH		64

/* Signal Types */
#define XC_RF_MODE_AIR			0
#define XC_RF_MODE_CABLE		1

/* Result codes */
#define XC_RESULT_SUCCESS		0
#define XC_RESULT_RESET_FAILURE		1
#define XC_RESULT_I2C_WRITE_FAILURE	2
#define XC_RESULT_I2C_READ_FAILURE	3
#define XC_RESULT_OUT_OF_RANGE		5

/* Registers */
#define XREG_INIT         0x00
#define XREG_VIDEO_MODE   0x01
#define XREG_AUDIO_MODE   0x02
#define XREG_RF_FREQ      0x03
#define XREG_D_CODE       0x04
#define XREG_IF_OUT       0x05
#define XREG_SEEK_MODE    0x07
#define XREG_POWER_DOWN   0x0A
#define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
#define XREG_SMOOTHEDCVBS 0x0E
#define XREG_XTALFREQ     0x0F
#define XREG_FINERFFREQ   0x10
#define XREG_DDIMODE      0x11

#define XREG_ADC_ENV      0x00
#define XREG_QUALITY      0x01
#define XREG_FRAME_LINES  0x02
#define XREG_HSYNC_FREQ   0x03
#define XREG_LOCK         0x04
#define XREG_FREQ_ERROR   0x05
#define XREG_SNR          0x06
#define XREG_VERSION      0x07
#define XREG_PRODUCT_ID   0x08
#define XREG_BUSY         0x09

/*
   Basic firmware description. This will remain with
   the driver for documentation purposes.

   This represents an I2C firmware file encoded as a
   string of unsigned char. Format is as follows:

   char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
   char[1  ]=len0_LSB  -> length of first write transaction
   char[2  ]=data0 -> first byte to be sent
   char[3  ]=data1
   char[4  ]=data2
   char[   ]=...
   char[M  ]=dataN  -> last byte to be sent
   char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
   char[M+2]=len1_LSB  -> length of second write transaction
   char[M+3]=data0
   char[M+4]=data1
   ...
   etc.

   The [len] value should be interpreted as follows:

   len= len_MSB _ len_LSB
   len=1111_1111_1111_1111   : End of I2C_SEQUENCE
   len=0000_0000_0000_0000   : Reset command: Do hardware reset
   len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
   len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms

   For the RESET and WAIT commands, the two following bytes will contain
   immediately the length of the following transaction.

*/
typedef struct {
	char *Name;
120 121
	u16 AudioMode;
	u16 VideoMode;
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
} XC_TV_STANDARD;

/* Tuner standards */
#define DTV6	17

XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
	{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
	{"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
	{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
	{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
	{"B/G-PAL-A2",        0x0A00, 0x8049},
	{"B/G-PAL-NICAM",     0x0C04, 0x8049},
	{"B/G-PAL-MONO",      0x0878, 0x8059},
	{"I-PAL-NICAM",       0x1080, 0x8009},
	{"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
	{"D/K-PAL-A2",        0x1600, 0x8009},
	{"D/K-PAL-NICAM",     0x0E80, 0x8009},
	{"D/K-PAL-MONO",      0x1478, 0x8009},
	{"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
	{"D/K-SECAM-A2 L/DK3",0x0E00, 0x8009},
	{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
	{"L-SECAM-NICAM",     0x8E82, 0x0009},
	{"L'-SECAM-NICAM",    0x8E82, 0x4009},
	{"DTV6",              0x00C0, 0x8002},
	{"DTV8",              0x00C0, 0x800B},
	{"DTV7/8",            0x00C0, 0x801B},
	{"DTV7",              0x00C0, 0x8007},
	{"FM Radio-INPUT2",   0x9802, 0x9002},
	{"FM Radio-INPUT1",   0x0208, 0x9002}
};

static int  xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len);
static int  xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len);
static void xc5000_TunerReset(struct dvb_frontend *fe);

157
static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
158
{
159
	return xc5000_writeregs(priv, buf, len)
160 161 162
		? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS;
}

163
static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
164
{
165
	return xc5000_readregs(priv, buf, len)
166 167 168
		? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS;
}

169
static int xc_reset(struct dvb_frontend *fe)
170 171 172 173 174
{
	xc5000_TunerReset(fe);
	return XC_RESULT_SUCCESS;
}

175
static void xc_wait(int wait_ms)
176
{
177
	msleep(wait_ms);
178 179 180 181 182 183 184 185 186
}

static void xc5000_TunerReset(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

	dprintk(1, "%s()\n", __FUNCTION__);

187
	if (priv->cfg->tuner_reset) {
188 189 190 191 192 193 194
		ret = priv->cfg->tuner_reset(fe);
		if (ret)
			printk(KERN_ERR "xc5000: reset failed\n");
	} else
		printk(KERN_ERR "xc5000: no tuner reset function, fatal\n");
}

195
static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
196
{
197
	u8 buf[4];
198 199 200 201 202 203 204 205
	int WatchDogTimer = 5;
	int result;

	buf[0] = (regAddr >> 8) & 0xFF;
	buf[1] = regAddr & 0xFF;
	buf[2] = (i2cData >> 8) & 0xFF;
	buf[3] = i2cData & 0xFF;
	result = xc_send_i2c_data(priv, buf, 4);
206
	if (result == XC_RESULT_SUCCESS) {
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
		/* wait for busy flag to clear */
		while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
			buf[0] = 0;
			buf[1] = XREG_BUSY;

			result = xc_send_i2c_data(priv, buf, 2);
			if (result == XC_RESULT_SUCCESS) {
				result = xc_read_i2c_data(priv, buf, 2);
				if (result == XC_RESULT_SUCCESS) {
					if ((buf[0] == 0) && (buf[1] == 0)) {
						/* busy flag cleared */
					break;
					} else {
						xc_wait(100); /* wait 5 ms */
						WatchDogTimer--;
					}
				}
			}
		}
	}
	if (WatchDogTimer < 0)
		result = XC_RESULT_I2C_WRITE_FAILURE;

	return result;
}

233
static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData)
234
{
235
	u8 buf[2];
236 237 238 239 240
	int result;

	buf[0] = (regAddr >> 8) & 0xFF;
	buf[1] = regAddr & 0xFF;
	result = xc_send_i2c_data(priv, buf, 2);
241
	if (result != XC_RESULT_SUCCESS)
242 243 244
		return result;

	result = xc_read_i2c_data(priv, buf, 2);
245
	if (result != XC_RESULT_SUCCESS)
246 247 248 249 250 251
		return result;

	*i2cData = buf[0] * 256 + buf[1];
	return result;
}

252
static int xc_load_i2c_sequence(struct dvb_frontend *fe, u8 i2c_sequence[])
253 254 255 256 257
{
	struct xc5000_priv *priv = fe->tuner_priv;

	int i, nbytes_to_send, result;
	unsigned int len, pos, index;
258
	u8 buf[XC_MAX_I2C_WRITE_LENGTH];
259 260 261 262 263

	index=0;
	while ((i2c_sequence[index]!=0xFF) || (i2c_sequence[index+1]!=0xFF)) {

		len = i2c_sequence[index]* 256 + i2c_sequence[index+1];
264
		if (len == 0x0000) {
265 266 267
			/* RESET command */
			result = xc_reset(fe);
			index += 2;
268
			if (result != XC_RESULT_SUCCESS)
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
				return result;
		} else if (len & 0x8000) {
			/* WAIT command */
			xc_wait(len & 0x7FFF);
			index += 2;
		} else {
			/* Send i2c data whilst ensuring individual transactions
			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
			 */
			index += 2;
			buf[0] = i2c_sequence[index];
			buf[1] = i2c_sequence[index + 1];
			pos = 2;
			while (pos < len) {
				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) {
					nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH;
				} else {
					nbytes_to_send = (len - pos + 2);
				}
				for (i=2; i<nbytes_to_send; i++) {
					buf[i] = i2c_sequence[index + pos + i - 2];
				}
				result = xc_send_i2c_data(priv, buf, nbytes_to_send);

293
				if (result != XC_RESULT_SUCCESS)
294 295 296 297 298 299 300 301 302 303
					return result;

				pos += nbytes_to_send - 2;
			}
			index += len;
		}
	}
	return XC_RESULT_SUCCESS;
}

304
static int xc_initialize(struct xc5000_priv *priv)
305 306 307 308 309
{
	dprintk(1, "%s()\n", __FUNCTION__);
	return xc_write_reg(priv, XREG_INIT, 0);
}

310 311
static int xc_SetTVStandard(struct xc5000_priv *priv,
	u16 VideoMode, u16 AudioMode)
312 313 314 315 316 317 318 319 320 321 322 323 324 325
{
	int ret;
	dprintk(1, "%s(%d,%d)\n", __FUNCTION__, VideoMode, AudioMode);
	dprintk(1, "%s() Standard = %s\n",
		__FUNCTION__,
		XC5000_Standard[priv->video_standard].Name);

	ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
	if (ret == XC_RESULT_SUCCESS)
		ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);

	return ret;
}

326
static int xc_shutdown(struct xc5000_priv *priv)
327 328 329 330
{
	return xc_write_reg(priv, XREG_POWER_DOWN, 0);
}

331
static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
332 333 334 335
{
	dprintk(1, "%s(%d) Source = %s\n", __FUNCTION__, rf_mode,
		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");

336
	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE))
337 338 339 340 341 342 343 344 345
	{
		rf_mode = XC_RF_MODE_CABLE;
		printk(KERN_ERR
			"%s(), Invalid mode, defaulting to CABLE",
			__FUNCTION__);
	}
	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}

346
static const struct dvb_tuner_ops xc5000_tuner_ops;
347

348 349 350
static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
{
	u16 freq_code;
351

352
	dprintk(1, "%s(%d)\n", __FUNCTION__, freq_hz);
353

354 355
	if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
		(freq_hz < xc5000_tuner_ops.info.frequency_min))
356 357
		return XC_RESULT_OUT_OF_RANGE;

358 359 360
	freq_code = (u16)(freq_hz / 15625);

	return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
361 362 363
}


364 365 366 367 368
static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
{
	u32 freq_code = (freq_khz * 1024)/1000;
	dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
		__FUNCTION__, freq_khz, freq_code);
369

370
	return xc_write_reg(priv, XREG_IF_OUT, freq_code);
371 372 373
}


374
static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
375 376 377 378
{
	return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope);
}

379
static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
380 381
{
	int result;
382
	u16 regData;
383 384 385 386 387 388 389
	u32 tmp;

	result = xc_read_reg(priv, XREG_FREQ_ERROR, &regData);
	if (result)
		return result;

	tmp = (u32)regData;
390
	(*freq_error_hz) = (tmp * 15625) / 1000;
391 392 393
	return result;
}

394
static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
395 396 397 398
{
	return xc_read_reg(priv, XREG_LOCK, lock_status);
}

399 400 401
static int xc_get_version(struct xc5000_priv *priv,
	u8 *hw_majorversion, u8 *hw_minorversion,
	u8 *fw_majorversion, u8 *fw_minorversion)
402
{
403
	u16 data;
404 405 406 407 408 409
	int result;

	result = xc_read_reg(priv, XREG_VERSION, &data);
	if (result)
		return result;

410 411 412 413
	(*hw_majorversion) = (data >> 12) & 0x0F;
	(*hw_minorversion) = (data >>  8) & 0x0F;
	(*fw_majorversion) = (data >>  4) & 0x0F;
	(*fw_minorversion) = data & 0x0F;
414 415 416 417

	return 0;
}

418
static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
419
{
420
	u16 regData;
421 422 423 424 425 426 427 428 429 430
	int result;

	result = xc_read_reg(priv, XREG_HSYNC_FREQ, &regData);
	if (result)
		return result;

	(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
	return result;
}

431
static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
432 433 434 435
{
	return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines);
}

436
static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
437 438 439 440
{
	return xc_read_reg(priv, XREG_QUALITY, quality);
}

441
static u16 WaitForLock(struct xc5000_priv *priv)
442
{
443
	u16 lockState = 0;
444
	int watchDogCount = 40;
445 446

	while ((lockState == 0) && (watchDogCount > 0)) {
447
		xc_get_lock_status(priv, &lockState);
448
		if (lockState != 1) {
449 450 451 452 453 454 455
			xc_wait(5);
			watchDogCount--;
		}
	}
	return lockState;
}

456
static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz)
457 458 459
{
	int found = 0;

460
	dprintk(1, "%s(%d)\n", __FUNCTION__, freq_hz);
461

462
	if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
463 464
		return 0;

465
	if (WaitForLock(priv) == 1)
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
		found = 1;

	return found;
}

static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
{
	u8 buf[2] = { reg >> 8, reg & 0xff };
	u8 bval[2] = { 0, 0 };
	struct i2c_msg msg[2] = {
		{ .addr = priv->cfg->i2c_address,
			.flags = 0, .buf = &buf[0], .len = 2 },
		{ .addr = priv->cfg->i2c_address,
			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
	};

	if (i2c_transfer(priv->i2c, msg, 2) != 2) {
		printk(KERN_WARNING "xc5000 I2C read failed\n");
		return -EREMOTEIO;
	}

	*val = (bval[0] << 8) | bval[1];
	return 0;
}

static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len)
{
	struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
		.flags = 0, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
		printk(KERN_ERR "xc5000 I2C write failed (len=%i)\n",
			(int)len);
		return -EREMOTEIO;
	}
	return 0;
}

static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len)
{
	struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
		.flags = I2C_M_RD, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
		printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n",(int)len);
		return -EREMOTEIO;
	}
	return 0;
}

static int xc5000_fwupload(struct dvb_frontend* fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	const struct firmware *fw;
	int ret;

522
	if (!priv->cfg->request_firmware) {
523 524 525 526
		printk(KERN_ERR "xc5000: no firmware callback, fatal\n");
		return -EIO;
	}

527 528 529 530
	/* request the firmware, this will block and timeout */
	printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
		XC5000_DEFAULT_FIRMWARE);

531 532 533 534 535 536 537 538 539
	ret = priv->cfg->request_firmware(fe, &fw, XC5000_DEFAULT_FIRMWARE);
	if (ret) {
		printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
		ret = XC_RESULT_RESET_FAILURE;
	} else {
		printk(KERN_INFO "xc5000: firmware read %d bytes.\n", fw->size);
		ret = XC_RESULT_SUCCESS;
	}

540
	if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
541 542 543 544 545 546 547 548 549 550 551
		printk(KERN_ERR "xc5000: firmware incorrect size\n");
		ret = XC_RESULT_RESET_FAILURE;
	} else {
		printk(KERN_INFO "xc5000: firmware upload\n");
		ret = xc_load_i2c_sequence(fe,  fw->data );
	}

	release_firmware(fw);
	return ret;
}

552
static void xc_debug_dump(struct xc5000_priv *priv)
553
{
554 555 556 557 558 559 560 561
	u16 adc_envelope;
	u32 freq_error_hz = 0;
	u16 lock_status;
	u32 hsync_freq_hz = 0;
	u16 frame_lines;
	u16 quality;
	u8 hw_majorversion = 0, hw_minorversion = 0;
	u8 fw_majorversion = 0, fw_minorversion = 0;
562 563 564 565 566

	/* Wait for stats to stabilize.
	 * Frame Lines needs two frame times after initial lock
	 * before it is valid.
	 */
567
	xc_wait(100);
568

569 570
	xc_get_ADC_Envelope(priv,  &adc_envelope);
	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
571

572 573
	xc_get_frequency_error(priv, &freq_error_hz);
	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
574

575 576
	xc_get_lock_status(priv,  &lock_status);
	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
577 578 579
		lock_status);

	xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
580
		&fw_majorversion, &fw_minorversion);
581 582 583 584
	dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
		hw_majorversion, hw_minorversion,
		fw_majorversion, fw_minorversion);

585 586
	xc_get_hsync_freq(priv,  &hsync_freq_hz);
	dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
587

588 589
	xc_get_frame_lines(priv,  &frame_lines);
	dprintk(1, "*** Frame lines = %d\n", frame_lines);
590

591 592
	xc_get_quality(priv,  &quality);
	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
593 594 595 596 597 598
}

static int xc5000_set_params(struct dvb_frontend *fe,
	struct dvb_frontend_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
599
	int ret;
600

601
	dprintk(1, "%s() frequency=%d (Hz)\n", __FUNCTION__, params->frequency);
602 603 604 605 606 607 608


	switch(params->u.vsb.modulation) {
	case VSB_8:
	case VSB_16:
		dprintk(1, "%s() VSB modulation\n", __FUNCTION__);
		priv->rf_mode = XC_RF_MODE_AIR;
609 610 611
		priv->freq_hz = params->frequency - 1750000;
		priv->bandwidth = BANDWIDTH_6_MHZ;
		priv->video_standard = DTV6;
612 613 614 615 616 617
		break;
	case QAM_64:
	case QAM_256:
	case QAM_AUTO:
		dprintk(1, "%s() QAM modulation\n", __FUNCTION__);
		priv->rf_mode = XC_RF_MODE_CABLE;
618 619 620
		priv->freq_hz = params->frequency - 1750000;
		priv->bandwidth = BANDWIDTH_6_MHZ;
		priv->video_standard = DTV6;
621 622 623 624 625 626
		break;
	default:
		return -EINVAL;
	}

	dprintk(1, "%s() frequency=%d (compensated)\n",
627
		__FUNCTION__, priv->freq_hz);
628

629 630 631 632 633 634 635
	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}
636

637
	ret = xc_SetTVStandard(priv,
638 639
		XC5000_Standard[priv->video_standard].VideoMode,
		XC5000_Standard[priv->video_standard].AudioMode);
640 641 642 643 644 645 646 647 648 649 650 651 652
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

	ret = xc_set_IF_frequency(priv, priv->cfg->if_khz);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
			priv->cfg->if_khz);
		return -EIO;
	}

	xc_tune_channel(priv, priv->freq_hz);
653

654 655
	if (debug)
		xc_debug_dump(priv);
656 657 658 659 660 661 662 663

	return 0;
}

static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	dprintk(1, "%s()\n", __FUNCTION__);
664
	*freq = priv->freq_hz;
665 666 667 668 669 670 671 672 673 674 675 676 677 678
	return 0;
}

static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	dprintk(1, "%s()\n", __FUNCTION__);
	*bw = priv->bandwidth;
	return 0;
}

static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
{
	struct xc5000_priv *priv = fe->tuner_priv;
679
	u16 lock_status = 0;
680 681 682 683 684 685 686 687 688 689

	xc_get_lock_status(priv, &lock_status);

	dprintk(1, "%s() lock_status = 0x%08x\n", __FUNCTION__, lock_status);

	*status = lock_status;

	return 0;
}

690
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
691 692 693 694
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

695
	if (priv->fwloaded == 0) {
696
		ret = xc5000_fwupload(fe);
697 698
		if (ret != XC_RESULT_SUCCESS)
			return ret;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

		priv->fwloaded = 1;
	}

	/* Start the tuner self-calibration process */
	ret |= xc_initialize(priv);

	/* Wait for calibration to complete.
	 * We could continue but XC5000 will clock stretch subsequent
	 * I2C transactions until calibration is complete.  This way we
	 * don't have to rely on clock stretching working.
	 */
	xc_wait( 100 );

	/* Default to "CABLE" mode */
	ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);

	return ret;
}

719 720 721 722 723 724 725 726
static int xc5000_sleep(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	dprintk(1, "%s()\n", __FUNCTION__);

	return xc_shutdown(priv);
}

727 728 729 730 731
static int xc5000_init(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	dprintk(1, "%s()\n", __FUNCTION__);

732 733 734 735 736 737 738
	if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
		return -EREMOTEIO;
	}

	if (debug)
		xc_debug_dump(priv);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

	return 0;
}

static int xc5000_release(struct dvb_frontend *fe)
{
	dprintk(1, "%s()\n", __FUNCTION__);
	kfree(fe->tuner_priv);
	fe->tuner_priv = NULL;
	return 0;
}

static const struct dvb_tuner_ops xc5000_tuner_ops = {
	.info = {
		.name           = "Xceive XC5000",
		.frequency_min  =    1000000,
		.frequency_max  = 1023000000,
		.frequency_step =      50000,
	},

	.release       = xc5000_release,
	.init          = xc5000_init,
761
	.sleep         = xc5000_sleep,
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	.set_params    = xc5000_set_params,
	.get_frequency = xc5000_get_frequency,
	.get_bandwidth = xc5000_get_bandwidth,
	.get_status    = xc5000_get_status
};

struct dvb_frontend * xc5000_attach(struct dvb_frontend *fe,
	struct i2c_adapter *i2c,
	struct xc5000_config *cfg)
{
	struct xc5000_priv *priv = NULL;
	u16 id = 0;

	dprintk(1, "%s()\n", __FUNCTION__);

	priv = kzalloc(sizeof(struct xc5000_priv), GFP_KERNEL);
	if (priv == NULL)
		return NULL;

	priv->cfg = cfg;
783
	priv->bandwidth = BANDWIDTH_6_MHZ;
784 785 786 787 788 789 790 791
	priv->i2c = i2c;
	priv->fwloaded = 0;

	if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0) {
		kfree(priv);
		return NULL;
	}

792
	if ((id != 0x2000) && (id != 0x1388)) {
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
		printk(KERN_ERR
			"xc5000: Device not found at addr 0x%02x (0x%x)\n",
			cfg->i2c_address, id);
		kfree(priv);
		return NULL;
	}

	printk(KERN_INFO "xc5000: successfully identified at address 0x%02x\n",
		cfg->i2c_address);

	memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
		sizeof(struct dvb_tuner_ops));

	fe->tuner_priv = priv;

	return fe;
}
EXPORT_SYMBOL(xc5000_attach);

MODULE_AUTHOR("Steven Toth");
813
MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
814
MODULE_LICENSE("GPL");