spi-mxs.c 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/*
 * Freescale MXS SPI master driver
 *
 * Copyright 2012 DENX Software Engineering, GmbH.
 * Copyright 2012 Freescale Semiconductor, Inc.
 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
 *
 * Rework and transition to new API by:
 * Marek Vasut <marex@denx.de>
 *
 * Based on previous attempt by:
 * Fabio Estevam <fabio.estevam@freescale.com>
 *
 * Based on code from U-Boot bootloader by:
 * Marek Vasut <marex@denx.de>
 *
 * Based on spi-stmp.c, which is:
 * Author: Dmitry Pervushin <dimka@embeddedalley.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/highmem.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/completion.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/module.h>
#include <linux/pinctrl/consumer.h>
#include <linux/stmp_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/mxs-spi.h>

#define DRIVER_NAME		"mxs-spi"

56 57
/* Use 10S timeout for very long transfers, it should suffice. */
#define SSP_TIMEOUT		10000
58

59 60
#define SG_MAXLEN		0xff00

61 62
struct mxs_spi {
	struct mxs_ssp		ssp;
63
	struct completion	c;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
};

static int mxs_spi_setup_transfer(struct spi_device *dev,
				struct spi_transfer *t)
{
	struct mxs_spi *spi = spi_master_get_devdata(dev->master);
	struct mxs_ssp *ssp = &spi->ssp;
	uint8_t bits_per_word;
	uint32_t hz = 0;

	bits_per_word = dev->bits_per_word;
	if (t && t->bits_per_word)
		bits_per_word = t->bits_per_word;

	if (bits_per_word != 8) {
		dev_err(&dev->dev, "%s, unsupported bits_per_word=%d\n",
					__func__, bits_per_word);
		return -EINVAL;
	}

	hz = dev->max_speed_hz;
	if (t && t->speed_hz)
		hz = min(hz, t->speed_hz);
	if (hz == 0) {
		dev_err(&dev->dev, "Cannot continue with zero clock\n");
		return -EINVAL;
	}

	mxs_ssp_set_clk_rate(ssp, hz);

	writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
		     BF_SSP_CTRL1_WORD_LENGTH
		     (BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
		     ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
		     ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
		     ssp->base + HW_SSP_CTRL1(ssp));

	writel(0x0, ssp->base + HW_SSP_CMD0);
	writel(0x0, ssp->base + HW_SSP_CMD1);

	return 0;
}

static int mxs_spi_setup(struct spi_device *dev)
{
	int err = 0;

	if (!dev->bits_per_word)
		dev->bits_per_word = 8;

	if (dev->mode & ~(SPI_CPOL | SPI_CPHA))
		return -EINVAL;

	err = mxs_spi_setup_transfer(dev, NULL);
	if (err) {
		dev_err(&dev->dev,
			"Failed to setup transfer, error = %d\n", err);
	}

	return err;
}

static uint32_t mxs_spi_cs_to_reg(unsigned cs)
{
	uint32_t select = 0;

	/*
	 * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
	 *
	 * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
	 * in HW_SSP_CTRL0 register do have multiple usage, please refer to
	 * the datasheet for further details. In SPI mode, they are used to
	 * toggle the chip-select lines (nCS pins).
	 */
	if (cs & 1)
		select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
	if (cs & 2)
		select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;

	return select;
}

static void mxs_spi_set_cs(struct mxs_spi *spi, unsigned cs)
{
	const uint32_t mask =
		BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ;
	uint32_t select;
	struct mxs_ssp *ssp = &spi->ssp;

	writel(mask, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
	select = mxs_spi_cs_to_reg(cs);
	writel(select, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
}

static inline void mxs_spi_enable(struct mxs_spi *spi)
{
	struct mxs_ssp *ssp = &spi->ssp;

	writel(BM_SSP_CTRL0_LOCK_CS,
		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
	writel(BM_SSP_CTRL0_IGNORE_CRC,
		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
}

static inline void mxs_spi_disable(struct mxs_spi *spi)
{
	struct mxs_ssp *ssp = &spi->ssp;

	writel(BM_SSP_CTRL0_LOCK_CS,
		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
	writel(BM_SSP_CTRL0_IGNORE_CRC,
		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
}

static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
{
180
	const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
181 182 183
	struct mxs_ssp *ssp = &spi->ssp;
	uint32_t reg;

184
	do {
185 186
		reg = readl_relaxed(ssp->base + offset);

187 188
		if (!set)
			reg = ~reg;
189

190
		reg &= mask;
191

192 193 194
		if (reg == mask)
			return 0;
	} while (time_before(jiffies, timeout));
195

196
	return -ETIMEDOUT;
197 198
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static void mxs_ssp_dma_irq_callback(void *param)
{
	struct mxs_spi *spi = param;
	complete(&spi->c);
}

static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
{
	struct mxs_ssp *ssp = dev_id;
	dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
		__func__, __LINE__,
		readl(ssp->base + HW_SSP_CTRL1(ssp)),
		readl(ssp->base + HW_SSP_STATUS(ssp)));
	return IRQ_HANDLED;
}

static int mxs_spi_txrx_dma(struct mxs_spi *spi, int cs,
			    unsigned char *buf, int len,
			    int *first, int *last, int write)
{
	struct mxs_ssp *ssp = &spi->ssp;
220 221 222 223
	struct dma_async_tx_descriptor *desc = NULL;
	const bool vmalloced_buf = is_vmalloc_addr(buf);
	const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
	const int sgs = DIV_ROUND_UP(len, desc_len);
224
	int sg_count;
225 226 227 228 229 230 231 232 233 234
	int min, ret;
	uint32_t ctrl0;
	struct page *vm_page;
	void *sg_buf;
	struct {
		uint32_t		pio[4];
		struct scatterlist	sg;
	} *dma_xfer;

	if (!len)
235
		return -EINVAL;
236 237 238 239

	dma_xfer = kzalloc(sizeof(*dma_xfer) * sgs, GFP_KERNEL);
	if (!dma_xfer)
		return -ENOMEM;
240

241
	INIT_COMPLETION(spi->c);
242

243 244 245
	ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
	ctrl0 |= BM_SSP_CTRL0_DATA_XFER | mxs_spi_cs_to_reg(cs);

246
	if (*first)
247
		ctrl0 |= BM_SSP_CTRL0_LOCK_CS;
248
	if (!write)
249
		ctrl0 |= BM_SSP_CTRL0_READ;
250 251

	/* Queue the DMA data transfer. */
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	for (sg_count = 0; sg_count < sgs; sg_count++) {
		min = min(len, desc_len);

		/* Prepare the transfer descriptor. */
		if ((sg_count + 1 == sgs) && *last)
			ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;

		if (ssp->devid == IMX23_SSP)
			ctrl0 |= min;

		dma_xfer[sg_count].pio[0] = ctrl0;
		dma_xfer[sg_count].pio[3] = min;

		if (vmalloced_buf) {
			vm_page = vmalloc_to_page(buf);
			if (!vm_page) {
				ret = -ENOMEM;
				goto err_vmalloc;
			}
			sg_buf = page_address(vm_page) +
				((size_t)buf & ~PAGE_MASK);
		} else {
			sg_buf = buf;
		}

		sg_init_one(&dma_xfer[sg_count].sg, sg_buf, min);
		ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
			write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);

		len -= min;
		buf += min;

		/* Queue the PIO register write transfer. */
		desc = dmaengine_prep_slave_sg(ssp->dmach,
				(struct scatterlist *)dma_xfer[sg_count].pio,
				(ssp->devid == IMX23_SSP) ? 1 : 4,
				DMA_TRANS_NONE,
				sg_count ? DMA_PREP_INTERRUPT : 0);
		if (!desc) {
			dev_err(ssp->dev,
				"Failed to get PIO reg. write descriptor.\n");
			ret = -EINVAL;
			goto err_mapped;
		}

		desc = dmaengine_prep_slave_sg(ssp->dmach,
				&dma_xfer[sg_count].sg, 1,
				write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);

		if (!desc) {
			dev_err(ssp->dev,
				"Failed to get DMA data write descriptor.\n");
			ret = -EINVAL;
			goto err_mapped;
		}
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
	}

	/*
	 * The last descriptor must have this callback,
	 * to finish the DMA transaction.
	 */
	desc->callback = mxs_ssp_dma_irq_callback;
	desc->callback_param = spi;

	/* Start the transfer. */
	dmaengine_submit(desc);
	dma_async_issue_pending(ssp->dmach);

	ret = wait_for_completion_timeout(&spi->c,
				msecs_to_jiffies(SSP_TIMEOUT));
	if (!ret) {
		dev_err(ssp->dev, "DMA transfer timeout\n");
		ret = -ETIMEDOUT;
326
		dmaengine_terminate_all(ssp->dmach);
327
		goto err_vmalloc;
328 329 330 331
	}

	ret = 0;

332 333 334 335
err_vmalloc:
	while (--sg_count >= 0) {
err_mapped:
		dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
336 337 338
			write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
	}

339 340
	kfree(dma_xfer);

341 342 343
	return ret;
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static int mxs_spi_txrx_pio(struct mxs_spi *spi, int cs,
			    unsigned char *buf, int len,
			    int *first, int *last, int write)
{
	struct mxs_ssp *ssp = &spi->ssp;

	if (*first)
		mxs_spi_enable(spi);

	mxs_spi_set_cs(spi, cs);

	while (len--) {
		if (*last && len == 0)
			mxs_spi_disable(spi);

		if (ssp->devid == IMX23_SSP) {
			writel(BM_SSP_CTRL0_XFER_COUNT,
				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
			writel(1,
				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
		} else {
			writel(1, ssp->base + HW_SSP_XFER_SIZE);
		}

		if (write)
			writel(BM_SSP_CTRL0_READ,
				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
		else
			writel(BM_SSP_CTRL0_READ,
				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);

		writel(BM_SSP_CTRL0_RUN,
				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);

		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
			return -ETIMEDOUT;

		if (write)
			writel(*buf, ssp->base + HW_SSP_DATA(ssp));

		writel(BM_SSP_CTRL0_DATA_XFER,
			     ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);

		if (!write) {
			if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
						BM_SSP_STATUS_FIFO_EMPTY, 0))
				return -ETIMEDOUT;

			*buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
		}

		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
			return -ETIMEDOUT;

		buf++;
	}

	if (len <= 0)
		return 0;

	return -ETIMEDOUT;
}

static int mxs_spi_transfer_one(struct spi_master *master,
				struct spi_message *m)
{
	struct mxs_spi *spi = spi_master_get_devdata(master);
	struct mxs_ssp *ssp = &spi->ssp;
	int first, last;
	struct spi_transfer *t, *tmp_t;
	int status = 0;
	int cs;

	first = last = 0;

	cs = m->spi->chip_select;

	list_for_each_entry_safe(t, tmp_t, &m->transfers, transfer_list) {

		status = mxs_spi_setup_transfer(m->spi, t);
		if (status)
			break;

		if (&t->transfer_list == m->transfers.next)
			first = 1;
		if (&t->transfer_list == m->transfers.prev)
			last = 1;
431
		if ((t->rx_buf && t->tx_buf) || (t->rx_dma && t->tx_dma)) {
432 433 434 435 436 437
			dev_err(ssp->dev,
				"Cannot send and receive simultaneously\n");
			status = -EINVAL;
			break;
		}

438 439 440 441 442 443 444 445 446
		/*
		 * Small blocks can be transfered via PIO.
		 * Measured by empiric means:
		 *
		 * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
		 *
		 * DMA only: 2.164808 seconds, 473.0KB/s
		 * Combined: 1.676276 seconds, 610.9KB/s
		 */
447
		if (t->len < 32) {
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
			writel(BM_SSP_CTRL1_DMA_ENABLE,
				ssp->base + HW_SSP_CTRL1(ssp) +
				STMP_OFFSET_REG_CLR);

			if (t->tx_buf)
				status = mxs_spi_txrx_pio(spi, cs,
						(void *)t->tx_buf,
						t->len, &first, &last, 1);
			if (t->rx_buf)
				status = mxs_spi_txrx_pio(spi, cs,
						t->rx_buf, t->len,
						&first, &last, 0);
		} else {
			writel(BM_SSP_CTRL1_DMA_ENABLE,
				ssp->base + HW_SSP_CTRL1(ssp) +
				STMP_OFFSET_REG_SET);

			if (t->tx_buf)
				status = mxs_spi_txrx_dma(spi, cs,
						(void *)t->tx_buf, t->len,
						&first, &last, 1);
			if (t->rx_buf)
				status = mxs_spi_txrx_dma(spi, cs,
						t->rx_buf, t->len,
						&first, &last, 0);
		}
474

475 476
		if (status) {
			stmp_reset_block(ssp->base);
477
			break;
478
		}
479

480
		m->actual_length += t->len;
481 482 483
		first = last = 0;
	}

484
	m->status = status;
485 486 487 488 489
	spi_finalize_current_message(master);

	return status;
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static bool mxs_ssp_dma_filter(struct dma_chan *chan, void *param)
{
	struct mxs_ssp *ssp = param;

	if (!mxs_dma_is_apbh(chan))
		return false;

	if (chan->chan_id != ssp->dma_channel)
		return false;

	chan->private = &ssp->dma_data;

	return true;
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
static const struct of_device_id mxs_spi_dt_ids[] = {
	{ .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
	{ .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);

static int __devinit mxs_spi_probe(struct platform_device *pdev)
{
	const struct of_device_id *of_id =
			of_match_device(mxs_spi_dt_ids, &pdev->dev);
	struct device_node *np = pdev->dev.of_node;
	struct spi_master *master;
	struct mxs_spi *spi;
	struct mxs_ssp *ssp;
520
	struct resource *iores, *dmares;
521 522 523
	struct pinctrl *pinctrl;
	struct clk *clk;
	void __iomem *base;
524
	int devid, dma_channel, clk_freq;
525 526
	int ret = 0, irq_err, irq_dma;
	dma_cap_mask_t mask;
527

528 529 530 531 532 533 534
	/*
	 * Default clock speed for the SPI core. 160MHz seems to
	 * work reasonably well with most SPI flashes, so use this
	 * as a default. Override with "clock-frequency" DT prop.
	 */
	const int clk_freq_default = 160000000;

535
	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
536 537 538
	irq_err = platform_get_irq(pdev, 0);
	irq_dma = platform_get_irq(pdev, 1);
	if (!iores || irq_err < 0 || irq_dma < 0)
539 540 541 542 543 544 545 546 547 548 549 550 551 552
		return -EINVAL;

	base = devm_request_and_ioremap(&pdev->dev, iores);
	if (!base)
		return -EADDRNOTAVAIL;

	pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
	if (IS_ERR(pinctrl))
		return PTR_ERR(pinctrl);

	clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk))
		return PTR_ERR(clk);

553
	if (np) {
554
		devid = (enum mxs_ssp_id) of_id->data;
555 556 557 558 559 560 561 562 563 564 565
		/*
		 * TODO: This is a temporary solution and should be changed
		 * to use generic DMA binding later when the helpers get in.
		 */
		ret = of_property_read_u32(np, "fsl,ssp-dma-channel",
					   &dma_channel);
		if (ret) {
			dev_err(&pdev->dev,
				"Failed to get DMA channel\n");
			return -EINVAL;
		}
566 567 568 569 570

		ret = of_property_read_u32(np, "clock-frequency",
					   &clk_freq);
		if (ret)
			clk_freq = clk_freq_default;
571 572 573 574
	} else {
		dmares = platform_get_resource(pdev, IORESOURCE_DMA, 0);
		if (!dmares)
			return -EINVAL;
575
		devid = pdev->id_entry->driver_data;
576
		dma_channel = dmares->start;
577
		clk_freq = clk_freq_default;
578
	}
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

	master = spi_alloc_master(&pdev->dev, sizeof(*spi));
	if (!master)
		return -ENOMEM;

	master->transfer_one_message = mxs_spi_transfer_one;
	master->setup = mxs_spi_setup;
	master->mode_bits = SPI_CPOL | SPI_CPHA;
	master->num_chipselect = 3;
	master->dev.of_node = np;
	master->flags = SPI_MASTER_HALF_DUPLEX;

	spi = spi_master_get_devdata(master);
	ssp = &spi->ssp;
	ssp->dev = &pdev->dev;
	ssp->clk = clk;
	ssp->base = base;
	ssp->devid = devid;
597 598
	ssp->dma_channel = dma_channel;

599 600
	init_completion(&spi->c);

601 602 603 604 605 606 607 608 609 610 611 612 613
	ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
			       DRIVER_NAME, ssp);
	if (ret)
		goto out_master_free;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
	ssp->dma_data.chan_irq = irq_dma;
	ssp->dmach = dma_request_channel(mask, mxs_ssp_dma_filter, ssp);
	if (!ssp->dmach) {
		dev_err(ssp->dev, "Failed to request DMA\n");
		goto out_master_free;
	}
614 615

	clk_prepare_enable(ssp->clk);
616
	clk_set_rate(ssp->clk, clk_freq);
617 618 619 620 621 622 623 624 625
	ssp->clk_rate = clk_get_rate(ssp->clk) / 1000;

	stmp_reset_block(ssp->base);

	platform_set_drvdata(pdev, master);

	ret = spi_register_master(master);
	if (ret) {
		dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
626
		goto out_free_dma;
627 628 629 630
	}

	return 0;

631 632
out_free_dma:
	dma_release_channel(ssp->dmach);
633
	clk_disable_unprepare(ssp->clk);
634
out_master_free:
635 636 637 638 639 640 641 642 643 644
	spi_master_put(master);
	return ret;
}

static int __devexit mxs_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master;
	struct mxs_spi *spi;
	struct mxs_ssp *ssp;

645
	master = spi_master_get(platform_get_drvdata(pdev));
646 647 648 649 650
	spi = spi_master_get_devdata(master);
	ssp = &spi->ssp;

	spi_unregister_master(master);

651 652
	dma_release_channel(ssp->dmach);

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	clk_disable_unprepare(ssp->clk);

	spi_master_put(master);

	return 0;
}

static struct platform_driver mxs_spi_driver = {
	.probe	= mxs_spi_probe,
	.remove	= __devexit_p(mxs_spi_remove),
	.driver	= {
		.name	= DRIVER_NAME,
		.owner	= THIS_MODULE,
		.of_match_table = mxs_spi_dt_ids,
	},
};

module_platform_driver(mxs_spi_driver);

MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
MODULE_DESCRIPTION("MXS SPI master driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:mxs-spi");