ice_virtchnl_pf.c 86.6 KB
Newer Older
1 2 3 4 5 6
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */

#include "ice.h"
#include "ice_lib.h"

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/**
 * ice_err_to_virt err - translate errors for VF return code
 * @ice_err: error return code
 */
static enum virtchnl_status_code ice_err_to_virt_err(enum ice_status ice_err)
{
	switch (ice_err) {
	case ICE_SUCCESS:
		return VIRTCHNL_STATUS_SUCCESS;
	case ICE_ERR_BAD_PTR:
	case ICE_ERR_INVAL_SIZE:
	case ICE_ERR_DEVICE_NOT_SUPPORTED:
	case ICE_ERR_PARAM:
	case ICE_ERR_CFG:
		return VIRTCHNL_STATUS_ERR_PARAM;
	case ICE_ERR_NO_MEMORY:
		return VIRTCHNL_STATUS_ERR_NO_MEMORY;
	case ICE_ERR_NOT_READY:
	case ICE_ERR_RESET_FAILED:
	case ICE_ERR_FW_API_VER:
	case ICE_ERR_AQ_ERROR:
	case ICE_ERR_AQ_TIMEOUT:
	case ICE_ERR_AQ_FULL:
	case ICE_ERR_AQ_NO_WORK:
	case ICE_ERR_AQ_EMPTY:
		return VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
	default:
		return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
	}
}

38 39 40 41 42 43 44 45 46 47
/**
 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
 * @pf: pointer to the PF structure
 * @v_opcode: operation code
 * @v_retval: return value
 * @msg: pointer to the msg buffer
 * @msglen: msg length
 */
static void
ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
48
		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
{
	struct ice_hw *hw = &pf->hw;
	struct ice_vf *vf = pf->vf;
	int i;

	for (i = 0; i < pf->num_alloc_vfs; i++, vf++) {
		/* Not all vfs are enabled so skip the ones that are not */
		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
			continue;

		/* Ignore return value on purpose - a given VF may fail, but
		 * we need to keep going and send to all of them
		 */
		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
				      msglen, NULL);
	}
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/**
 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
 * @vf: pointer to the VF structure
 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
 * @link_up: whether or not to set the link up/down
 */
static void
ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
		 int ice_link_speed, bool link_up)
{
	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
		pfe->event_data.link_event_adv.link_status = link_up;
		/* Speed in Mbps */
		pfe->event_data.link_event_adv.link_speed =
			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
	} else {
		pfe->event_data.link_event.link_status = link_up;
		/* Legacy method for virtchnl link speeds */
		pfe->event_data.link_event.link_speed =
			(enum virtchnl_link_speed)
			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
	}
}

/**
 * ice_set_pfe_link_forced - Force the virtchnl_pf_event link speed/status
 * @vf: pointer to the VF structure
 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
 * @link_up: whether or not to set the link up/down
 */
static void
ice_set_pfe_link_forced(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
			bool link_up)
{
	u16 link_speed;

	if (link_up)
106
		link_speed = ICE_AQ_LINK_SPEED_100GB;
107 108 109 110 111 112
	else
		link_speed = ICE_AQ_LINK_SPEED_UNKNOWN;

	ice_set_pfe_link(vf, pfe, link_speed, link_up);
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/**
 * ice_vc_notify_vf_link_state - Inform a VF of link status
 * @vf: pointer to the VF structure
 *
 * send a link status message to a single VF
 */
static void ice_vc_notify_vf_link_state(struct ice_vf *vf)
{
	struct virtchnl_pf_event pfe = { 0 };
	struct ice_link_status *ls;
	struct ice_pf *pf = vf->pf;
	struct ice_hw *hw;

	hw = &pf->hw;
	ls = &hw->port_info->phy.link_info;

	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
	pfe.severity = PF_EVENT_SEVERITY_INFO;

	if (vf->link_forced)
		ice_set_pfe_link_forced(vf, &pfe, vf->link_up);
	else
		ice_set_pfe_link(vf, &pfe, ls->link_speed, ls->link_info &
				 ICE_AQ_LINK_UP);

138 139
	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
140 141 142
			      sizeof(pfe), NULL);
}

143 144 145 146 147 148 149
/**
 * ice_free_vf_res - Free a VF's resources
 * @vf: pointer to the VF info
 */
static void ice_free_vf_res(struct ice_vf *vf)
{
	struct ice_pf *pf = vf->pf;
150
	int i, last_vector_idx;
151 152 153 154 155 156

	/* First, disable VF's configuration API to prevent OS from
	 * accessing the VF's VSI after it's freed or invalidated.
	 */
	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);

157
	/* free VSI and disconnect it from the parent uplink */
158 159 160 161 162 163 164
	if (vf->lan_vsi_idx) {
		ice_vsi_release(pf->vsi[vf->lan_vsi_idx]);
		vf->lan_vsi_idx = 0;
		vf->lan_vsi_num = 0;
		vf->num_mac = 0;
	}

165
	last_vector_idx = vf->first_vector_idx + pf->num_vf_msix - 1;
166
	/* Disable interrupts so that VF starts in a known state */
167 168
	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
		ice_flush(&pf->hw);
	}
	/* reset some of the state variables keeping track of the resources */
	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
}

/**
 * ice_dis_vf_mappings
 * @vf: pointer to the VF structure
 */
static void ice_dis_vf_mappings(struct ice_vf *vf)
{
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;
	int first, last, v;
	struct ice_hw *hw;

	hw = &pf->hw;
	vsi = pf->vsi[vf->lan_vsi_idx];

	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
191
	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
192

193
	first = vf->first_vector_idx;
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	last = first + pf->num_vf_msix - 1;
	for (v = first; v <= last; v++) {
		u32 reg;

		reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
			GLINT_VECT2FUNC_IS_PF_M) |
		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
			GLINT_VECT2FUNC_PF_NUM_M));
		wr32(hw, GLINT_VECT2FUNC(v), reg);
	}

	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
	else
		dev_err(&pf->pdev->dev,
			"Scattered mode for VF Tx queues is not yet implemented\n");

	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
	else
		dev_err(&pf->pdev->dev,
			"Scattered mode for VF Rx queues is not yet implemented\n");
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
/**
 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
 * @pf: pointer to the PF structure
 *
 * If MSIX entries from the pf->irq_tracker were needed then we need to
 * reset the irq_tracker->end and give back the entries we needed to
 * num_avail_sw_msix.
 *
 * If no MSIX entries were taken from the pf->irq_tracker then just clear
 * the pf->sriov_base_vector.
 *
 * Returns 0 on success, and -EINVAL on error.
 */
static int ice_sriov_free_msix_res(struct ice_pf *pf)
{
	struct ice_res_tracker *res;

	if (!pf)
		return -EINVAL;

	res = pf->irq_tracker;
	if (!res)
		return -EINVAL;

	/* give back irq_tracker resources used */
	if (pf->sriov_base_vector < res->num_entries) {
		res->end = res->num_entries;
		pf->num_avail_sw_msix +=
			res->num_entries - pf->sriov_base_vector;
	}

	pf->sriov_base_vector = 0;

	return 0;
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/**
 * ice_set_vf_state_qs_dis - Set VF queues state to disabled
 * @vf: pointer to the VF structure
 */
void ice_set_vf_state_qs_dis(struct ice_vf *vf)
{
	/* Clear Rx/Tx enabled queues flag */
	bitmap_zero(vf->txq_ena, ICE_MAX_BASE_QS_PER_VF);
	bitmap_zero(vf->rxq_ena, ICE_MAX_BASE_QS_PER_VF);
	vf->num_qs_ena = 0;
	clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
}

/**
 * ice_dis_vf_qs - Disable the VF queues
 * @vf: pointer to the VF structure
 */
static void ice_dis_vf_qs(struct ice_vf *vf)
{
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;

	vsi = pf->vsi[vf->lan_vsi_idx];

	ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id);
	ice_vsi_stop_rx_rings(vsi);
	ice_set_vf_state_qs_dis(vf);
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/**
 * ice_free_vfs - Free all VFs
 * @pf: pointer to the PF structure
 */
void ice_free_vfs(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	int tmp, i;

	if (!pf->vf)
		return;

	while (test_and_set_bit(__ICE_VF_DIS, pf->state))
		usleep_range(1000, 2000);

	/* Avoid wait time by stopping all VFs at the same time */
299 300 301
	for (i = 0; i < pf->num_alloc_vfs; i++)
		if (test_bit(ICE_VF_STATE_QS_ENA, pf->vf[i].vf_states))
			ice_dis_vf_qs(&pf->vf[i]);
302

303 304 305 306 307 308 309 310 311
	/* Disable IOV before freeing resources. This lets any VF drivers
	 * running in the host get themselves cleaned up before we yank
	 * the carpet out from underneath their feet.
	 */
	if (!pci_vfs_assigned(pf->pdev))
		pci_disable_sriov(pf->pdev);
	else
		dev_warn(&pf->pdev->dev, "VFs are assigned - not disabling SR-IOV\n");

312 313 314 315 316 317 318 319 320 321 322
	tmp = pf->num_alloc_vfs;
	pf->num_vf_qps = 0;
	pf->num_alloc_vfs = 0;
	for (i = 0; i < tmp; i++) {
		if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) {
			/* disable VF qp mappings */
			ice_dis_vf_mappings(&pf->vf[i]);
			ice_free_vf_res(&pf->vf[i]);
		}
	}

323 324 325 326
	if (ice_sriov_free_msix_res(pf))
		dev_err(&pf->pdev->dev,
			"Failed to free MSIX resources used by SR-IOV\n");

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	devm_kfree(&pf->pdev->dev, pf->vf);
	pf->vf = NULL;

	/* This check is for when the driver is unloaded while VFs are
	 * assigned. Setting the number of VFs to 0 through sysfs is caught
	 * before this function ever gets called.
	 */
	if (!pci_vfs_assigned(pf->pdev)) {
		int vf_id;

		/* Acknowledge VFLR for all VFs. Without this, VFs will fail to
		 * work correctly when SR-IOV gets re-enabled.
		 */
		for (vf_id = 0; vf_id < tmp; vf_id++) {
			u32 reg_idx, bit_idx;

			reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
			bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
		}
	}
	clear_bit(__ICE_VF_DIS, pf->state);
	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
}

/**
 * ice_trigger_vf_reset - Reset a VF on HW
 * @vf: pointer to the VF structure
 * @is_vflr: true if VFLR was issued, false if not
 *
 * Trigger hardware to start a reset for a particular VF. Expects the caller
 * to wait the proper amount of time to allow hardware to reset the VF before
 * it cleans up and restores VF functionality.
 */
static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr)
{
	struct ice_pf *pf = vf->pf;
	u32 reg, reg_idx, bit_idx;
	struct ice_hw *hw;
	int vf_abs_id, i;

	hw = &pf->hw;
	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;

	/* Inform VF that it is no longer active, as a warning */
	clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);

	/* Disable VF's configuration API during reset. The flag is re-enabled
	 * in ice_alloc_vf_res(), when it's safe again to access VF's VSI.
	 * It's normally disabled in ice_free_vf_res(), but it's safer
	 * to do it earlier to give some time to finish to any VF config
	 * functions that may still be running at this point.
	 */
	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
381 382 383 384 385

	/* Clear the VF's ARQLEN register. This is how the VF detects reset,
	 * since the VFGEN_RSTAT register doesn't stick at 0 after reset.
	 */
	wr32(hw, VF_MBX_ARQLEN(vf_abs_id), 0);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

	/* In the case of a VFLR, the HW has already reset the VF and we
	 * just need to clean up, so don't hit the VFRTRIG register.
	 */
	if (!is_vflr) {
		/* reset VF using VPGEN_VFRTRIG reg */
		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
		reg |= VPGEN_VFRTRIG_VFSWR_M;
		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
	}
	/* clear the VFLR bit in GLGEN_VFLRSTAT */
	reg_idx = (vf_abs_id) / 32;
	bit_idx = (vf_abs_id) % 32;
	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
	ice_flush(hw);

	wr32(hw, PF_PCI_CIAA,
	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
404
	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
405
		reg = rd32(hw, PF_PCI_CIAD);
406 407 408 409 410 411 412
		/* no transactions pending so stop polling */
		if ((reg & VF_TRANS_PENDING_M) == 0)
			break;

		dev_err(&pf->pdev->dev,
			"VF %d PCI transactions stuck\n", vf->vf_id);
		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
413 414 415 416
	}
}

/**
417 418 419
 * ice_vsi_set_pvid_fill_ctxt - Set VSI ctxt for add PVID
 * @ctxt: the VSI ctxt to fill
 * @vid: the VLAN ID to set as a PVID
420
 */
421 422 423 424 425 426 427 428 429 430 431 432
static void ice_vsi_set_pvid_fill_ctxt(struct ice_vsi_ctx *ctxt, u16 vid)
{
	ctxt->info.vlan_flags = (ICE_AQ_VSI_VLAN_MODE_UNTAGGED |
				 ICE_AQ_VSI_PVLAN_INSERT_PVID |
				 ICE_AQ_VSI_VLAN_EMOD_STR);
	ctxt->info.pvid = cpu_to_le16(vid);
	ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
						ICE_AQ_VSI_PROP_SW_VALID);
}

/**
433
 * ice_vsi_kill_pvid_fill_ctxt - Set VSI ctx for remove PVID
434 435 436 437 438 439 440 441 442 443 444 445 446 447
 * @ctxt: the VSI ctxt to fill
 */
static void ice_vsi_kill_pvid_fill_ctxt(struct ice_vsi_ctx *ctxt)
{
	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
	ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
						ICE_AQ_VSI_PROP_SW_VALID);
}

/**
 * ice_vsi_manage_pvid - Enable or disable port VLAN for VSI
 * @vsi: the VSI to update
448 449
 * @vid: the VLAN ID to set as a PVID
 * @enable: true for enable PVID false for disable
450 451
 */
static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 vid, bool enable)
452 453 454
{
	struct device *dev = &vsi->back->pdev->dev;
	struct ice_hw *hw = &vsi->back->hw;
455
	struct ice_vsi_ctx *ctxt;
456
	enum ice_status status;
457 458 459 460 461
	int ret = 0;

	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
	if (!ctxt)
		return -ENOMEM;
462

463 464 465 466 467
	ctxt->info = vsi->info;
	if (enable)
		ice_vsi_set_pvid_fill_ctxt(ctxt, vid);
	else
		ice_vsi_kill_pvid_fill_ctxt(ctxt);
468

469
	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
470
	if (status) {
471
		dev_info(dev, "update VSI for port VLAN failed, err %d aq_err %d\n",
472
			 status, hw->adminq.sq_last_status);
473 474
		ret = -EIO;
		goto out;
475 476
	}

477
	vsi->info = ctxt->info;
478 479 480
out:
	devm_kfree(dev, ctxt);
	return ret;
481 482 483 484 485 486
}

/**
 * ice_vf_vsi_setup - Set up a VF VSI
 * @pf: board private structure
 * @pi: pointer to the port_info instance
487
 * @vf_id: defines VF ID to which this VSI connects.
488 489 490 491 492 493 494 495 496 497
 *
 * Returns pointer to the successfully allocated VSI struct on success,
 * otherwise returns NULL on failure.
 */
static struct ice_vsi *
ice_vf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, u16 vf_id)
{
	return ice_vsi_setup(pf, pi, ICE_VSI_VF, vf_id);
}

498
/**
499
 * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
500 501 502
 * @pf: pointer to PF structure
 * @vf: pointer to VF that the first MSIX vector index is being calculated for
 *
503 504 505 506
 * This returns the first MSIX vector index in PF space that is used by this VF.
 * This index is used when accessing PF relative registers such as
 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
 * This will always be the OICR index in the AVF driver so any functionality
507 508 509 510 511
 * using vf->first_vector_idx for queue configuration will have to increment by
 * 1 to avoid meddling with the OICR index.
 */
static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
{
512
	return pf->sriov_base_vector + vf->vf_id * pf->num_vf_msix;
513 514
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528
/**
 * ice_alloc_vsi_res - Setup VF VSI and its resources
 * @vf: pointer to the VF structure
 *
 * Returns 0 on success, negative value on failure
 */
static int ice_alloc_vsi_res(struct ice_vf *vf)
{
	struct ice_pf *pf = vf->pf;
	LIST_HEAD(tmp_add_list);
	u8 broadcast[ETH_ALEN];
	struct ice_vsi *vsi;
	int status = 0;

529 530 531
	/* first vector index is the VFs OICR index */
	vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);

532 533 534 535 536 537 538 539 540 541
	vsi = ice_vf_vsi_setup(pf, pf->hw.port_info, vf->vf_id);
	if (!vsi) {
		dev_err(&pf->pdev->dev, "Failed to create VF VSI\n");
		return -ENOMEM;
	}

	vf->lan_vsi_idx = vsi->idx;
	vf->lan_vsi_num = vsi->vsi_num;

	/* Check if port VLAN exist before, and restore it accordingly */
542
	if (vf->port_vlan_id) {
543
		ice_vsi_manage_pvid(vsi, vf->port_vlan_id, true);
544 545
		ice_vsi_add_vlan(vsi, vf->port_vlan_id & ICE_VLAN_M);
	}
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

	eth_broadcast_addr(broadcast);

	status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
	if (status)
		goto ice_alloc_vsi_res_exit;

	if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
		status = ice_add_mac_to_list(vsi, &tmp_add_list,
					     vf->dflt_lan_addr.addr);
		if (status)
			goto ice_alloc_vsi_res_exit;
	}

	status = ice_add_mac(&pf->hw, &tmp_add_list);
	if (status)
562 563 564 565
		dev_err(&pf->pdev->dev,
			"could not add mac filters error %d\n", status);
	else
		vf->num_mac = 1;
566 567 568

	/* Clear this bit after VF initialization since we shouldn't reclaim
	 * and reassign interrupts for synchronous or asynchronous VFR events.
569
	 * We don't want to reconfigure interrupts since AVF driver doesn't
570 571 572 573 574 575 576 577 578 579 580 581 582 583
	 * expect vector assignment to be changed unless there is a request for
	 * more vectors.
	 */
ice_alloc_vsi_res_exit:
	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
	return status;
}

/**
 * ice_alloc_vf_res - Allocate VF resources
 * @vf: pointer to the VF structure
 */
static int ice_alloc_vf_res(struct ice_vf *vf)
{
584 585
	struct ice_pf *pf = vf->pf;
	int tx_rx_queue_left;
586 587
	int status;

588 589 590 591 592 593 594 595 596
	/* Update number of VF queues, in case VF had requested for queue
	 * changes
	 */
	tx_rx_queue_left = min_t(int, pf->q_left_tx, pf->q_left_rx);
	tx_rx_queue_left += ICE_DFLT_QS_PER_VF;
	if (vf->num_req_qs && vf->num_req_qs <= tx_rx_queue_left &&
	    vf->num_req_qs != vf->num_vf_qs)
		vf->num_vf_qs = vf->num_req_qs;

597 598 599 600 601
	/* setup VF VSI and necessary resources */
	status = ice_alloc_vsi_res(vf);
	if (status)
		goto ice_alloc_vf_res_exit;

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	if (vf->trusted)
		set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
	else
		clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);

	/* VF is now completely initialized */
	set_bit(ICE_VF_STATE_INIT, vf->vf_states);

	return status;

ice_alloc_vf_res_exit:
	ice_free_vf_res(vf);
	return status;
}

/**
 * ice_ena_vf_mappings
 * @vf: pointer to the VF structure
 *
 * Enable VF vectors and queues allocation by writing the details into
 * respective registers.
 */
static void ice_ena_vf_mappings(struct ice_vf *vf)
{
626
	int abs_vf_id, abs_first, abs_last;
627 628 629 630 631 632 633 634
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;
	int first, last, v;
	struct ice_hw *hw;
	u32 reg;

	hw = &pf->hw;
	vsi = pf->vsi[vf->lan_vsi_idx];
635
	first = vf->first_vector_idx;
636
	last = (first + pf->num_vf_msix) - 1;
637 638
	abs_first = first + pf->hw.func_caps.common_cap.msix_vector_first_id;
	abs_last = (abs_first + pf->num_vf_msix) - 1;
639 640 641
	abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id;

	/* VF Vector allocation */
642 643
	reg = (((abs_first << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) |
	       ((abs_last << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) |
644 645 646
	       VPINT_ALLOC_VALID_M);
	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);

647 648 649
	reg = (((abs_first << VPINT_ALLOC_PCI_FIRST_S)
		 & VPINT_ALLOC_PCI_FIRST_M) |
	       ((abs_last << VPINT_ALLOC_PCI_LAST_S) & VPINT_ALLOC_PCI_LAST_M) |
650 651
	       VPINT_ALLOC_PCI_VALID_M);
	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
652 653 654 655 656 657 658 659 660
	/* map the interrupts to its functions */
	for (v = first; v <= last; v++) {
		reg = (((abs_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
			GLINT_VECT2FUNC_VF_NUM_M) |
		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
			GLINT_VECT2FUNC_PF_NUM_M));
		wr32(hw, GLINT_VECT2FUNC(v), reg);
	}

661 662 663 664
	/* Map mailbox interrupt. We put an explicit 0 here to remind us that
	 * VF admin queue interrupts will go to VF MSI-X vector 0.
	 */
	wr32(hw, VPINT_MBX_CTL(abs_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M | 0);
665 666 667
	/* set regardless of mapping mode */
	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	/* VF Tx queues allocation */
	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
		/* set the VF PF Tx queue range
		 * VFNUMQ value should be set to (number of queues - 1). A value
		 * of 0 means 1 queue and a value of 255 means 256 queues
		 */
		reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
			VPLAN_TX_QBASE_VFFIRSTQ_M) |
		       (((vsi->alloc_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
			VPLAN_TX_QBASE_VFNUMQ_M));
		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
	} else {
		dev_err(&pf->pdev->dev,
			"Scattered mode for VF Tx queues is not yet implemented\n");
	}

684 685 686
	/* set regardless of mapping mode */
	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	/* VF Rx queues allocation */
	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
		/* set the VF PF Rx queue range
		 * VFNUMQ value should be set to (number of queues - 1). A value
		 * of 0 means 1 queue and a value of 255 means 256 queues
		 */
		reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
			VPLAN_RX_QBASE_VFFIRSTQ_M) |
		       (((vsi->alloc_txq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
			VPLAN_RX_QBASE_VFNUMQ_M));
		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
	} else {
		dev_err(&pf->pdev->dev,
			"Scattered mode for VF Rx queues is not yet implemented\n");
	}
}

/**
 * ice_determine_res
 * @pf: pointer to the PF structure
 * @avail_res: available resources in the PF structure
 * @max_res: maximum resources that can be given per VF
 * @min_res: minimum resources that can be given per VF
 *
 * Returns non-zero value if resources (queues/vectors) are available or
 * returns zero if PF cannot accommodate for all num_alloc_vfs.
 */
static int
ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res)
{
	bool checked_min_res = false;
	int res;

	/* start by checking if PF can assign max number of resources for
	 * all num_alloc_vfs.
	 * if yes, return number per VF
	 * If no, divide by 2 and roundup, check again
	 * repeat the loop till we reach a point where even minimum resources
	 * are not available, in that case return 0
	 */
	res = max_res;
	while ((res >= min_res) && !checked_min_res) {
		int num_all_res;

		num_all_res = pf->num_alloc_vfs * res;
		if (num_all_res <= avail_res)
			return res;

		if (res == min_res)
			checked_min_res = true;

		res = DIV_ROUND_UP(res, 2);
	}
	return 0;
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
/**
 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
 * @vf: VF to calculate the register index for
 * @q_vector: a q_vector associated to the VF
 */
int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
{
	struct ice_pf *pf;

	if (!vf || !q_vector)
		return -EINVAL;

	pf = vf->pf;

	/* always add one to account for the OICR being the first MSIX */
	return pf->sriov_base_vector + pf->num_vf_msix * vf->vf_id +
		q_vector->v_idx + 1;
}

/**
 * ice_get_max_valid_res_idx - Get the max valid resource index
 * @res: pointer to the resource to find the max valid index for
 *
 * Start from the end of the ice_res_tracker and return right when we find the
 * first res->list entry with the ICE_RES_VALID_BIT set. This function is only
 * valid for SR-IOV because it is the only consumer that manipulates the
 * res->end and this is always called when res->end is set to res->num_entries.
 */
static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
{
	int i;

	if (!res)
		return -EINVAL;

	for (i = res->num_entries - 1; i >= 0; i--)
		if (res->list[i] & ICE_RES_VALID_BIT)
			return i;

	return 0;
}

/**
 * ice_sriov_set_msix_res - Set any used MSIX resources
 * @pf: pointer to PF structure
 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
 *
 * This function allows SR-IOV resources to be taken from the end of the PF's
 * allowed HW MSIX vectors so in many cases the irq_tracker will not
 * be needed. In these cases we just set the pf->sriov_base_vector and return
 * success.
 *
 * If SR-IOV needs to use any pf->irq_tracker entries it updates the
 * irq_tracker->end based on the first entry needed for SR-IOV. This makes it
 * so any calls to ice_get_res() using the irq_tracker will not try to use
 * resources at or beyond the newly set value.
 *
 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors in
 * in the PF's space available for SR-IOV.
 */
static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
{
	int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
	u16 pf_total_msix_vectors =
		pf->hw.func_caps.common_cap.num_msix_vectors;
	struct ice_res_tracker *res = pf->irq_tracker;
	int sriov_base_vector;

	if (max_valid_res_idx < 0)
		return max_valid_res_idx;

	sriov_base_vector = pf_total_msix_vectors - num_msix_needed;

	/* make sure we only grab irq_tracker entries from the list end and
	 * that we have enough available MSIX vectors
	 */
	if (sriov_base_vector <= max_valid_res_idx)
		return -EINVAL;

	pf->sriov_base_vector = sriov_base_vector;

	/* dip into irq_tracker entries and update used resources */
	if (num_msix_needed > (pf_total_msix_vectors - res->num_entries)) {
		pf->num_avail_sw_msix -=
			res->num_entries - pf->sriov_base_vector;
		res->end = pf->sriov_base_vector;
	}

	return 0;
}

834 835 836 837 838 839 840 841 842 843
/**
 * ice_check_avail_res - check if vectors and queues are available
 * @pf: pointer to the PF structure
 *
 * This function is where we calculate actual number of resources for VF VSIs,
 * we don't reserve ahead of time during probe. Returns success if vectors and
 * queues resources are available, otherwise returns error code
 */
static int ice_check_avail_res(struct ice_pf *pf)
{
844 845
	int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
	u16 num_msix, num_txq, num_rxq, num_avail_msix;
846

847
	if (!pf->num_alloc_vfs || max_valid_res_idx < 0)
848 849
		return -EINVAL;

850 851 852 853
	/* add 1 to max_valid_res_idx to account for it being 0-based */
	num_avail_msix = pf->hw.func_caps.common_cap.num_msix_vectors -
		(max_valid_res_idx + 1);

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	/* Grab from HW interrupts common pool
	 * Note: By the time the user decides it needs more vectors in a VF
	 * its already too late since one must decide this prior to creating the
	 * VF interface. So the best we can do is take a guess as to what the
	 * user might want.
	 *
	 * We have two policies for vector allocation:
	 * 1. if num_alloc_vfs is from 1 to 16, then we consider this as small
	 * number of NFV VFs used for NFV appliances, since this is a special
	 * case, we try to assign maximum vectors per VF (65) as much as
	 * possible, based on determine_resources algorithm.
	 * 2. if num_alloc_vfs is from 17 to 256, then its large number of
	 * regular VFs which are not used for any special purpose. Hence try to
	 * grab default interrupt vectors (5 as supported by AVF driver).
	 */
	if (pf->num_alloc_vfs <= 16) {
870
		num_msix = ice_determine_res(pf, num_avail_msix,
871 872 873
					     ICE_MAX_INTR_PER_VF,
					     ICE_MIN_INTR_PER_VF);
	} else if (pf->num_alloc_vfs <= ICE_MAX_VF_COUNT) {
874
		num_msix = ice_determine_res(pf, num_avail_msix,
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
					     ICE_DFLT_INTR_PER_VF,
					     ICE_MIN_INTR_PER_VF);
	} else {
		dev_err(&pf->pdev->dev,
			"Number of VFs %d exceeds max VF count %d\n",
			pf->num_alloc_vfs, ICE_MAX_VF_COUNT);
		return -EIO;
	}

	if (!num_msix)
		return -EIO;

	/* Grab from the common pool
	 * start by requesting Default queues (4 as supported by AVF driver),
	 * Note that, the main difference between queues and vectors is, latter
	 * can only be reserved at init time but queues can be requested by VF
	 * at runtime through Virtchnl, that is the reason we start by reserving
	 * few queues.
	 */
	num_txq = ice_determine_res(pf, pf->q_left_tx, ICE_DFLT_QS_PER_VF,
				    ICE_MIN_QS_PER_VF);

	num_rxq = ice_determine_res(pf, pf->q_left_rx, ICE_DFLT_QS_PER_VF,
				    ICE_MIN_QS_PER_VF);

	if (!num_txq || !num_rxq)
		return -EIO;

903 904 905
	if (ice_sriov_set_msix_res(pf, num_msix * pf->num_alloc_vfs))
		return -EINVAL;

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	/* since AVF driver works with only queue pairs which means, it expects
	 * to have equal number of Rx and Tx queues, so take the minimum of
	 * available Tx or Rx queues
	 */
	pf->num_vf_qps = min_t(int, num_txq, num_rxq);
	pf->num_vf_msix = num_msix;

	return 0;
}

/**
 * ice_cleanup_and_realloc_vf - Clean up VF and reallocate resources after reset
 * @vf: pointer to the VF structure
 *
 * Cleanup a VF after the hardware reset is finished. Expects the caller to
 * have verified whether the reset is finished properly, and ensure the
 * minimum amount of wait time has passed. Reallocate VF resources back to make
 * VF state active
 */
static void ice_cleanup_and_realloc_vf(struct ice_vf *vf)
{
	struct ice_pf *pf = vf->pf;
	struct ice_hw *hw;
	u32 reg;

	hw = &pf->hw;

	/* PF software completes the flow by notifying VF that reset flow is
	 * completed. This is done by enabling hardware by clearing the reset
	 * bit in the VPGEN_VFRTRIG reg and setting VFR_STATE in the VFGEN_RSTAT
	 * register to VFR completed (done at the end of this function)
	 * By doing this we allow HW to access VF memory at any point. If we
	 * did it any sooner, HW could access memory while it was being freed
	 * in ice_free_vf_res(), causing an IOMMU fault.
	 *
	 * On the other hand, this needs to be done ASAP, because the VF driver
	 * is waiting for this to happen and may report a timeout. It's
	 * harmless, but it gets logged into Guest OS kernel log, so best avoid
	 * it.
	 */
	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);

	/* reallocate VF resources to finish resetting the VSI state */
	if (!ice_alloc_vf_res(vf)) {
		ice_ena_vf_mappings(vf);
		set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
		clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
		vf->num_vlan = 0;
	}

	/* Tell the VF driver the reset is done. This needs to be done only
	 * after VF has been fully initialized, because the VF driver may
	 * request resources immediately after setting this flag.
	 */
	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * ice_vf_set_vsi_promisc - set given VF VSI to given promiscuous mode(s)
 * @vf: pointer to the VF info
 * @vsi: the VSI being configured
 * @promisc_m: mask of promiscuous config bits
 * @rm_promisc: promisc flag request from the VF to remove or add filter
 *
 * This function configures VF VSI promiscuous mode, based on the VF requests,
 * for Unicast, Multicast and VLAN
 */
static enum ice_status
ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m,
		       bool rm_promisc)
{
	struct ice_pf *pf = vf->pf;
	enum ice_status status = 0;
	struct ice_hw *hw;

	hw = &pf->hw;
	if (vf->num_vlan) {
		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
						  rm_promisc);
	} else if (vf->port_vlan_id) {
		if (rm_promisc)
			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
						       vf->port_vlan_id);
		else
			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
						     vf->port_vlan_id);
	} else {
		if (rm_promisc)
			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
						       0);
		else
			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
						     0);
	}

	return status;
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/**
 * ice_config_res_vfs - Finalize allocation of VFs resources in one go
 * @pf: pointer to the PF structure
 *
 * This function is being called as last part of resetting all VFs, or when
 * configuring VFs for the first time, where there is no resource to be freed
 * Returns true if resources were properly allocated for all VFs, and false
 * otherwise.
 */
static bool ice_config_res_vfs(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	int v;

	if (ice_check_avail_res(pf)) {
		dev_err(&pf->pdev->dev,
			"Cannot allocate VF resources, try with fewer number of VFs\n");
		return false;
	}

	/* rearm global interrupts */
	if (test_and_clear_bit(__ICE_OICR_INTR_DIS, pf->state))
		ice_irq_dynamic_ena(hw, NULL, NULL);

	/* Finish resetting each VF and allocate resources */
	for (v = 0; v < pf->num_alloc_vfs; v++) {
		struct ice_vf *vf = &pf->vf[v];

		vf->num_vf_qs = pf->num_vf_qps;
		dev_dbg(&pf->pdev->dev,
			"VF-id %d has %d queues configured\n",
			vf->vf_id, vf->num_vf_qs);
		ice_cleanup_and_realloc_vf(vf);
	}

	ice_flush(hw);
	clear_bit(__ICE_VF_DIS, pf->state);

	return true;
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/**
 * ice_reset_all_vfs - reset all allocated VFs in one go
 * @pf: pointer to the PF structure
 * @is_vflr: true if VFLR was issued, false if not
 *
 * First, tell the hardware to reset each VF, then do all the waiting in one
 * chunk, and finally finish restoring each VF after the wait. This is useful
 * during PF routines which need to reset all VFs, as otherwise it must perform
 * these resets in a serialized fashion.
 *
 * Returns true if any VFs were reset, and false otherwise.
 */
bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
{
	struct ice_hw *hw = &pf->hw;
1062
	struct ice_vf *vf;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	int v, i;

	/* If we don't have any VFs, then there is nothing to reset */
	if (!pf->num_alloc_vfs)
		return false;

	/* If VFs have been disabled, there is no need to reset */
	if (test_and_set_bit(__ICE_VF_DIS, pf->state))
		return false;

	/* Begin reset on all VFs at once */
	for (v = 0; v < pf->num_alloc_vfs; v++)
		ice_trigger_vf_reset(&pf->vf[v], is_vflr);

1077 1078 1079
	for (v = 0; v < pf->num_alloc_vfs; v++)
		if (test_bit(ICE_VF_STATE_QS_ENA, pf->vf[v].vf_states))
			ice_dis_vf_qs(&pf->vf[v]);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	/* HW requires some time to make sure it can flush the FIFO for a VF
	 * when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
	 * sequence to make sure that it has completed. We'll keep track of
	 * the VFs using a simple iterator that increments once that VF has
	 * finished resetting.
	 */
	for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) {

		/* Check each VF in sequence */
		while (v < pf->num_alloc_vfs) {
			u32 reg;

1093
			vf = &pf->vf[v];
1094
			reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
1095 1096 1097
			if (!(reg & VPGEN_VFRSTAT_VFRD_M)) {
				/* only delay if the check failed */
				usleep_range(10, 20);
1098
				break;
1099
			}
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

			/* If the current VF has finished resetting, move on
			 * to the next VF in sequence.
			 */
			v++;
		}
	}

	/* Display a warning if at least one VF didn't manage to reset in
	 * time, but continue on with the operation.
	 */
	if (v < pf->num_alloc_vfs)
		dev_warn(&pf->pdev->dev, "VF reset check timeout\n");

	/* free VF resources to begin resetting the VSI state */
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	for (v = 0; v < pf->num_alloc_vfs; v++) {
		vf = &pf->vf[v];

		ice_free_vf_res(vf);

		/* Free VF queues as well, and reallocate later.
		 * If a given VF has different number of queues
		 * configured, the request for update will come
		 * via mailbox communication.
		 */
		vf->num_vf_qs = 0;
	}
1127

1128 1129 1130 1131
	if (ice_sriov_free_msix_res(pf))
		dev_err(&pf->pdev->dev,
			"Failed to free MSIX resources used by SR-IOV\n");

1132
	if (!ice_config_res_vfs(pf))
1133 1134 1135 1136 1137
		return false;

	return true;
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
/**
 * ice_reset_vf - Reset a particular VF
 * @vf: pointer to the VF structure
 * @is_vflr: true if VFLR was issued, false if not
 *
 * Returns true if the VF is reset, false otherwise.
 */
static bool ice_reset_vf(struct ice_vf *vf, bool is_vflr)
{
	struct ice_pf *pf = vf->pf;
1148
	struct ice_vsi *vsi;
1149
	struct ice_hw *hw;
1150
	bool rsd = false;
1151
	u8 promisc_m;
1152 1153 1154 1155 1156 1157
	u32 reg;
	int i;

	/* If the VFs have been disabled, this means something else is
	 * resetting the VF, so we shouldn't continue.
	 */
1158
	if (test_bit(__ICE_VF_DIS, pf->state))
1159 1160 1161 1162
		return false;

	ice_trigger_vf_reset(vf, is_vflr);

1163 1164
	vsi = pf->vsi[vf->lan_vsi_idx];

1165 1166 1167
	if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states))
		ice_dis_vf_qs(vf);
	else
1168
		/* Call Disable LAN Tx queue AQ call even when queues are not
1169
		 * enabled. This is needed for successful completion of VFR
1170
		 */
1171 1172
		ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL,
				NULL, ICE_VF_RESET, vf->vf_id, NULL);
1173

1174
	hw = &pf->hw;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/* poll VPGEN_VFRSTAT reg to make sure
	 * that reset is complete
	 */
	for (i = 0; i < 10; i++) {
		/* VF reset requires driver to first reset the VF and then
		 * poll the status register to make sure that the reset
		 * completed successfully.
		 */
		reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
		if (reg & VPGEN_VFRSTAT_VFRD_M) {
			rsd = true;
			break;
		}
1188 1189 1190

		/* only sleep if the reset is not done */
		usleep_range(10, 20);
1191 1192 1193 1194 1195 1196 1197 1198 1199
	}

	/* Display a warning if VF didn't manage to reset in time, but need to
	 * continue on with the operation.
	 */
	if (!rsd)
		dev_warn(&pf->pdev->dev, "VF reset check timeout on VF %d\n",
			 vf->vf_id);

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	/* disable promiscuous modes in case they were enabled
	 * ignore any error if disabling process failed
	 */
	if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
	    test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) {
		if (vf->port_vlan_id ||  vf->num_vlan)
			promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
		else
			promisc_m = ICE_UCAST_PROMISC_BITS;

		vsi = pf->vsi[vf->lan_vsi_idx];
		if (ice_vf_set_vsi_promisc(vf, vsi, promisc_m, true))
			dev_err(&pf->pdev->dev, "disabling promiscuous mode failed\n");
	}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	/* free VF resources to begin resetting the VSI state */
	ice_free_vf_res(vf);

	ice_cleanup_and_realloc_vf(vf);

	ice_flush(hw);

	return true;
}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
/**
 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
 * @pf: pointer to the PF structure
 */
void ice_vc_notify_link_state(struct ice_pf *pf)
{
	int i;

	for (i = 0; i < pf->num_alloc_vfs; i++)
		ice_vc_notify_vf_link_state(&pf->vf[i]);
}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/**
 * ice_vc_notify_reset - Send pending reset message to all VFs
 * @pf: pointer to the PF structure
 *
 * indicate a pending reset to all VFs on a given PF
 */
void ice_vc_notify_reset(struct ice_pf *pf)
{
	struct virtchnl_pf_event pfe;

	if (!pf->num_alloc_vfs)
		return;

	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
1252
	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
1253 1254 1255
			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
}

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
/**
 * ice_vc_notify_vf_reset - Notify VF of a reset event
 * @vf: pointer to the VF structure
 */
static void ice_vc_notify_vf_reset(struct ice_vf *vf)
{
	struct virtchnl_pf_event pfe;

	/* validate the request */
	if (!vf || vf->vf_id >= vf->pf->num_alloc_vfs)
		return;

	/* verify if the VF is in either init or active before proceeding */
	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
	    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
		return;

	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
1275 1276 1277
	ice_aq_send_msg_to_vf(&vf->pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT,
			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe),
			      NULL);
1278 1279
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
/**
 * ice_alloc_vfs - Allocate and set up VFs resources
 * @pf: pointer to the PF structure
 * @num_alloc_vfs: number of VFs to allocate
 */
static int ice_alloc_vfs(struct ice_pf *pf, u16 num_alloc_vfs)
{
	struct ice_hw *hw = &pf->hw;
	struct ice_vf *vfs;
	int i, ret;

	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
1292
	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1293
	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
1294
	set_bit(__ICE_OICR_INTR_DIS, pf->state);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	ice_flush(hw);

	ret = pci_enable_sriov(pf->pdev, num_alloc_vfs);
	if (ret) {
		pf->num_alloc_vfs = 0;
		goto err_unroll_intr;
	}
	/* allocate memory */
	vfs = devm_kcalloc(&pf->pdev->dev, num_alloc_vfs, sizeof(*vfs),
			   GFP_KERNEL);
	if (!vfs) {
		ret = -ENOMEM;
1307
		goto err_pci_disable_sriov;
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	}
	pf->vf = vfs;

	/* apply default profile */
	for (i = 0; i < num_alloc_vfs; i++) {
		vfs[i].pf = pf;
		vfs[i].vf_sw_id = pf->first_sw;
		vfs[i].vf_id = i;

		/* assign default capabilities */
		set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vfs[i].vf_caps);
		vfs[i].spoofchk = true;
	}
	pf->num_alloc_vfs = num_alloc_vfs;

1323 1324
	/* VF resources get allocated with initialization */
	if (!ice_config_res_vfs(pf)) {
1325
		ret = -EIO;
1326
		goto err_unroll_sriov;
1327
	}
1328

1329
	return ret;
1330 1331

err_unroll_sriov:
1332 1333 1334 1335 1336
	pf->vf = NULL;
	devm_kfree(&pf->pdev->dev, vfs);
	vfs = NULL;
	pf->num_alloc_vfs = 0;
err_pci_disable_sriov:
1337 1338 1339 1340
	pci_disable_sriov(pf->pdev);
err_unroll_intr:
	/* rearm interrupts here */
	ice_irq_dynamic_ena(hw, NULL, NULL);
1341
	clear_bit(__ICE_OICR_INTR_DIS, pf->state);
1342 1343 1344 1345
	return ret;
}

/**
1346 1347
 * ice_pf_state_is_nominal - checks the PF for nominal state
 * @pf: pointer to PF to check
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
 *
 * Check the PF's state for a collection of bits that would indicate
 * the PF is in a state that would inhibit normal operation for
 * driver functionality.
 *
 * Returns true if PF is in a nominal state.
 * Returns false otherwise
 */
static bool ice_pf_state_is_nominal(struct ice_pf *pf)
{
	DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };

	if (!pf)
		return false;

	bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
	if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
		return false;

	return true;
}

/**
 * ice_pci_sriov_ena - Enable or change number of VFs
 * @pf: pointer to the PF structure
 * @num_vfs: number of VFs to allocate
 */
static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
{
	int pre_existing_vfs = pci_num_vf(pf->pdev);
	struct device *dev = &pf->pdev->dev;
	int err;

	if (!ice_pf_state_is_nominal(pf)) {
		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
		return -EBUSY;
	}

	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
		dev_err(dev, "This device is not capable of SR-IOV\n");
		return -ENODEV;
	}

	if (pre_existing_vfs && pre_existing_vfs != num_vfs)
		ice_free_vfs(pf);
	else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
		return num_vfs;

	if (num_vfs > pf->num_vfs_supported) {
		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
			num_vfs, pf->num_vfs_supported);
		return -ENOTSUPP;
	}

	dev_info(dev, "Allocating %d VFs\n", num_vfs);
	err = ice_alloc_vfs(pf, num_vfs);
	if (err) {
		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
		return err;
	}

	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
	return num_vfs;
}

/**
 * ice_sriov_configure - Enable or change number of VFs via sysfs
 * @pdev: pointer to a pci_dev structure
 * @num_vfs: number of VFs to allocate
 *
 * This function is called when the user updates the number of VFs in sysfs.
 */
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
	struct ice_pf *pf = pci_get_drvdata(pdev);

	if (num_vfs)
		return ice_pci_sriov_ena(pf, num_vfs);

	if (!pci_vfs_assigned(pdev)) {
		ice_free_vfs(pf);
	} else {
		dev_err(&pf->pdev->dev,
			"can't free VFs because some are assigned to VMs.\n");
		return -EBUSY;
	}

	return 0;
}
1437 1438 1439 1440 1441

/**
 * ice_process_vflr_event - Free VF resources via IRQ calls
 * @pf: pointer to the PF structure
 *
1442
 * called from the VFLR IRQ handler to
1443 1444 1445 1446 1447 1448 1449 1450
 * free up VF resources and state variables
 */
void ice_process_vflr_event(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	int vf_id;
	u32 reg;

1451
	if (!test_and_clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	    !pf->num_alloc_vfs)
		return;

	for (vf_id = 0; vf_id < pf->num_alloc_vfs; vf_id++) {
		struct ice_vf *vf = &pf->vf[vf_id];
		u32 reg_idx, bit_idx;

		reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
		bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
		if (reg & BIT(bit_idx))
			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
			ice_reset_vf(vf, true);
	}
}
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

/**
 * ice_vc_dis_vf - Disable a given VF via SW reset
 * @vf: pointer to the VF info
 *
 * Disable the VF through a SW reset
 */
static void ice_vc_dis_vf(struct ice_vf *vf)
{
	ice_vc_notify_vf_reset(vf);
	ice_reset_vf(vf, false);
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/**
 * ice_vc_send_msg_to_vf - Send message to VF
 * @vf: pointer to the VF info
 * @v_opcode: virtual channel opcode
 * @v_retval: virtual channel return value
 * @msg: pointer to the msg buffer
 * @msglen: msg length
 *
 * send msg to VF
 */
1491
static int
1492 1493
ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
{
	enum ice_status aq_ret;
	struct ice_pf *pf;

	/* validate the request */
	if (!vf || vf->vf_id >= vf->pf->num_alloc_vfs)
		return -EINVAL;

	pf = vf->pf;

	/* single place to detect unsuccessful return values */
	if (v_retval) {
		vf->num_inval_msgs++;
		dev_info(&pf->pdev->dev, "VF %d failed opcode %d, retval: %d\n",
			 vf->vf_id, v_opcode, v_retval);
		if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) {
			dev_err(&pf->pdev->dev,
				"Number of invalid messages exceeded for VF %d\n",
				vf->vf_id);
			dev_err(&pf->pdev->dev, "Use PF Control I/F to enable the VF\n");
			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
			return -EIO;
		}
	} else {
		vf->num_valid_msgs++;
		/* reset the invalid counter, if a valid message is received. */
		vf->num_inval_msgs = 0;
	}

	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
				       msg, msglen, NULL);
1525
	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
1526
		dev_info(&pf->pdev->dev,
1527 1528
			 "Unable to send the message to VF %d ret %d aq_err %d\n",
			 vf->vf_id, aq_ret, pf->hw.mailboxq.sq_last_status);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
		return -EIO;
	}

	return 0;
}

/**
 * ice_vc_get_ver_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to request the API version used by the PF
 */
static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
{
	struct virtchnl_version_info info = {
		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
	};

	vf->vf_ver = *(struct virtchnl_version_info *)msg;
	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
	if (VF_IS_V10(&vf->vf_ver))
		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;

1553 1554
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
				     sizeof(struct virtchnl_version_info));
}

/**
 * ice_vc_get_vf_res_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to request its resources
 */
static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
{
1567
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1568 1569 1570 1571 1572 1573 1574
	struct virtchnl_vf_resource *vfres = NULL;
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;
	int len = 0;
	int ret;

	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
1575
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1576 1577 1578 1579 1580 1581 1582
		goto err;
	}

	len = sizeof(struct virtchnl_vf_resource);

	vfres = devm_kzalloc(&pf->pdev->dev, len, GFP_KERNEL);
	if (!vfres) {
1583
		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
		len = 0;
		goto err;
	}
	if (VF_IS_V11(&vf->vf_ver))
		vf->driver_caps = *(u32 *)msg;
	else
		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
				  VIRTCHNL_VF_OFFLOAD_VLAN;

	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
	vsi = pf->vsi[vf->lan_vsi_idx];
1596
	if (!vsi) {
1597
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1598 1599 1600
		goto err;
	}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	if (!vsi->info.pvid)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
	} else {
		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
		else
			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
	}

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;

	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;

	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;

	vfres->num_vsis = 1;
	/* Tx and Rx queue are equal for VF */
	vfres->num_queue_pairs = vsi->num_txq;
	vfres->max_vectors = pf->num_vf_msix;
	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
	vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;

	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
			vf->dflt_lan_addr.addr);

	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);

err:
	/* send the response back to the VF */
1651
	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
				    (u8 *)vfres, len);

	devm_kfree(&pf->pdev->dev, vfres);
	return ret;
}

/**
 * ice_vc_reset_vf_msg
 * @vf: pointer to the VF info
 *
 * called from the VF to reset itself,
 * unlike other virtchnl messages, PF driver
 * doesn't send the response back to the VF
 */
static void ice_vc_reset_vf_msg(struct ice_vf *vf)
{
	if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
		ice_reset_vf(vf, false);
}

/**
 * ice_find_vsi_from_id
1674
 * @pf: the PF structure to search for the VSI
1675
 * @id: ID of the VSI it is searching for
1676
 *
1677
 * searches for the VSI with the given ID
1678 1679 1680 1681 1682
 */
static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id)
{
	int i;

1683
	ice_for_each_vsi(pf, i)
1684 1685 1686 1687 1688 1689 1690 1691 1692
		if (pf->vsi[i] && pf->vsi[i]->vsi_num == id)
			return pf->vsi[i];

	return NULL;
}

/**
 * ice_vc_isvalid_vsi_id
 * @vf: pointer to the VF info
1693
 * @vsi_id: VF relative VSI ID
1694
 *
1695
 * check for the valid VSI ID
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
 */
static bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
{
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;

	vsi = ice_find_vsi_from_id(pf, vsi_id);

	return (vsi && (vsi->vf_id == vf->vf_id));
}

/**
 * ice_vc_isvalid_q_id
 * @vf: pointer to the VF info
1710 1711
 * @vsi_id: VSI ID
 * @qid: VSI relative queue ID
1712
 *
1713
 * check for the valid queue ID
1714 1715 1716 1717 1718 1719 1720 1721
 */
static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
{
	struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
	/* allocated Tx and Rx queues should be always equal for VF VSI */
	return (vsi && (qid < vsi->alloc_txq));
}

1722 1723 1724 1725 1726
/**
 * ice_vc_isvalid_ring_len
 * @ring_len: length of ring
 *
 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
1727
 * or zero
1728 1729 1730
 */
static bool ice_vc_isvalid_ring_len(u16 ring_len)
{
1731 1732
	return ring_len == 0 ||
	       (ring_len >= ICE_MIN_NUM_DESC &&
1733 1734 1735 1736
		ring_len <= ICE_MAX_NUM_DESC &&
		!(ring_len % ICE_REQ_DESC_MULTIPLE));
}

1737 1738 1739 1740 1741 1742 1743 1744 1745
/**
 * ice_vc_config_rss_key
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * Configure the VF's RSS key
 */
static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
{
1746
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1747 1748
	struct virtchnl_rss_key *vrk =
		(struct virtchnl_rss_key *)msg;
1749
	struct ice_pf *pf = vf->pf;
1750
	struct ice_vsi *vsi = NULL;
1751 1752

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1753
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1754 1755 1756 1757
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
1758
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1759 1760 1761
		goto error_param;
	}

1762
	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
1763
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1764 1765 1766
		goto error_param;
	}

1767
	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1768
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1769 1770 1771
		goto error_param;
	}

1772 1773
	vsi = pf->vsi[vf->lan_vsi_idx];
	if (!vsi) {
1774
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1775 1776 1777
		goto error_param;
	}

1778 1779
	if (ice_set_rss(vsi, vrk->key, NULL, 0))
		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1780
error_param:
1781
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
				     NULL, 0);
}

/**
 * ice_vc_config_rss_lut
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * Configure the VF's RSS LUT
 */
static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
{
	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
1795
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1796
	struct ice_pf *pf = vf->pf;
1797
	struct ice_vsi *vsi = NULL;
1798 1799

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1800
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1801 1802 1803 1804
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
1805
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1806 1807 1808
		goto error_param;
	}

1809
	if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
1810
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1811 1812 1813
		goto error_param;
	}

1814
	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
1815
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1816 1817 1818
		goto error_param;
	}

1819 1820
	vsi = pf->vsi[vf->lan_vsi_idx];
	if (!vsi) {
1821
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1822 1823 1824
		goto error_param;
	}

1825 1826
	if (ice_set_rss(vsi, NULL, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1827
error_param:
1828
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
				     NULL, 0);
}

/**
 * ice_vc_get_stats_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to get VSI stats
 */
static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
{
1841
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1842 1843
	struct virtchnl_queue_select *vqs =
		(struct virtchnl_queue_select *)msg;
1844
	struct ice_pf *pf = vf->pf;
1845 1846 1847 1848
	struct ice_eth_stats stats;
	struct ice_vsi *vsi;

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1849
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1850 1851 1852 1853
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1854
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1855 1856 1857
		goto error_param;
	}

1858
	vsi = pf->vsi[vf->lan_vsi_idx];
1859
	if (!vsi) {
1860
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
		goto error_param;
	}

	memset(&stats, 0, sizeof(struct ice_eth_stats));
	ice_update_eth_stats(vsi);

	stats = vsi->eth_stats;

error_param:
	/* send the response to the VF */
1871
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
				     (u8 *)&stats, sizeof(stats));
}

/**
 * ice_vc_ena_qs_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to enable all or specific queue(s)
 */
static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
{
1884
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1885 1886
	struct virtchnl_queue_select *vqs =
	    (struct virtchnl_queue_select *)msg;
1887
	struct ice_pf *pf = vf->pf;
1888
	struct ice_vsi *vsi;
1889 1890
	unsigned long q_map;
	u16 vf_q_id;
1891 1892

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1893
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1894 1895 1896 1897
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1898
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1899 1900 1901 1902
		goto error_param;
	}

	if (!vqs->rx_queues && !vqs->tx_queues) {
1903
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1904 1905 1906
		goto error_param;
	}

1907 1908 1909 1910 1911 1912
	if (vqs->rx_queues > ICE_MAX_BASE_QS_PER_VF ||
	    vqs->tx_queues > ICE_MAX_BASE_QS_PER_VF) {
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
		goto error_param;
	}

1913
	vsi = pf->vsi[vf->lan_vsi_idx];
1914
	if (!vsi) {
1915
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1916 1917 1918 1919 1920 1921 1922
		goto error_param;
	}

	/* Enable only Rx rings, Tx rings were enabled by the FW when the
	 * Tx queue group list was configured and the context bits were
	 * programmed using ice_vsi_cfg_txqs
	 */
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	q_map = vqs->rx_queues;
	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) {
		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
			goto error_param;
		}

		/* Skip queue if enabled */
		if (test_bit(vf_q_id, vf->rxq_ena))
			continue;

		if (ice_vsi_ctrl_rx_ring(vsi, true, vf_q_id)) {
			dev_err(&vsi->back->pdev->dev,
				"Failed to enable Rx ring %d on VSI %d\n",
				vf_q_id, vsi->vsi_num);
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
			goto error_param;
		}

		set_bit(vf_q_id, vf->rxq_ena);
		vf->num_qs_ena++;
	}

	vsi = pf->vsi[vf->lan_vsi_idx];
	q_map = vqs->tx_queues;
	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) {
		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
			goto error_param;
		}

		/* Skip queue if enabled */
		if (test_bit(vf_q_id, vf->txq_ena))
			continue;

		set_bit(vf_q_id, vf->txq_ena);
		vf->num_qs_ena++;
	}
1961 1962

	/* Set flag to indicate that queues are enabled */
1963
	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1964
		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1965 1966 1967

error_param:
	/* send the response to the VF */
1968
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
				     NULL, 0);
}

/**
 * ice_vc_dis_qs_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to disable all or specific
 * queue(s)
 */
static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
{
1982
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1983 1984
	struct virtchnl_queue_select *vqs =
	    (struct virtchnl_queue_select *)msg;
1985
	struct ice_pf *pf = vf->pf;
1986
	struct ice_vsi *vsi;
1987 1988
	unsigned long q_map;
	u16 vf_q_id;
1989 1990

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1991
	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1992
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1993 1994 1995 1996
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1997
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1998 1999 2000 2001
		goto error_param;
	}

	if (!vqs->rx_queues && !vqs->tx_queues) {
2002
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2003 2004 2005
		goto error_param;
	}

2006 2007 2008 2009 2010 2011
	if (vqs->rx_queues > ICE_MAX_BASE_QS_PER_VF ||
	    vqs->tx_queues > ICE_MAX_BASE_QS_PER_VF) {
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
		goto error_param;
	}

2012
	vsi = pf->vsi[vf->lan_vsi_idx];
2013
	if (!vsi) {
2014
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2015 2016 2017
		goto error_param;
	}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	if (vqs->tx_queues) {
		q_map = vqs->tx_queues;

		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) {
			struct ice_ring *ring = vsi->tx_rings[vf_q_id];
			struct ice_txq_meta txq_meta = { 0 };

			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
				goto error_param;
			}

			/* Skip queue if not enabled */
			if (!test_bit(vf_q_id, vf->txq_ena))
				continue;

			ice_fill_txq_meta(vsi, ring, &txq_meta);

			if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id,
						 ring, &txq_meta)) {
				dev_err(&vsi->back->pdev->dev,
					"Failed to stop Tx ring %d on VSI %d\n",
					vf_q_id, vsi->vsi_num);
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
				goto error_param;
			}

			/* Clear enabled queues flag */
			clear_bit(vf_q_id, vf->txq_ena);
			vf->num_qs_ena--;
		}
2049 2050
	}

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	if (vqs->rx_queues) {
		q_map = vqs->rx_queues;

		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) {
			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
				goto error_param;
			}

			/* Skip queue if not enabled */
			if (!test_bit(vf_q_id, vf->rxq_ena))
				continue;

			if (ice_vsi_ctrl_rx_ring(vsi, false, vf_q_id)) {
				dev_err(&vsi->back->pdev->dev,
					"Failed to stop Rx ring %d on VSI %d\n",
					vf_q_id, vsi->vsi_num);
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
				goto error_param;
			}

			/* Clear enabled queues flag */
			clear_bit(vf_q_id, vf->rxq_ena);
			vf->num_qs_ena--;
		}
2076 2077 2078
	}

	/* Clear enabled queues flag */
2079 2080
	if (v_ret == VIRTCHNL_STATUS_SUCCESS && !vf->num_qs_ena)
		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
2081 2082 2083

error_param:
	/* send the response to the VF */
2084
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
				     NULL, 0);
}

/**
 * ice_vc_cfg_irq_map_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to configure the IRQ to queue map
 */
static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
{
2097
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2098
	struct virtchnl_irq_map_info *irqmap_info;
2099 2100 2101
	u16 vsi_id, vsi_q_id, vector_id;
	struct virtchnl_vector_map *map;
	struct ice_pf *pf = vf->pf;
2102
	u16 num_q_vectors_mapped;
2103
	struct ice_vsi *vsi;
2104 2105 2106
	unsigned long qmap;
	int i;

2107
	irqmap_info = (struct virtchnl_irq_map_info *)msg;
2108 2109 2110 2111 2112 2113
	num_q_vectors_mapped = irqmap_info->num_vectors;

	/* Check to make sure number of VF vectors mapped is not greater than
	 * number of VF vectors originally allocated, and check that
	 * there is actually at least a single VF queue vector mapped
	 */
2114
	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2115 2116
	    pf->num_vf_msix < num_q_vectors_mapped ||
	    !irqmap_info->num_vectors) {
2117
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2118 2119 2120
		goto error_param;
	}

2121 2122 2123 2124 2125 2126
	vsi = pf->vsi[vf->lan_vsi_idx];
	if (!vsi) {
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
		goto error_param;
	}

2127 2128
	for (i = 0; i < num_q_vectors_mapped; i++) {
		struct ice_q_vector *q_vector;
2129

2130 2131 2132 2133 2134 2135
		map = &irqmap_info->vecmap[i];

		vector_id = map->vector_id;
		vsi_id = map->vsi_id;
		/* validate msg params */
		if (!(vector_id < pf->hw.func_caps.common_cap
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
		    .num_msix_vectors) || !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
		    (!vector_id && (map->rxq_map || map->txq_map))) {
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
			goto error_param;
		}

		/* No need to map VF miscellaneous or rogue vector */
		if (!vector_id)
			continue;

		/* Subtract non queue vector from vector_id passed by VF
		 * to get actual number of VSI queue vector array index
		 */
		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
		if (!q_vector) {
2151
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2152 2153 2154 2155 2156
			goto error_param;
		}

		/* lookout for the invalid queue index */
		qmap = map->rxq_map;
2157
		q_vector->num_ring_rx = 0;
2158 2159
		for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) {
			if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) {
2160
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2161 2162
				goto error_param;
			}
2163 2164 2165
			q_vector->num_ring_rx++;
			q_vector->rx.itr_idx = map->rxitr_idx;
			vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
2166 2167
			ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
					      q_vector->rx.itr_idx);
2168 2169 2170
		}

		qmap = map->txq_map;
2171
		q_vector->num_ring_tx = 0;
2172 2173
		for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) {
			if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) {
2174
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2175 2176
				goto error_param;
			}
2177 2178 2179
			q_vector->num_ring_tx++;
			q_vector->tx.itr_idx = map->txitr_idx;
			vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
2180 2181
			ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
					      q_vector->tx.itr_idx);
2182 2183 2184 2185 2186
		}
	}

error_param:
	/* send the response to the VF */
2187
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
				     NULL, 0);
}

/**
 * ice_vc_cfg_qs_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * called from the VF to configure the Rx/Tx queues
 */
static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
{
2200
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2201 2202 2203
	struct virtchnl_vsi_queue_config_info *qci =
	    (struct virtchnl_vsi_queue_config_info *)msg;
	struct virtchnl_queue_pair_info *qpi;
2204
	u16 num_rxq = 0, num_txq = 0;
2205
	struct ice_pf *pf = vf->pf;
2206 2207 2208 2209
	struct ice_vsi *vsi;
	int i;

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2210
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2211 2212 2213 2214
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
2215
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2216 2217 2218
		goto error_param;
	}

2219 2220
	vsi = pf->vsi[vf->lan_vsi_idx];
	if (!vsi) {
2221
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2222 2223 2224
		goto error_param;
	}

2225 2226 2227 2228 2229
	if (qci->num_queue_pairs > ICE_MAX_BASE_QS_PER_VF ||
	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
		dev_err(&pf->pdev->dev,
			"VF-%d requesting more than supported number of queues: %d\n",
			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
2230 2231 2232 2233
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
		goto error_param;
	}

2234 2235 2236 2237 2238
	for (i = 0; i < qci->num_queue_pairs; i++) {
		qpi = &qci->qpair[i];
		if (qpi->txq.vsi_id != qci->vsi_id ||
		    qpi->rxq.vsi_id != qci->vsi_id ||
		    qpi->rxq.queue_id != qpi->txq.queue_id ||
2239
		    qpi->txq.headwb_enabled ||
2240 2241
		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
2242
		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
2243
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2244 2245 2246
			goto error_param;
		}
		/* copy Tx queue info from VF into VSI */
2247 2248 2249 2250
		if (qpi->txq.ring_len > 0) {
			num_txq++;
			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
			vsi->tx_rings[i]->count = qpi->txq.ring_len;
2251
		}
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

		/* copy Rx queue info from VF into VSI */
		if (qpi->rxq.ring_len > 0) {
			num_rxq++;
			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
			vsi->rx_rings[i]->count = qpi->rxq.ring_len;

			if (qpi->rxq.databuffer_size != 0 &&
			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
			     qpi->rxq.databuffer_size < 1024)) {
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
				goto error_param;
			}
			vsi->rx_buf_len = qpi->rxq.databuffer_size;
			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
			if (qpi->rxq.max_pkt_size >= (16 * 1024) ||
			    qpi->rxq.max_pkt_size < 64) {
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
				goto error_param;
			}
2272
		}
2273

2274 2275 2276 2277 2278 2279
		vsi->max_frame = qpi->rxq.max_pkt_size;
	}

	/* VF can request to configure less than allocated queues
	 * or default allocated queues. So update the VSI with new number
	 */
2280 2281
	vsi->num_txq = num_txq;
	vsi->num_rxq = num_rxq;
2282
	/* All queues of VF VSI are in TC 0 */
2283 2284
	vsi->tc_cfg.tc_info[0].qcount_tx = num_txq;
	vsi->tc_cfg.tc_info[0].qcount_rx = num_rxq;
2285

2286 2287
	if (ice_vsi_cfg_lan_txqs(vsi) || ice_vsi_cfg_rxqs(vsi))
		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2288 2289 2290

error_param:
	/* send the response to the VF */
2291
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret,
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
				     NULL, 0);
}

/**
 * ice_is_vf_trusted
 * @vf: pointer to the VF info
 */
static bool ice_is_vf_trusted(struct ice_vf *vf)
{
	return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
}

/**
 * ice_can_vf_change_mac
 * @vf: pointer to the VF info
 *
 * Return true if the VF is allowed to change its MAC filters, false otherwise
 */
static bool ice_can_vf_change_mac(struct ice_vf *vf)
{
	/* If the VF MAC address has been set administratively (via the
	 * ndo_set_vf_mac command), then deny permission to the VF to
	 * add/delete unicast MAC addresses, unless the VF is trusted
	 */
	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
		return false;

	return true;
}

/**
 * ice_vc_handle_mac_addr_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
2326
 * @set: true if MAC filters are being set, false otherwise
2327
 *
2328
 * add guest MAC address filter
2329 2330 2331 2332
 */
static int
ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
{
2333
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2334 2335 2336 2337
	struct virtchnl_ether_addr_list *al =
	    (struct virtchnl_ether_addr_list *)msg;
	struct ice_pf *pf = vf->pf;
	enum virtchnl_ops vc_op;
2338
	enum ice_status status;
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	struct ice_vsi *vsi;
	int mac_count = 0;
	int i;

	if (set)
		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
	else
		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2350
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2351 2352 2353 2354 2355 2356
		goto handle_mac_exit;
	}

	if (set && !ice_is_vf_trusted(vf) &&
	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
		dev_err(&pf->pdev->dev,
2357 2358 2359 2360 2361
			"Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
			vf->vf_id);
		/* There is no need to let VF know about not being trusted
		 * to add more MAC addr, so we can just return success message.
		 */
2362
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2363 2364 2365 2366
		goto handle_mac_exit;
	}

	vsi = pf->vsi[vf->lan_vsi_idx];
2367
	if (!vsi) {
2368
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2369 2370
		goto handle_mac_exit;
	}
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381

	for (i = 0; i < al->num_elements; i++) {
		u8 *maddr = al->list[i].addr;

		if (ether_addr_equal(maddr, vf->dflt_lan_addr.addr) ||
		    is_broadcast_ether_addr(maddr)) {
			if (set) {
				/* VF is trying to add filters that the PF
				 * already added. Just continue.
				 */
				dev_info(&pf->pdev->dev,
2382
					 "MAC %pM already set for VF %d\n",
2383 2384 2385
					 maddr, vf->vf_id);
				continue;
			} else {
2386
				/* VF can't remove dflt_lan_addr/bcast MAC */
2387
				dev_err(&pf->pdev->dev,
2388
					"VF can't remove default MAC address or MAC %pM programmed by PF for VF %d\n",
2389
					maddr, vf->vf_id);
2390
				continue;
2391 2392 2393 2394 2395 2396
			}
		}

		/* check for the invalid cases and bail if necessary */
		if (is_zero_ether_addr(maddr)) {
			dev_err(&pf->pdev->dev,
2397
				"invalid MAC %pM provided for VF %d\n",
2398
				maddr, vf->vf_id);
2399
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2400 2401 2402 2403 2404 2405
			goto handle_mac_exit;
		}

		if (is_unicast_ether_addr(maddr) &&
		    !ice_can_vf_change_mac(vf)) {
			dev_err(&pf->pdev->dev,
2406
				"can't change unicast MAC for untrusted VF %d\n",
2407
				vf->vf_id);
2408
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2409 2410 2411
			goto handle_mac_exit;
		}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
		/* program the updated filter list */
		status = ice_vsi_cfg_mac_fltr(vsi, maddr, set);
		if (status == ICE_ERR_DOES_NOT_EXIST ||
		    status == ICE_ERR_ALREADY_EXISTS) {
			dev_info(&pf->pdev->dev,
				 "can't %s MAC filters %pM for VF %d, error %d\n",
				 set ? "add" : "remove", maddr, vf->vf_id,
				 status);
		} else if (status) {
			dev_err(&pf->pdev->dev,
				"can't %s MAC filters for VF %d, error %d\n",
				set ? "add" : "remove", vf->vf_id, status);
			v_ret = ice_err_to_virt_err(status);
2425 2426
			goto handle_mac_exit;
		}
2427

2428 2429 2430
		mac_count++;
	}

2431
	/* Track number of MAC filters programmed for the VF VSI */
2432
	if (set)
2433
		vf->num_mac += mac_count;
2434
	else
2435
		vf->num_mac -= mac_count;
2436 2437 2438

handle_mac_exit:
	/* send the response to the VF */
2439
	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
}

/**
 * ice_vc_add_mac_addr_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * add guest MAC address filter
 */
static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
{
	return ice_vc_handle_mac_addr_msg(vf, msg, true);
}

/**
 * ice_vc_del_mac_addr_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * remove guest MAC address filter
 */
static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
{
	return ice_vc_handle_mac_addr_msg(vf, msg, false);
}

/**
 * ice_vc_request_qs_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
 * VFs get a default number of queues but can use this message to request a
2472
 * different number. If the request is successful, PF will reset the VF and
2473
 * return 0. If unsuccessful, PF will send message informing VF of number of
2474
 * available queue pairs via virtchnl message response to VF.
2475 2476 2477
 */
static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
{
2478
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2479 2480
	struct virtchnl_vf_res_request *vfres =
		(struct virtchnl_vf_res_request *)msg;
2481
	u16 req_queues = vfres->num_queue_pairs;
2482
	struct ice_pf *pf = vf->pf;
2483 2484 2485
	u16 max_allowed_vf_queues;
	u16 tx_rx_queue_left;
	u16 cur_queues;
2486 2487

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2488
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2489 2490 2491
		goto error_param;
	}

2492
	cur_queues = vf->num_vf_qs;
2493
	tx_rx_queue_left = min_t(u16, pf->q_left_tx, pf->q_left_rx);
2494
	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2495
	if (!req_queues) {
2496
		dev_err(&pf->pdev->dev,
2497 2498
			"VF %d tried to request 0 queues. Ignoring.\n",
			vf->vf_id);
2499
	} else if (req_queues > ICE_MAX_BASE_QS_PER_VF) {
2500 2501
		dev_err(&pf->pdev->dev,
			"VF %d tried to request more than %d queues.\n",
2502 2503
			vf->vf_id, ICE_MAX_BASE_QS_PER_VF);
		vfres->num_queue_pairs = ICE_MAX_BASE_QS_PER_VF;
2504 2505
	} else if (req_queues > cur_queues &&
		   req_queues - cur_queues > tx_rx_queue_left) {
2506
		dev_warn(&pf->pdev->dev,
2507
			 "VF %d requested %u more queues, but only %u left.\n",
2508
			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2509
		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2510
					       ICE_MAX_BASE_QS_PER_VF);
2511 2512 2513 2514 2515
	} else {
		/* request is successful, then reset VF */
		vf->num_req_qs = req_queues;
		ice_vc_dis_vf(vf);
		dev_info(&pf->pdev->dev,
2516
			 "VF %d granted request of %u queues.\n",
2517 2518 2519 2520 2521 2522 2523
			 vf->vf_id, req_queues);
		return 0;
	}

error_param:
	/* send the response to the VF */
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2524
				     v_ret, (u8 *)vfres, sizeof(*vfres));
2525 2526
}

2527 2528 2529 2530
/**
 * ice_set_vf_port_vlan
 * @netdev: network interface device structure
 * @vf_id: VF identifier
2531
 * @vlan_id: VLAN ID being set
2532 2533 2534
 * @qos: priority setting
 * @vlan_proto: VLAN protocol
 *
2535
 * program VF Port VLAN ID and/or QoS
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
 */
int
ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
		     __be16 vlan_proto)
{
	u16 vlanprio = vlan_id | (qos << ICE_VLAN_PRIORITY_S);
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_pf *pf = np->vsi->back;
	struct ice_vsi *vsi;
	struct ice_vf *vf;
	int ret = 0;

	/* validate the request */
	if (vf_id >= pf->num_alloc_vfs) {
		dev_err(&pf->pdev->dev, "invalid VF id: %d\n", vf_id);
		return -EINVAL;
	}

	if (vlan_id > ICE_MAX_VLANID || qos > 7) {
		dev_err(&pf->pdev->dev, "Invalid VF Parameters\n");
		return -EINVAL;
	}

	if (vlan_proto != htons(ETH_P_8021Q)) {
		dev_err(&pf->pdev->dev, "VF VLAN protocol is not supported\n");
		return -EPROTONOSUPPORT;
	}

	vf = &pf->vf[vf_id];
	vsi = pf->vsi[vf->lan_vsi_idx];
	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
		dev_err(&pf->pdev->dev, "VF %d in reset. Try again.\n", vf_id);
		return -EBUSY;
	}

	if (le16_to_cpu(vsi->info.pvid) == vlanprio) {
		/* duplicate request, so just return success */
		dev_info(&pf->pdev->dev,
			 "Duplicate pvid %d request\n", vlanprio);
		return ret;
	}

2578
	/* If PVID, then remove all filters on the old VLAN */
2579 2580 2581 2582 2583
	if (vsi->info.pvid)
		ice_vsi_kill_vlan(vsi, (le16_to_cpu(vsi->info.pvid) &
				  VLAN_VID_MASK));

	if (vlan_id || qos) {
2584
		ret = ice_vsi_manage_pvid(vsi, vlanprio, true);
2585 2586 2587
		if (ret)
			goto error_set_pvid;
	} else {
2588 2589
		ice_vsi_manage_pvid(vsi, 0, false);
		vsi->info.pvid = 0;
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
	}

	if (vlan_id) {
		dev_info(&pf->pdev->dev, "Setting VLAN %d, QOS 0x%x on VF %d\n",
			 vlan_id, qos, vf_id);

		/* add new VLAN filter for each MAC */
		ret = ice_vsi_add_vlan(vsi, vlan_id);
		if (ret)
			goto error_set_pvid;
	}

	/* The Port VLAN needs to be saved across resets the same as the
	 * default LAN MAC address.
	 */
	vf->port_vlan_id = le16_to_cpu(vsi->info.pvid);

error_set_pvid:
	return ret;
}

2611 2612 2613 2614 2615 2616
/**
 * ice_vc_process_vlan_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 * @add_v: Add VLAN if true, otherwise delete VLAN
 *
2617
 * Process virtchnl op to add or remove programmed guest VLAN ID
2618 2619 2620
 */
static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
{
2621
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2622 2623 2624
	struct virtchnl_vlan_filter_list *vfl =
	    (struct virtchnl_vlan_filter_list *)msg;
	struct ice_pf *pf = vf->pf;
2625
	bool vlan_promisc = false;
2626
	struct ice_vsi *vsi;
2627 2628 2629
	struct ice_hw *hw;
	int status = 0;
	u8 promisc_m;
2630 2631 2632
	int i;

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2633
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2634 2635 2636 2637
		goto error_param;
	}

	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2638
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2639 2640 2641 2642 2643 2644
		goto error_param;
	}

	if (add_v && !ice_is_vf_trusted(vf) &&
	    vf->num_vlan >= ICE_MAX_VLAN_PER_VF) {
		dev_info(&pf->pdev->dev,
2645 2646
			 "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
			 vf->vf_id);
2647 2648 2649
		/* There is no need to let VF know about being not trusted,
		 * so we can just return success message here
		 */
2650 2651 2652 2653 2654
		goto error_param;
	}

	for (i = 0; i < vfl->num_elements; i++) {
		if (vfl->vlan_id[i] > ICE_MAX_VLANID) {
2655
			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2656 2657 2658 2659 2660 2661
			dev_err(&pf->pdev->dev,
				"invalid VF VLAN id %d\n", vfl->vlan_id[i]);
			goto error_param;
		}
	}

2662
	hw = &pf->hw;
2663
	vsi = pf->vsi[vf->lan_vsi_idx];
2664
	if (!vsi) {
2665
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2666 2667 2668 2669
		goto error_param;
	}

	if (vsi->info.pvid) {
2670
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2671 2672 2673 2674 2675 2676 2677
		goto error_param;
	}

	if (ice_vsi_manage_vlan_stripping(vsi, add_v)) {
		dev_err(&pf->pdev->dev,
			"%sable VLAN stripping failed for VSI %i\n",
			 add_v ? "en" : "dis", vsi->vsi_num);
2678
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2679 2680 2681
		goto error_param;
	}

2682 2683 2684 2685
	if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
	    test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
		vlan_promisc = true;

2686 2687 2688 2689
	if (add_v) {
		for (i = 0; i < vfl->num_elements; i++) {
			u16 vid = vfl->vlan_id[i];

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
			if (!ice_is_vf_trusted(vf) &&
			    vf->num_vlan >= ICE_MAX_VLAN_PER_VF) {
				dev_info(&pf->pdev->dev,
					 "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
					 vf->vf_id);
				/* There is no need to let VF know about being
				 * not trusted, so we can just return success
				 * message here as well.
				 */
				goto error_param;
			}

2702
			if (ice_vsi_add_vlan(vsi, vid)) {
2703
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2704 2705
				goto error_param;
			}
2706

2707 2708 2709 2710 2711
			vf->num_vlan++;
			/* Enable VLAN pruning when VLAN is added */
			if (!vlan_promisc) {
				status = ice_cfg_vlan_pruning(vsi, true, false);
				if (status) {
2712
					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2713 2714 2715 2716 2717
					dev_err(&pf->pdev->dev,
						"Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
						vid, status);
					goto error_param;
				}
2718
			} else {
2719 2720 2721 2722 2723 2724
				/* Enable Ucast/Mcast VLAN promiscuous mode */
				promisc_m = ICE_PROMISC_VLAN_TX |
					    ICE_PROMISC_VLAN_RX;

				status = ice_set_vsi_promisc(hw, vsi->idx,
							     promisc_m, vid);
2725 2726
				if (status) {
					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2727 2728 2729
					dev_err(&pf->pdev->dev,
						"Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
						vid, status);
2730
				}
2731 2732 2733
			}
		}
	} else {
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
		/* In case of non_trusted VF, number of VLAN elements passed
		 * to PF for removal might be greater than number of VLANs
		 * filter programmed for that VF - So, use actual number of
		 * VLANS added earlier with add VLAN opcode. In order to avoid
		 * removing VLAN that doesn't exist, which result to sending
		 * erroneous failed message back to the VF
		 */
		int num_vf_vlan;

		num_vf_vlan = vf->num_vlan;
		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2745 2746 2747 2748 2749
			u16 vid = vfl->vlan_id[i];

			/* Make sure ice_vsi_kill_vlan is successful before
			 * updating VLAN information
			 */
2750
			if (ice_vsi_kill_vlan(vsi, vid)) {
2751
				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
				goto error_param;
			}

			vf->num_vlan--;
			/* Disable VLAN pruning when removing VLAN */
			ice_cfg_vlan_pruning(vsi, false, false);

			/* Disable Unicast/Multicast VLAN promiscuous mode */
			if (vlan_promisc) {
				promisc_m = ICE_PROMISC_VLAN_TX |
					    ICE_PROMISC_VLAN_RX;
2763

2764 2765
				ice_clear_vsi_promisc(hw, vsi->idx,
						      promisc_m, vid);
2766 2767 2768 2769 2770 2771 2772
			}
		}
	}

error_param:
	/* send the response to the VF */
	if (add_v)
2773
		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2774 2775
					     NULL, 0);
	else
2776
		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2777 2778 2779 2780 2781 2782 2783 2784
					     NULL, 0);
}

/**
 * ice_vc_add_vlan_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
2785
 * Add and program guest VLAN ID
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
 */
static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
{
	return ice_vc_process_vlan_msg(vf, msg, true);
}

/**
 * ice_vc_remove_vlan_msg
 * @vf: pointer to the VF info
 * @msg: pointer to the msg buffer
 *
2797
 * remove programmed guest VLAN ID
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
 */
static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
{
	return ice_vc_process_vlan_msg(vf, msg, false);
}

/**
 * ice_vc_ena_vlan_stripping
 * @vf: pointer to the VF info
 *
 * Enable VLAN header stripping for a given VF
 */
static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
{
2812
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2813 2814 2815 2816
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2817
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2818 2819 2820 2821 2822
		goto error_param;
	}

	vsi = pf->vsi[vf->lan_vsi_idx];
	if (ice_vsi_manage_vlan_stripping(vsi, true))
2823
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2824 2825 2826

error_param:
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2827
				     v_ret, NULL, 0);
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
}

/**
 * ice_vc_dis_vlan_stripping
 * @vf: pointer to the VF info
 *
 * Disable VLAN header stripping for a given VF
 */
static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
{
2838
	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2839 2840 2841 2842
	struct ice_pf *pf = vf->pf;
	struct ice_vsi *vsi;

	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2843
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2844 2845 2846 2847
		goto error_param;
	}

	vsi = pf->vsi[vf->lan_vsi_idx];
2848
	if (!vsi) {
2849
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2850 2851 2852
		goto error_param;
	}

2853
	if (ice_vsi_manage_vlan_stripping(vsi, false))
2854
		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2855 2856 2857

error_param:
	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2858
				     v_ret, NULL, 0);
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
}

/**
 * ice_vc_process_vf_msg - Process request from VF
 * @pf: pointer to the PF structure
 * @event: pointer to the AQ event
 *
 * called from the common asq/arq handler to
 * process request from VF
 */
void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
{
	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
	s16 vf_id = le16_to_cpu(event->desc.retval);
	u16 msglen = event->msg_len;
	u8 *msg = event->msg_buf;
	struct ice_vf *vf = NULL;
	int err = 0;

	if (vf_id >= pf->num_alloc_vfs) {
		err = -EINVAL;
		goto error_handler;
	}

	vf = &pf->vf[vf_id];

	/* Check if VF is disabled. */
	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
		err = -EPERM;
		goto error_handler;
	}

	/* Perform basic checks on the msg */
	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
	if (err) {
2894
		if (err == VIRTCHNL_STATUS_ERR_PARAM)
2895 2896 2897 2898 2899 2900 2901
			err = -EPERM;
		else
			err = -EINVAL;
	}

error_handler:
	if (err) {
2902 2903
		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
				      NULL, 0);
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
		dev_err(&pf->pdev->dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
			vf_id, v_opcode, msglen, err);
		return;
	}

	switch (v_opcode) {
	case VIRTCHNL_OP_VERSION:
		err = ice_vc_get_ver_msg(vf, msg);
		break;
	case VIRTCHNL_OP_GET_VF_RESOURCES:
		err = ice_vc_get_vf_res_msg(vf, msg);
		break;
	case VIRTCHNL_OP_RESET_VF:
		ice_vc_reset_vf_msg(vf);
		break;
	case VIRTCHNL_OP_ADD_ETH_ADDR:
		err = ice_vc_add_mac_addr_msg(vf, msg);
		break;
	case VIRTCHNL_OP_DEL_ETH_ADDR:
		err = ice_vc_del_mac_addr_msg(vf, msg);
		break;
	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
		err = ice_vc_cfg_qs_msg(vf, msg);
		break;
	case VIRTCHNL_OP_ENABLE_QUEUES:
		err = ice_vc_ena_qs_msg(vf, msg);
		ice_vc_notify_vf_link_state(vf);
		break;
	case VIRTCHNL_OP_DISABLE_QUEUES:
		err = ice_vc_dis_qs_msg(vf, msg);
		break;
	case VIRTCHNL_OP_REQUEST_QUEUES:
		err = ice_vc_request_qs_msg(vf, msg);
		break;
	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
		err = ice_vc_cfg_irq_map_msg(vf, msg);
		break;
	case VIRTCHNL_OP_CONFIG_RSS_KEY:
		err = ice_vc_config_rss_key(vf, msg);
		break;
	case VIRTCHNL_OP_CONFIG_RSS_LUT:
		err = ice_vc_config_rss_lut(vf, msg);
		break;
	case VIRTCHNL_OP_GET_STATS:
		err = ice_vc_get_stats_msg(vf, msg);
		break;
	case VIRTCHNL_OP_ADD_VLAN:
		err = ice_vc_add_vlan_msg(vf, msg);
		break;
	case VIRTCHNL_OP_DEL_VLAN:
		err = ice_vc_remove_vlan_msg(vf, msg);
		break;
	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
		err = ice_vc_ena_vlan_stripping(vf);
		break;
	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
		err = ice_vc_dis_vlan_stripping(vf);
		break;
	case VIRTCHNL_OP_UNKNOWN:
	default:
		dev_err(&pf->pdev->dev, "Unsupported opcode %d from VF %d\n",
			v_opcode, vf_id);
2966 2967
		err = ice_vc_send_msg_to_vf(vf, v_opcode,
					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
2968 2969 2970 2971 2972 2973 2974 2975
					    NULL, 0);
		break;
	}
	if (err) {
		/* Helper function cares less about error return values here
		 * as it is busy with pending work.
		 */
		dev_info(&pf->pdev->dev,
2976
			 "PF failed to honor VF %d, opcode %d, error %d\n",
2977 2978 2979 2980
			 vf_id, v_opcode, err);
	}
}

2981 2982 2983 2984 2985 2986 2987 2988
/**
 * ice_get_vf_cfg
 * @netdev: network interface device structure
 * @vf_id: VF identifier
 * @ivi: VF configuration structure
 *
 * return VF configuration
 */
2989 2990
int
ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	struct ice_vf *vf;

	/* validate the request */
	if (vf_id >= pf->num_alloc_vfs) {
		netdev_err(netdev, "invalid VF id: %d\n", vf_id);
		return -EINVAL;
	}

	vf = &pf->vf[vf_id];
	vsi = pf->vsi[vf->lan_vsi_idx];

	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
		netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id);
		return -EBUSY;
	}

	ivi->vf = vf_id;
	ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr);

	/* VF configuration for VLAN and applicable QoS */
	ivi->vlan = le16_to_cpu(vsi->info.pvid) & ICE_VLAN_M;
	ivi->qos = (le16_to_cpu(vsi->info.pvid) & ICE_PRIORITY_M) >>
		    ICE_VLAN_PRIORITY_S;

	ivi->trusted = vf->trusted;
	ivi->spoofchk = vf->spoofchk;
	if (!vf->link_forced)
		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
	else if (vf->link_up)
		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
	else
		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
	ivi->max_tx_rate = vf->tx_rate;
	ivi->min_tx_rate = 0;
	return 0;
}

/**
 * ice_set_vf_spoofchk
 * @netdev: network interface device structure
 * @vf_id: VF identifier
 * @ena: flag to enable or disable feature
 *
 * Enable or disable VF spoof checking
 */
int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
3045 3046
	struct ice_vsi_ctx *ctx;
	enum ice_status status;
3047
	struct ice_vf *vf;
3048
	int ret = 0;
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067

	/* validate the request */
	if (vf_id >= pf->num_alloc_vfs) {
		netdev_err(netdev, "invalid VF id: %d\n", vf_id);
		return -EINVAL;
	}

	vf = &pf->vf[vf_id];
	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
		netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id);
		return -EBUSY;
	}

	if (ena == vf->spoofchk) {
		dev_dbg(&pf->pdev->dev, "VF spoofchk already %s\n",
			ena ? "ON" : "OFF");
		return 0;
	}

3068 3069 3070 3071 3072
	ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;

	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3073 3074

	if (ena) {
3075 3076
		ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
		ctx->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_PRUNE_EN_M;
3077 3078
	}

3079
	status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3080 3081 3082
	if (status) {
		dev_dbg(&pf->pdev->dev,
			"Error %d, failed to update VSI* parameters\n", status);
3083 3084
		ret = -EIO;
		goto out;
3085 3086 3087
	}

	vf->spoofchk = ena;
3088 3089 3090 3091 3092
	vsi->info.sec_flags = ctx->info.sec_flags;
	vsi->info.sw_flags2 = ctx->info.sw_flags2;
out:
	devm_kfree(&pf->pdev->dev, ctx);
	return ret;
3093 3094 3095 3096 3097 3098
}

/**
 * ice_set_vf_mac
 * @netdev: network interface device structure
 * @vf_id: VF identifier
3099
 * @mac: MAC address
3100
 *
3101
 * program VF MAC address
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
 */
int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	struct ice_vf *vf;
	int ret = 0;

	/* validate the request */
	if (vf_id >= pf->num_alloc_vfs) {
		netdev_err(netdev, "invalid VF id: %d\n", vf_id);
		return -EINVAL;
	}

	vf = &pf->vf[vf_id];
	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
		netdev_err(netdev, "VF %d in reset. Try again.\n", vf_id);
		return -EBUSY;
	}

	if (is_zero_ether_addr(mac) || is_multicast_ether_addr(mac)) {
		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
		return -EINVAL;
	}

3128
	/* copy MAC into dflt_lan_addr and trigger a VF reset. The reset
3129 3130 3131 3132 3133 3134 3135
	 * flow will use the updated dflt_lan_addr and add a MAC filter
	 * using ice_add_mac. Also set pf_set_mac to indicate that the PF has
	 * set the MAC address for this VF.
	 */
	ether_addr_copy(vf->dflt_lan_addr.addr, mac);
	vf->pf_set_mac = true;
	netdev_info(netdev,
3136
		    "MAC on VF %d set to %pM. VF driver will be reinitialized\n",
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
		    vf_id, mac);

	ice_vc_dis_vf(vf);
	return ret;
}

/**
 * ice_set_vf_trust
 * @netdev: network interface device structure
 * @vf_id: VF identifier
 * @trusted: Boolean value to enable/disable trusted VF
 *
 * Enable or disable a given VF as trusted
 */
int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_vsi *vsi = np->vsi;
	struct ice_pf *pf = vsi->back;
	struct ice_vf *vf;

	/* validate the request */
	if (vf_id >= pf->num_alloc_vfs) {
		dev_err(&pf->pdev->dev, "invalid VF id: %d\n", vf_id);
		return -EINVAL;
	}

	vf = &pf->vf[vf_id];
	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
		dev_err(&pf->pdev->dev, "VF %d in reset. Try again.\n", vf_id);
		return -EBUSY;
	}

	/* Check if already trusted */
	if (trusted == vf->trusted)
		return 0;

	vf->trusted = trusted;
	ice_vc_dis_vf(vf);
	dev_info(&pf->pdev->dev, "VF %u is now %strusted\n",
		 vf_id, trusted ? "" : "un");

	return 0;
}

/**
 * ice_set_vf_link_state
 * @netdev: network interface device structure
 * @vf_id: VF identifier
 * @link_state: required link state
 *
 * Set VF's link state, irrespective of physical link state status
 */
int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
{
	struct ice_netdev_priv *np = netdev_priv(netdev);
	struct ice_pf *pf = np->vsi->back;
	struct virtchnl_pf_event pfe = { 0 };
	struct ice_link_status *ls;
	struct ice_vf *vf;
	struct ice_hw *hw;

	if (vf_id >= pf->num_alloc_vfs) {
		dev_err(&pf->pdev->dev, "Invalid VF Identifier %d\n", vf_id);
		return -EINVAL;
	}

	vf = &pf->vf[vf_id];
	hw = &pf->hw;
	ls = &pf->hw.port_info->phy.link_info;

	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
		dev_err(&pf->pdev->dev, "vf %d in reset. Try again.\n", vf_id);
		return -EBUSY;
	}

	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
	pfe.severity = PF_EVENT_SEVERITY_INFO;

	switch (link_state) {
	case IFLA_VF_LINK_STATE_AUTO:
		vf->link_forced = false;
		vf->link_up = ls->link_info & ICE_AQ_LINK_UP;
		break;
	case IFLA_VF_LINK_STATE_ENABLE:
		vf->link_forced = true;
		vf->link_up = true;
		break;
	case IFLA_VF_LINK_STATE_DISABLE:
		vf->link_forced = true;
		vf->link_up = false;
		break;
	default:
		return -EINVAL;
	}

	if (vf->link_forced)
		ice_set_pfe_link_forced(vf, &pfe, vf->link_up);
	else
		ice_set_pfe_link(vf, &pfe, ls->link_speed, vf->link_up);

	/* Notify the VF of its new link state */
3239 3240
	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
3241 3242 3243 3244
			      sizeof(pfe), NULL);

	return 0;
}