coproc.c 39.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Authors: Rusty Russell <rusty@rustcorp.com.au>
 *          Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
19 20

#include <linux/bsearch.h>
21
#include <linux/mm.h>
22
#include <linux/kvm_host.h>
23
#include <linux/uaccess.h>
24 25 26 27
#include <asm/kvm_arm.h>
#include <asm/kvm_host.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_coproc.h>
28
#include <asm/kvm_mmu.h>
29 30 31
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <trace/events/kvm.h>
32 33
#include <asm/vfp.h>
#include "../vfp/vfpinstr.h"
34

35
#define CREATE_TRACE_POINTS
36 37 38 39 40 41 42 43
#include "trace.h"
#include "coproc.h"


/******************************************************************************
 * Co-processor emulation
 *****************************************************************************/

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
static bool write_to_read_only(struct kvm_vcpu *vcpu,
			       const struct coproc_params *params)
{
	WARN_ONCE(1, "CP15 write to read-only register\n");
	print_cp_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

static bool read_from_write_only(struct kvm_vcpu *vcpu,
				 const struct coproc_params *params)
{
	WARN_ONCE(1, "CP15 read to write-only register\n");
	print_cp_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

62 63 64 65 66 67
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;

/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12

68 69 70 71 72 73 74 75 76 77
/*
 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
 * of cp15 registers can be viewed either as couple of two u32 registers
 * or one u64 register. Current u64 register encoding is that least
 * significant u32 word is followed by most significant u32 word.
 */
static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
				       const struct coproc_reg *r,
				       u64 val)
{
78 79
	vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
	vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
80 81 82 83 84 85 86
}

static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
				      const struct coproc_reg *r)
{
	u64 val;

87
	val = vcpu_cp15(vcpu, r->reg + 1);
88
	val = val << 32;
89
	val = val | vcpu_cp15(vcpu, r->reg);
90 91 92
	return val;
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	/*
	 * We can get here, if the host has been built without VFPv3 support,
	 * but the guest attempted a floating point operation.
	 */
	kvm_inject_undefined(vcpu);
	return 1;
}

int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

115 116 117
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
{
	/*
118 119 120
	 * Compute guest MPIDR. We build a virtual cluster out of the
	 * vcpu_id, but we read the 'U' bit from the underlying
	 * hardware directly.
121
	 */
122
	vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
123 124
				     ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
				     (vcpu->vcpu_id & 3));
125 126 127 128 129 130 131 132 133 134
}

/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
static bool access_actlr(struct kvm_vcpu *vcpu,
			 const struct coproc_params *p,
			 const struct coproc_reg *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

135
	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	return true;
}

/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
static bool access_cbar(struct kvm_vcpu *vcpu,
			const struct coproc_params *p,
			const struct coproc_reg *r)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p);
	return read_zero(vcpu, p);
}

/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
static bool access_l2ctlr(struct kvm_vcpu *vcpu,
			  const struct coproc_params *p,
			  const struct coproc_reg *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

157
	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
158 159 160 161 162 163 164 165 166 167
	return true;
}

static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
{
	u32 l2ctlr, ncores;

	asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
	l2ctlr &= ~(3 << 24);
	ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
168 169 170 171
	/* How many cores in the current cluster and the next ones */
	ncores -= (vcpu->vcpu_id & ~3);
	/* Cap it to the maximum number of cores in a single cluster */
	ncores = min(ncores, 3U);
172 173
	l2ctlr |= (ncores & 3) << 24;

174
	vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
175 176 177 178 179 180 181 182 183 184 185 186 187 188
}

static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
{
	u32 actlr;

	/* ACTLR contains SMP bit: make sure you create all cpus first! */
	asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
	/* Make the SMP bit consistent with the guest configuration */
	if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
		actlr |= 1U << 6;
	else
		actlr &= ~(1U << 6);

189
	vcpu_cp15(vcpu, c1_ACTLR) = actlr;
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
}

/*
 * TRM entries: A7:4.3.50, A15:4.3.49
 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
 */
static bool access_l2ectlr(struct kvm_vcpu *vcpu,
			   const struct coproc_params *p,
			   const struct coproc_reg *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	*vcpu_reg(vcpu, p->Rt1) = 0;
	return true;
}

207 208 209
/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 */
210 211 212 213 214 215 216
static bool access_dcsw(struct kvm_vcpu *vcpu,
			const struct coproc_params *p,
			const struct coproc_reg *r)
{
	if (!p->is_write)
		return read_from_write_only(vcpu, p);

217
	kvm_set_way_flush(vcpu);
218 219 220
	return true;
}

221 222
/*
 * Generic accessor for VM registers. Only called as long as HCR_TVM
223 224 225 226
 * is set.  If the guest enables the MMU, we stop trapping the VM
 * sys_regs and leave it in complete control of the caches.
 *
 * Used by the cpu-specific code.
227
 */
228 229 230
bool access_vm_reg(struct kvm_vcpu *vcpu,
		   const struct coproc_params *p,
		   const struct coproc_reg *r)
231
{
232 233
	bool was_enabled = vcpu_has_cache_enabled(vcpu);

234 235
	BUG_ON(!p->is_write);

236
	vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
237
	if (p->is_64bit)
238
		vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
239

240
	kvm_toggle_cache(vcpu, was_enabled);
241 242 243
	return true;
}

V
Vladimir Murzin 已提交
244 245 246 247 248
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
			   const struct coproc_params *p,
			   const struct coproc_reg *r)
{
	u64 reg;
249
	bool g1;
V
Vladimir Murzin 已提交
250 251 252 253 254 255 256

	if (!p->is_write)
		return read_from_write_only(vcpu, p);

	reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
	reg |= *vcpu_reg(vcpu, p->Rt1) ;

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	/*
	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
	 * Group0 SGIs only, while ICC_SGI1R can generate either group,
	 * depending on the SGI configuration. ICC_ASGI1R is effectively
	 * equivalent to ICC_SGI0R, as there is no "alternative" secure
	 * group.
	 */
	switch (p->Op1) {
	default:		/* Keep GCC quiet */
	case 0:			/* ICC_SGI1R */
		g1 = true;
		break;
	case 1:			/* ICC_ASGI1R */
	case 2:			/* ICC_SGI0R */
		g1 = false;
		break;
	}

	vgic_v3_dispatch_sgi(vcpu, reg, g1);
V
Vladimir Murzin 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

	return true;
}

static bool access_gic_sre(struct kvm_vcpu *vcpu,
			   const struct coproc_params *p,
			   const struct coproc_reg *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;

	return true;
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
static bool access_cntp_tval(struct kvm_vcpu *vcpu,
			     const struct coproc_params *p,
			     const struct coproc_reg *r)
{
	u64 now = kvm_phys_timer_read();
	u64 val;

	if (p->is_write) {
		val = *vcpu_reg(vcpu, p->Rt1);
		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val + now);
	} else {
		val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
		*vcpu_reg(vcpu, p->Rt1) = val - now;
	}

	return true;
}

static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
			    const struct coproc_params *p,
			    const struct coproc_reg *r)
{
	u32 val;

	if (p->is_write) {
		val = *vcpu_reg(vcpu, p->Rt1);
		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, val);
	} else {
		val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
		*vcpu_reg(vcpu, p->Rt1) = val;
	}

	return true;
}

static bool access_cntp_cval(struct kvm_vcpu *vcpu,
			     const struct coproc_params *p,
			     const struct coproc_reg *r)
{
	u64 val;

	if (p->is_write) {
		val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
		val |= *vcpu_reg(vcpu, p->Rt1);
		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val);
	} else {
		val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
		*vcpu_reg(vcpu, p->Rt1) = val;
		*vcpu_reg(vcpu, p->Rt2) = val >> 32;
	}

	return true;
}

346 347 348 349 350 351 352 353 354
/*
 * We could trap ID_DFR0 and tell the guest we don't support performance
 * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
 * NAKed, so it will read the PMCR anyway.
 *
 * Therefore we tell the guest we have 0 counters.  Unfortunately, we
 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
 * all PM registers, which doesn't crash the guest kernel at least.
 */
355
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
356 357 358 359 360 361 362 363 364
		    const struct coproc_params *p,
		    const struct coproc_reg *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);
	else
		return read_zero(vcpu, p);
}

365 366 367 368 369 370 371 372 373 374 375 376 377
#define access_pmcr trap_raz_wi
#define access_pmcntenset trap_raz_wi
#define access_pmcntenclr trap_raz_wi
#define access_pmovsr trap_raz_wi
#define access_pmselr trap_raz_wi
#define access_pmceid0 trap_raz_wi
#define access_pmceid1 trap_raz_wi
#define access_pmccntr trap_raz_wi
#define access_pmxevtyper trap_raz_wi
#define access_pmxevcntr trap_raz_wi
#define access_pmuserenr trap_raz_wi
#define access_pmintenset trap_raz_wi
#define access_pmintenclr trap_raz_wi
378 379

/* Architected CP15 registers.
380 381 382 383 384
 * CRn denotes the primary register number, but is copied to the CRm in the
 * user space API for 64-bit register access in line with the terminology used
 * in the ARM ARM.
 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
 *            registers preceding 32-bit ones.
385 386
 */
static const struct coproc_reg cp15_regs[] = {
387 388 389 390
	/* MPIDR: we use VMPIDR for guest access. */
	{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
			NULL, reset_mpidr, c0_MPIDR },

391 392 393 394
	/* CSSELR: swapped by interrupt.S. */
	{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
			NULL, reset_unknown, c0_CSSELR },

395 396 397 398 399 400 401 402
	/* ACTLR: trapped by HCR.TAC bit. */
	{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
			access_actlr, reset_actlr, c1_ACTLR },

	/* CPACR: swapped by interrupt.S. */
	{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
			NULL, reset_val, c1_CPACR, 0x00000000 },

403 404 405 406 407 408
	/* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
	{ CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
	{ CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
			access_vm_reg, reset_unknown, c2_TTBR0 },
	{ CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
			access_vm_reg, reset_unknown, c2_TTBR1 },
409
	{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
410 411 412
			access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
	{ CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },

413 414 415

	/* DACR: swapped by interrupt.S. */
	{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
416
			access_vm_reg, reset_unknown, c3_DACR },
417 418 419

	/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
	{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
420
			access_vm_reg, reset_unknown, c5_DFSR },
421
	{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
422
			access_vm_reg, reset_unknown, c5_IFSR },
423
	{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
424
			access_vm_reg, reset_unknown, c5_ADFSR },
425
	{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
426
			access_vm_reg, reset_unknown, c5_AIFSR },
427 428 429

	/* DFAR/IFAR: swapped by interrupt.S. */
	{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
430
			access_vm_reg, reset_unknown, c6_DFAR },
431
	{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
432
			access_vm_reg, reset_unknown, c6_IFAR },
433 434

	/* PAR swapped by interrupt.S */
435
	{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
436

437 438 439 440 441 442
	/*
	 * DC{C,I,CI}SW operations:
	 */
	{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
	{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
	{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
443 444 445 446 447 448 449
	/*
	 * L2CTLR access (guest wants to know #CPUs).
	 */
	{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
			access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
	{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	/*
	 * Dummy performance monitor implementation.
	 */
	{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
	{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
	{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
	{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
	{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
	{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
	{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
	{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
	{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
	{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
	{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
	{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
	{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},

	/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
	{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
469
			access_vm_reg, reset_unknown, c10_PRRR},
470
	{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
471
			access_vm_reg, reset_unknown, c10_NMRR},
472

473 474 475 476 477 478
	/* AMAIR0/AMAIR1: swapped by interrupt.S. */
	{ CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
			access_vm_reg, reset_unknown, c10_AMAIR0},
	{ CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
			access_vm_reg, reset_unknown, c10_AMAIR1},

V
Vladimir Murzin 已提交
479 480
	/* ICC_SGI1R */
	{ CRm64(12), Op1( 0), is64, access_gic_sgi},
481 482 483 484
	/* ICC_ASGI1R */
	{ CRm64(12), Op1( 1), is64, access_gic_sgi},
	/* ICC_SGI0R */
	{ CRm64(12), Op1( 2), is64, access_gic_sgi},
V
Vladimir Murzin 已提交
485

486 487 488 489
	/* VBAR: swapped by interrupt.S. */
	{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
			NULL, reset_val, c12_VBAR, 0x00000000 },

V
Vladimir Murzin 已提交
490 491 492
	/* ICC_SRE */
	{ CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },

493 494
	/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
	{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
495
			access_vm_reg, reset_val, c13_CID, 0x00000000 },
496 497 498 499 500 501
	{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
			NULL, reset_unknown, c13_TID_URW },
	{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
			NULL, reset_unknown, c13_TID_URO },
	{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
			NULL, reset_unknown, c13_TID_PRIV },
502

503 504 505
	/* CNTP */
	{ CRm64(14), Op1( 2), is64, access_cntp_cval},

506 507 508
	/* CNTKCTL: swapped by interrupt.S. */
	{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
			NULL, reset_val, c14_CNTKCTL, 0x00000000 },
509

510 511 512 513
	/* CNTP */
	{ CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
	{ CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },

514 515
	/* The Configuration Base Address Register. */
	{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
516 517
};

518 519 520 521 522 523 524 525 526 527 528 529 530 531
static int check_reg_table(const struct coproc_reg *table, unsigned int n)
{
	unsigned int i;

	for (i = 1; i < n; i++) {
		if (cmp_reg(&table[i-1], &table[i]) >= 0) {
			kvm_err("reg table %p out of order (%d)\n", table, i - 1);
			return 1;
		}
	}

	return 0;
}

532 533 534 535 536
/* Target specific emulation tables */
static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];

void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
{
537
	BUG_ON(check_reg_table(table->table, table->num));
538 539 540 541 542 543 544 545 546 547 548 549 550
	target_tables[table->target] = table;
}

/* Get specific register table for this target. */
static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
{
	struct kvm_coproc_target_table *table;

	table = target_tables[target];
	*num = table->num;
	return table->table;
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
#define reg_to_match_value(x)						\
	({								\
		unsigned long val;					\
		val  = (x)->CRn << 11;					\
		val |= (x)->CRm << 7;					\
		val |= (x)->Op1 << 4;					\
		val |= (x)->Op2 << 1;					\
		val |= !(x)->is_64bit;					\
		val;							\
	 })

static int match_reg(const void *key, const void *elt)
{
	const unsigned long pval = (unsigned long)key;
	const struct coproc_reg *r = elt;

	return pval - reg_to_match_value(r);
}

570 571 572 573
static const struct coproc_reg *find_reg(const struct coproc_params *params,
					 const struct coproc_reg table[],
					 unsigned int num)
{
574
	unsigned long pval = reg_to_match_value(params);
575

576
	return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
}

static int emulate_cp15(struct kvm_vcpu *vcpu,
			const struct coproc_params *params)
{
	size_t num;
	const struct coproc_reg *table, *r;

	trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
				   params->CRm, params->Op2, params->is_write);

	table = get_target_table(vcpu->arch.target, &num);

	/* Search target-specific then generic table. */
	r = find_reg(params, table, num);
	if (!r)
		r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));

	if (likely(r)) {
		/* If we don't have an accessor, we should never get here! */
		BUG_ON(!r->access);

		if (likely(r->access(vcpu, params, r))) {
			/* Skip instruction, since it was emulated */
601
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
602 603
		}
	} else {
604
		/* If access function fails, it should complain. */
605
		kvm_err("Unsupported guest CP15 access at: %08lx\n",
606 607
			*vcpu_pc(vcpu));
		print_cp_instr(params);
608
		kvm_inject_undefined(vcpu);
609
	}
610

611 612 613
	return 1;
}

614
static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
615 616 617
{
	struct coproc_params params;

618
	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
619 620
	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
621 622
	params.is_64bit = true;

623
	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
624
	params.Op2 = 0;
625
	params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
626
	params.CRm = 0;
627

628 629 630 631 632 633 634 635 636 637 638 639
	return params;
}

/**
 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct coproc_params params = decode_64bit_hsr(vcpu);

640 641 642
	return emulate_cp15(vcpu, &params);
}

643 644 645 646 647 648 649 650 651 652
/**
 * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct coproc_params params = decode_64bit_hsr(vcpu);

	/* raz_wi cp14 */
653
	trap_raz_wi(vcpu, &params, NULL);
654 655 656 657 658 659

	/* handled */
	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
	return 1;
}

660 661 662 663 664 665 666 667 668 669
static void reset_coproc_regs(struct kvm_vcpu *vcpu,
			      const struct coproc_reg *table, size_t num)
{
	unsigned long i;

	for (i = 0; i < num; i++)
		if (table[i].reset)
			table[i].reset(vcpu, &table[i]);
}

670
static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
671 672 673
{
	struct coproc_params params;

674 675 676
	params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
677 678
	params.is_64bit = false;

679 680 681
	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
	params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
682 683
	params.Rt2 = 0;

684 685 686 687 688 689 690 691 692 693 694
	return params;
}

/**
 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct coproc_params params = decode_32bit_hsr(vcpu);
695 696 697
	return emulate_cp15(vcpu, &params);
}

698 699 700 701 702 703 704 705 706 707
/**
 * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct coproc_params params = decode_32bit_hsr(vcpu);

	/* raz_wi cp14 */
708
	trap_raz_wi(vcpu, &params, NULL);
709 710 711 712 713 714

	/* handled */
	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
	return 1;
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
/******************************************************************************
 * Userspace API
 *****************************************************************************/

static bool index_to_params(u64 id, struct coproc_params *params)
{
	switch (id & KVM_REG_SIZE_MASK) {
	case KVM_REG_SIZE_U32:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			   | KVM_REG_ARM_COPROC_MASK
			   | KVM_REG_ARM_32_CRN_MASK
			   | KVM_REG_ARM_CRM_MASK
			   | KVM_REG_ARM_OPC1_MASK
			   | KVM_REG_ARM_32_OPC2_MASK))
			return false;

		params->is_64bit = false;
		params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
			       >> KVM_REG_ARM_32_CRN_SHIFT);
		params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
			       >> KVM_REG_ARM_CRM_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
			       >> KVM_REG_ARM_OPC1_SHIFT);
		params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
			       >> KVM_REG_ARM_32_OPC2_SHIFT);
		return true;
	case KVM_REG_SIZE_U64:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			      | KVM_REG_ARM_COPROC_MASK
			      | KVM_REG_ARM_CRM_MASK
			      | KVM_REG_ARM_OPC1_MASK))
			return false;
		params->is_64bit = true;
750 751
		/* CRm to CRn: see cp15_to_index for details */
		params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
752 753 754 755
			       >> KVM_REG_ARM_CRM_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
			       >> KVM_REG_ARM_OPC1_SHIFT);
		params->Op2 = 0;
756
		params->CRm = 0;
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
		return true;
	default:
		return false;
	}
}

/* Decode an index value, and find the cp15 coproc_reg entry. */
static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
						    u64 id)
{
	size_t num;
	const struct coproc_reg *table, *r;
	struct coproc_params params;

	/* We only do cp15 for now. */
	if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
		return NULL;

	if (!index_to_params(id, &params))
		return NULL;

	table = get_target_table(vcpu->arch.target, &num);
	r = find_reg(&params, table, num);
	if (!r)
		r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));

	/* Not saved in the cp15 array? */
	if (r && !r->reg)
		r = NULL;

	return r;
}

/*
 * These are the invariant cp15 registers: we let the guest see the host
 * versions of these, so they're part of the guest state.
 *
 * A future CPU may provide a mechanism to present different values to
 * the guest, or a future kvm may trap them.
 */
/* Unfortunately, there's no register-argument for mrc, so generate. */
#define FUNCTION_FOR32(crn, crm, op1, op2, name)			\
	static void get_##name(struct kvm_vcpu *v,			\
			       const struct coproc_reg *r)		\
	{								\
		u32 val;						\
									\
		asm volatile("mrc p15, " __stringify(op1)		\
			     ", %0, c" __stringify(crn)			\
			     ", c" __stringify(crm)			\
			     ", " __stringify(op2) "\n" : "=r" (val));	\
		((struct coproc_reg *)r)->val = val;			\
	}

FUNCTION_FOR32(0, 0, 0, 0, MIDR)
FUNCTION_FOR32(0, 0, 0, 1, CTR)
FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
FUNCTION_FOR32(0, 0, 1, 7, AIDR)

/* ->val is filled in by kvm_invariant_coproc_table_init() */
static struct coproc_reg invariant_cp15[] = {
	{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
	{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
	{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
	{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
	{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },

841 842 843
	{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
	{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
	{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },

	{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
	{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
	{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
	{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
	{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
	{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
};

861 862 863 864
/*
 * Reads a register value from a userspace address to a kernel
 * variable. Make sure that register size matches sizeof(*__val).
 */
865 866 867 868 869 870 871
static int reg_from_user(void *val, const void __user *uaddr, u64 id)
{
	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

872 873 874 875
/*
 * Writes a register value to a userspace address from a kernel variable.
 * Make sure that register size matches sizeof(*__val).
 */
876 877 878 879 880 881 882 883 884 885 886
static int reg_to_user(void __user *uaddr, const void *val, u64 id)
{
	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_invariant_cp15(u64 id, void __user *uaddr)
{
	struct coproc_params params;
	const struct coproc_reg *r;
887
	int ret;
888 889 890 891 892 893 894 895

	if (!index_to_params(id, &params))
		return -ENOENT;

	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
	if (!r)
		return -ENOENT;

896 897 898 899 900 901 902 903 904
	ret = -ENOENT;
	if (KVM_REG_SIZE(id) == 4) {
		u32 val = r->val;

		ret = reg_to_user(uaddr, &val, id);
	} else if (KVM_REG_SIZE(id) == 8) {
		ret = reg_to_user(uaddr, &r->val, id);
	}
	return ret;
905 906 907 908 909 910 911
}

static int set_invariant_cp15(u64 id, void __user *uaddr)
{
	struct coproc_params params;
	const struct coproc_reg *r;
	int err;
912
	u64 val;
913 914 915 916 917 918 919

	if (!index_to_params(id, &params))
		return -ENOENT;
	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
	if (!r)
		return -ENOENT;

920 921 922 923 924 925 926 927 928 929
	err = -ENOENT;
	if (KVM_REG_SIZE(id) == 4) {
		u32 val32;

		err = reg_from_user(&val32, uaddr, id);
		if (!err)
			val = val32;
	} else if (KVM_REG_SIZE(id) == 8) {
		err = reg_from_user(&val, uaddr, id);
	}
930 931 932 933 934 935 936 937 938 939
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (r->val != val)
		return -EINVAL;

	return 0;
}

940 941 942 943 944
static bool is_valid_cache(u32 val)
{
	u32 level, ctype;

	if (val >= CSSELR_MAX)
945
		return false;
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
        level = (val >> 1);
        ctype = (cache_levels >> (level * 3)) & 7;

	switch (ctype) {
	case 0: /* No cache */
		return false;
	case 1: /* Instruction cache only */
		return (val & 1);
	case 2: /* Data cache only */
	case 4: /* Unified cache */
		return !(val & 1);
	case 3: /* Separate instruction and data caches */
		return true;
	default: /* Reserved: we can't know instruction or data. */
		return false;
	}
}

/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
	u32 ccsidr;

	/* Make sure noone else changes CSSELR during this! */
	local_irq_disable();
	/* Put value into CSSELR */
	asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
	isb();
	/* Read result out of CCSIDR */
	asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
	local_irq_enable();

	return ccsidr;
}

static int demux_c15_get(u64 id, void __user *uaddr)
{
	u32 val;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		return put_user(get_ccsidr(val), uval);
	default:
		return -ENOENT;
	}
}

static int demux_c15_set(u64 id, void __user *uaddr)
{
	u32 val, newval;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		if (get_user(newval, uval))
			return -EFAULT;

		/* This is also invariant: you can't change it. */
		if (newval != get_ccsidr(val))
			return -EINVAL;
		return 0;
	default:
		return -ENOENT;
	}
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
#ifdef CONFIG_VFPv3
static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
				   KVM_REG_ARM_VFP_FPSCR,
				   KVM_REG_ARM_VFP_FPINST,
				   KVM_REG_ARM_VFP_FPINST2,
				   KVM_REG_ARM_VFP_MVFR0,
				   KVM_REG_ARM_VFP_MVFR1,
				   KVM_REG_ARM_VFP_FPSID };

static unsigned int num_fp_regs(void)
{
	if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
		return 32;
	else
		return 16;
}

static unsigned int num_vfp_regs(void)
{
	/* Normal FP regs + control regs. */
	return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
}

static int copy_vfp_regids(u64 __user *uindices)
{
	unsigned int i;
	const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
	const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;

	for (i = 0; i < num_fp_regs(); i++) {
		if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
			     uindices))
			return -EFAULT;
		uindices++;
	}

	for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
		if (put_user(u32reg | vfp_sysregs[i], uindices))
			return -EFAULT;
		uindices++;
	}

	return num_vfp_regs();
}

static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
{
	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
	u32 val;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	if (vfpid < num_fp_regs()) {
		if (KVM_REG_SIZE(id) != 8)
			return -ENOENT;
1097
		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1098 1099 1100 1101 1102 1103 1104 1105 1106
				   id);
	}

	/* FP control registers are all 32 bit. */
	if (KVM_REG_SIZE(id) != 4)
		return -ENOENT;

	switch (vfpid) {
	case KVM_REG_ARM_VFP_FPEXC:
1107
		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1108
	case KVM_REG_ARM_VFP_FPSCR:
1109
		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1110
	case KVM_REG_ARM_VFP_FPINST:
1111
		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1112
	case KVM_REG_ARM_VFP_FPINST2:
1113
		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	case KVM_REG_ARM_VFP_MVFR0:
		val = fmrx(MVFR0);
		return reg_to_user(uaddr, &val, id);
	case KVM_REG_ARM_VFP_MVFR1:
		val = fmrx(MVFR1);
		return reg_to_user(uaddr, &val, id);
	case KVM_REG_ARM_VFP_FPSID:
		val = fmrx(FPSID);
		return reg_to_user(uaddr, &val, id);
	default:
		return -ENOENT;
	}
}

static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
{
	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
	u32 val;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	if (vfpid < num_fp_regs()) {
		if (KVM_REG_SIZE(id) != 8)
			return -ENOENT;
1141
		return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1142 1143 1144 1145 1146 1147 1148 1149 1150
				     uaddr, id);
	}

	/* FP control registers are all 32 bit. */
	if (KVM_REG_SIZE(id) != 4)
		return -ENOENT;

	switch (vfpid) {
	case KVM_REG_ARM_VFP_FPEXC:
1151
		return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1152
	case KVM_REG_ARM_VFP_FPSCR:
1153
		return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1154
	case KVM_REG_ARM_VFP_FPINST:
1155
		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1156
	case KVM_REG_ARM_VFP_FPINST2:
1157
		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	/* These are invariant. */
	case KVM_REG_ARM_VFP_MVFR0:
		if (reg_from_user(&val, uaddr, id))
			return -EFAULT;
		if (val != fmrx(MVFR0))
			return -EINVAL;
		return 0;
	case KVM_REG_ARM_VFP_MVFR1:
		if (reg_from_user(&val, uaddr, id))
			return -EFAULT;
		if (val != fmrx(MVFR1))
			return -EINVAL;
		return 0;
	case KVM_REG_ARM_VFP_FPSID:
		if (reg_from_user(&val, uaddr, id))
			return -EFAULT;
		if (val != fmrx(FPSID))
			return -EINVAL;
		return 0;
	default:
		return -ENOENT;
	}
}
#else /* !CONFIG_VFPv3 */
static unsigned int num_vfp_regs(void)
{
	return 0;
}

static int copy_vfp_regids(u64 __user *uindices)
{
	return 0;
}

static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
{
	return -ENOENT;
}

static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
{
	return -ENOENT;
}
#endif /* !CONFIG_VFPv3 */

1203 1204 1205 1206
int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct coproc_reg *r;
	void __user *uaddr = (void __user *)(long)reg->addr;
1207
	int ret;
1208

1209 1210 1211
	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_get(reg->id, uaddr);

1212 1213 1214
	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
		return vfp_get_reg(vcpu, reg->id, uaddr);

1215 1216 1217 1218
	r = index_to_coproc_reg(vcpu, reg->id);
	if (!r)
		return get_invariant_cp15(reg->id, uaddr);

1219 1220 1221 1222 1223 1224 1225
	ret = -ENOENT;
	if (KVM_REG_SIZE(reg->id) == 8) {
		u64 val;

		val = vcpu_cp15_reg64_get(vcpu, r);
		ret = reg_to_user(uaddr, &val, reg->id);
	} else if (KVM_REG_SIZE(reg->id) == 4) {
1226
		ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1227 1228 1229
	}

	return ret;
1230 1231 1232 1233 1234 1235
}

int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct coproc_reg *r;
	void __user *uaddr = (void __user *)(long)reg->addr;
1236
	int ret;
1237

1238 1239 1240
	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_set(reg->id, uaddr);

1241 1242 1243
	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
		return vfp_set_reg(vcpu, reg->id, uaddr);

1244 1245 1246 1247
	r = index_to_coproc_reg(vcpu, reg->id);
	if (!r)
		return set_invariant_cp15(reg->id, uaddr);

1248 1249 1250 1251 1252 1253 1254 1255
	ret = -ENOENT;
	if (KVM_REG_SIZE(reg->id) == 8) {
		u64 val;

		ret = reg_from_user(&val, uaddr, reg->id);
		if (!ret)
			vcpu_cp15_reg64_set(vcpu, r, val);
	} else if (KVM_REG_SIZE(reg->id) == 4) {
1256
		ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1257 1258 1259
	}

	return ret;
1260 1261
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
static unsigned int num_demux_regs(void)
{
	unsigned int i, count = 0;

	for (i = 0; i < CSSELR_MAX; i++)
		if (is_valid_cache(i))
			count++;

	return count;
}

static int write_demux_regids(u64 __user *uindices)
{
	u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
	unsigned int i;

	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
	for (i = 0; i < CSSELR_MAX; i++) {
		if (!is_valid_cache(i))
			continue;
		if (put_user(val | i, uindices))
			return -EFAULT;
		uindices++;
	}
	return 0;
}

1289 1290 1291
static u64 cp15_to_index(const struct coproc_reg *reg)
{
	u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1292
	if (reg->is_64bit) {
1293 1294
		val |= KVM_REG_SIZE_U64;
		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1295 1296 1297 1298 1299 1300 1301 1302
		/*
		 * CRn always denotes the primary coproc. reg. nr. for the
		 * in-kernel representation, but the user space API uses the
		 * CRm for the encoding, because it is modelled after the
		 * MRRC/MCRR instructions: see the ARM ARM rev. c page
		 * B3-1445
		 */
		val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	} else {
		val |= KVM_REG_SIZE_U32;
		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
		val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
		val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
		val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
	}
	return val;
}

static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
{
	if (!*uind)
		return true;

	if (put_user(cp15_to_index(reg), *uind))
		return false;

	(*uind)++;
	return true;
}

/* Assumed ordered tables, see kvm_coproc_table_init. */
static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
{
	const struct coproc_reg *i1, *i2, *end1, *end2;
	unsigned int total = 0;
	size_t num;

	/* We check for duplicates here, to allow arch-specific overrides. */
	i1 = get_target_table(vcpu->arch.target, &num);
	end1 = i1 + num;
	i2 = cp15_regs;
	end2 = cp15_regs + ARRAY_SIZE(cp15_regs);

	BUG_ON(i1 == end1 || i2 == end2);

	/* Walk carefully, as both tables may refer to the same register. */
	while (i1 || i2) {
		int cmp = cmp_reg(i1, i2);
		/* target-specific overrides generic entry. */
		if (cmp <= 0) {
			/* Ignore registers we trap but don't save. */
			if (i1->reg) {
				if (!copy_reg_to_user(i1, &uind))
					return -EFAULT;
				total++;
			}
		} else {
			/* Ignore registers we trap but don't save. */
			if (i2->reg) {
				if (!copy_reg_to_user(i2, &uind))
					return -EFAULT;
				total++;
			}
		}

		if (cmp <= 0 && ++i1 == end1)
			i1 = NULL;
		if (cmp >= 0 && ++i2 == end2)
			i2 = NULL;
	}
	return total;
}

unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
{
	return ARRAY_SIZE(invariant_cp15)
1371
		+ num_demux_regs()
1372
		+ num_vfp_regs()
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
		+ walk_cp15(vcpu, (u64 __user *)NULL);
}

int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	unsigned int i;
	int err;

	/* Then give them all the invariant registers' indices. */
	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
		if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
			return -EFAULT;
		uindices++;
	}

	err = walk_cp15(vcpu, uindices);
1389 1390 1391 1392
	if (err < 0)
		return err;
	uindices += err;

1393 1394 1395 1396 1397
	err = copy_vfp_regids(uindices);
	if (err < 0)
		return err;
	uindices += err;

1398
	return write_demux_regids(uindices);
1399 1400
}

1401 1402 1403 1404 1405
void kvm_coproc_table_init(void)
{
	unsigned int i;

	/* Make sure tables are unique and in order. */
1406 1407
	BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
	BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1408 1409 1410 1411

	/* We abuse the reset function to overwrite the table itself. */
	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
		invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

	/*
	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
	 *
	 *   If software reads the Cache Type fields from Ctype1
	 *   upwards, once it has seen a value of 0b000, no caches
	 *   exist at further-out levels of the hierarchy. So, for
	 *   example, if Ctype3 is the first Cache Type field with a
	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
	 *   ignored.
	 */
	asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
	for (i = 0; i < 7; i++)
		if (((cache_levels >> (i*3)) & 7) == 0)
			break;
	/* Clear all higher bits. */
	cache_levels &= (1 << (i*3))-1;
1429 1430 1431 1432 1433 1434 1435 1436 1437
}

/**
 * kvm_reset_coprocs - sets cp15 registers to reset value
 * @vcpu: The VCPU pointer
 *
 * This function finds the right table above and sets the registers on the
 * virtual CPU struct to their architecturally defined reset values.
 */
1438 1439
void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
{
1440 1441 1442 1443
	size_t num;
	const struct coproc_reg *table;

	/* Catch someone adding a register without putting in reset entry. */
1444
	memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
1445 1446 1447 1448 1449 1450 1451 1452

	/* Generic chip reset first (so target could override). */
	reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));

	table = get_target_table(vcpu->arch.target, &num);
	reset_coproc_regs(vcpu, table, num);

	for (num = 1; num < NR_CP15_REGS; num++)
1453 1454
		if (vcpu_cp15(vcpu, num) == 0x42424242)
			panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
1455
}