core-book3s.c 52.4 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15
#include <linux/percpu.h>
#include <linux/hardirq.h>
16
#include <linux/uaccess.h>
17 18
#include <asm/reg.h>
#include <asm/pmc.h>
19
#include <asm/machdep.h>
20
#include <asm/firmware.h>
21
#include <asm/ptrace.h>
22
#include <asm/code-patching.h>
23

24 25 26
#define BHRB_MAX_ENTRIES	32
#define BHRB_TARGET		0x0000000000000002
#define BHRB_PREDICTION		0x0000000000000001
27
#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28

29 30
struct cpu_hw_events {
	int n_events;
31 32 33
	int n_percpu;
	int disabled;
	int n_added;
34 35
	int n_limited;
	u8  pmcs_enabled;
36 37 38
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
39
	unsigned long mmcr[3];
40 41
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
42 43 44
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 46 47

	unsigned int group_flag;
	int n_txn_start;
48 49 50 51 52 53 54

	/* BHRB bits */
	u64				bhrb_filter;	/* BHRB HW branch filter */
	int				bhrb_users;
	void				*bhrb_context;
	struct	perf_branch_stack	bhrb_stack;
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
55
};
56

57
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
58 59 60

struct power_pmu *ppmu;

61
/*
I
Ingo Molnar 已提交
62
 * Normally, to ignore kernel events we set the FCS (freeze counters
63 64 65 66 67
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
68
static unsigned int freeze_events_kernel = MMCR0_FCS;
69

70 71 72 73 74 75 76 77
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE
78
#define MMCR0_FC56		0
79
#define MMCR0_PMAO		0
80
#define MMCR0_EBE		0
81
#define MMCR0_BHRBA		0
82 83
#define MMCR0_PMCC		0
#define MMCR0_PMCC_U6		0
84 85 86 87 88 89 90 91 92 93 94 95 96

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
97 98 99 100
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}
101 102 103 104 105
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

106 107 108 109 110
static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

111 112 113 114 115 116 117 118 119
static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
{
	return mmcr0;
}

120 121 122 123
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
void power_pmu_flush_branch_stack(void) {}
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
124
static void pmao_restore_workaround(bool ebb) { }
125 126
#endif /* CONFIG_PPC32 */

127 128
static bool regs_use_siar(struct pt_regs *regs)
{
129
	return !!regs->result;
130 131
}

132 133 134 135 136 137 138 139 140
/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

141
	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
142 143 144 145
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
146

147 148 149 150 151 152 153 154
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
155 156
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
157 158 159 160
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
161
	bool sdar_valid;
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176
	if (ppmu->flags & PPMU_HAS_SIER)
		sdar_valid = regs->dar & SIER_SDAR_VALID;
	else {
		unsigned long sdsync;

		if (ppmu->flags & PPMU_SIAR_VALID)
			sdsync = POWER7P_MMCRA_SDAR_VALID;
		else if (ppmu->flags & PPMU_ALT_SIPR)
			sdsync = POWER6_MMCRA_SDSYNC;
		else
			sdsync = MMCRA_SDSYNC;

		sdar_valid = mmcra & sdsync;
	}
177

178
	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
179 180 181
		*addrp = mfspr(SPRN_SDAR);
}

182
static bool regs_sihv(struct pt_regs *regs)
183 184 185
{
	unsigned long sihv = MMCRA_SIHV;

186 187 188
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIHV);

189 190 191
	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

192
	return !!(regs->dsisr & sihv);
193 194
}

195
static bool regs_sipr(struct pt_regs *regs)
196 197 198
{
	unsigned long sipr = MMCRA_SIPR;

199 200 201
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIPR);

202 203 204
	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

205
	return !!(regs->dsisr & sipr);
206 207
}

208 209 210 211 212 213 214 215 216
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

217 218
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
219
	bool use_siar = regs_use_siar(regs);
220

221
	if (!use_siar)
222 223 224 225 226 227 228 229
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
230
	if (ppmu->flags & PPMU_NO_SIPR) {
231 232 233 234 235
		unsigned long siar = mfspr(SPRN_SIAR);
		if (siar >= PAGE_OFFSET)
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
236

237
	/* PR has priority over HV, so order below is important */
238
	if (regs_sipr(regs))
239
		return PERF_RECORD_MISC_USER;
240 241

	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
242
		return PERF_RECORD_MISC_HYPERVISOR;
243

244
	return PERF_RECORD_MISC_KERNEL;
245 246 247 248 249
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
250
 * Overload regs->dar to store SIER if we have it.
251 252
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
253 254 255
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
256 257 258 259
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

260
	regs->dsisr = mmcra;
261

262 263
	if (ppmu->flags & PPMU_HAS_SIER)
		regs->dar = mfspr(SPRN_SIER);
264

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
282 283
	if (TRAP(regs) != 0xf00)
		use_siar = 0;
284 285 286 287
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
288
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
289 290 291 292
		use_siar = 0;
	else
		use_siar = 1;

293
	regs->result = use_siar;
294 295 296 297 298 299 300 301 302 303 304
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return !regs->softe;
}

305 306 307 308 309 310 311 312 313 314 315 316
/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

317 318 319 320 321 322 323
	if (marked) {
		if (ppmu->flags & PPMU_HAS_SIER)
			return regs->dar & SIER_SIAR_VALID;

		if (ppmu->flags & PPMU_SIAR_VALID)
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
	}
324 325 326 327

	return 1;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
	asm volatile(PPC_CLRBHRB);
}

static void power_pmu_bhrb_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	/* Clear BHRB if we changed task context to avoid data leaks */
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
		power_pmu_bhrb_reset();
		cpuhw->bhrb_context = event->ctx;
	}
	cpuhw->bhrb_users++;
}

static void power_pmu_bhrb_disable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	cpuhw->bhrb_users--;
	WARN_ON_ONCE(cpuhw->bhrb_users < 0);

	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
		/* BHRB cannot be turned off when other
		 * events are active on the PMU.
		 */

		/* avoid stale pointer */
		cpuhw->bhrb_context = NULL;
	}
}

/* Called from ctxsw to prevent one process's branch entries to
 * mingle with the other process's entries during context switch.
 */
void power_pmu_flush_branch_stack(void)
{
	if (ppmu->bhrb_nr)
		power_pmu_bhrb_reset();
}
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
	unsigned int instr;
	int ret;
	__u64 target;

	if (is_kernel_addr(addr))
		return branch_target((unsigned int *)addr);

	/* Userspace: need copy instruction here then translate it */
	pagefault_disable();
	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
	if (ret) {
		pagefault_enable();
		return 0;
	}
	pagefault_enable();

	target = branch_target(&instr);
	if ((!target) || (instr & BRANCH_ABSOLUTE))
		return target;

	/* Translate relative branch target from kernel to user address */
	return target - (unsigned long)&instr + addr;
}
404 405

/* Processing BHRB entries */
406
void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
407 408 409
{
	u64 val;
	u64 addr;
410
	int r_index, u_index, pred;
411 412 413 414 415

	r_index = 0;
	u_index = 0;
	while (r_index < ppmu->bhrb_nr) {
		/* Assembly read function */
416 417 418
		val = read_bhrb(r_index++);
		if (!val)
			/* Terminal marker: End of valid BHRB entries */
419
			break;
420
		else {
421 422 423
			addr = val & BHRB_EA;
			pred = val & BHRB_PREDICTION;

424 425
			if (!addr)
				/* invalid entry */
426 427
				continue;

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
			/* Branches are read most recent first (ie. mfbhrb 0 is
			 * the most recent branch).
			 * There are two types of valid entries:
			 * 1) a target entry which is the to address of a
			 *    computed goto like a blr,bctr,btar.  The next
			 *    entry read from the bhrb will be branch
			 *    corresponding to this target (ie. the actual
			 *    blr/bctr/btar instruction).
			 * 2) a from address which is an actual branch.  If a
			 *    target entry proceeds this, then this is the
			 *    matching branch for that target.  If this is not
			 *    following a target entry, then this is a branch
			 *    where the target is given as an immediate field
			 *    in the instruction (ie. an i or b form branch).
			 *    In this case we need to read the instruction from
			 *    memory to determine the target/to address.
			 */
445 446

			if (val & BHRB_TARGET) {
447 448 449 450 451 452
				/* Target branches use two entries
				 * (ie. computed gotos/XL form)
				 */
				cpuhw->bhrb_entries[u_index].to = addr;
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
453

454 455 456 457 458 459 460 461 462 463
				/* Get from address in next entry */
				val = read_bhrb(r_index++);
				addr = val & BHRB_EA;
				if (val & BHRB_TARGET) {
					/* Shouldn't have two targets in a
					   row.. Reset index and try again */
					r_index--;
					addr = 0;
				}
				cpuhw->bhrb_entries[u_index].from = addr;
464
			} else {
465 466
				/* Branches to immediate field 
				   (ie I or B form) */
467
				cpuhw->bhrb_entries[u_index].from = addr;
468 469
				cpuhw->bhrb_entries[u_index].to =
					power_pmu_bhrb_to(addr);
470 471 472
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
			}
473 474
			u_index++;

475 476 477 478 479 480
		}
	}
	cpuhw->bhrb_stack.nr = u_index;
	return;
}

481 482 483 484 485 486 487 488
static bool is_ebb_event(struct perf_event *event)
{
	/*
	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
	 * check that the PMU supports EBB, meaning those that don't can still
	 * use bit 63 of the event code for something else if they wish.
	 */
	return (ppmu->flags & PPMU_EBB) &&
489
	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
}

static int ebb_event_check(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	/* Event and group leader must agree on EBB */
	if (is_ebb_event(leader) != is_ebb_event(event))
		return -EINVAL;

	if (is_ebb_event(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			return -EINVAL;

		if (!leader->attr.pinned || !leader->attr.exclusive)
			return -EINVAL;

507 508 509 510 511
		if (event->attr.freq ||
		    event->attr.inherit ||
		    event->attr.sample_type ||
		    event->attr.sample_period ||
		    event->attr.enable_on_exec)
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
			return -EINVAL;
	}

	return 0;
}

static void ebb_event_add(struct perf_event *event)
{
	if (!is_ebb_event(event) || current->thread.used_ebb)
		return;

	/*
	 * IFF this is the first time we've added an EBB event, set
	 * PMXE in the user MMCR0 so we can detect when it's cleared by
	 * userspace. We need this so that we can context switch while
	 * userspace is in the EBB handler (where PMXE is 0).
	 */
	current->thread.used_ebb = 1;
	current->thread.mmcr0 |= MMCR0_PMXE;
}

static void ebb_switch_out(unsigned long mmcr0)
{
	if (!(mmcr0 & MMCR0_EBE))
		return;

	current->thread.siar  = mfspr(SPRN_SIAR);
	current->thread.sier  = mfspr(SPRN_SIER);
	current->thread.sdar  = mfspr(SPRN_SDAR);
	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
}

static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
{
	if (!ebb)
		goto out;

550 551
	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
552

553 554 555 556 557
	/*
	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
	 * with pmao_restore_workaround() because we may add PMAO but we never
	 * clear it here.
	 */
558 559
	mmcr0 |= current->thread.mmcr0;

560 561 562 563 564
	/*
	 * Be careful not to set PMXE if userspace had it cleared. This is also
	 * compatible with pmao_restore_workaround() because it has already
	 * cleared PMXE and we leave PMAO alone.
	 */
565 566 567 568 569 570 571 572 573 574
	if (!(current->thread.mmcr0 & MMCR0_PMXE))
		mmcr0 &= ~MMCR0_PMXE;

	mtspr(SPRN_SIAR, current->thread.siar);
	mtspr(SPRN_SIER, current->thread.sier);
	mtspr(SPRN_SDAR, current->thread.sdar);
	mtspr(SPRN_MMCR2, current->thread.mmcr2);
out:
	return mmcr0;
}
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

static void pmao_restore_workaround(bool ebb)
{
	unsigned pmcs[6];

	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
		return;

	/*
	 * On POWER8E there is a hardware defect which affects the PMU context
	 * switch logic, ie. power_pmu_disable/enable().
	 *
	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
	 * by the hardware. Sometime later the actual PMU exception is
	 * delivered.
	 *
	 * If we context switch, or simply disable/enable, the PMU prior to the
	 * exception arriving, the exception will be lost when we clear PMAO.
	 *
	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
	 * set, and this _should_ generate an exception. However because of the
	 * defect no exception is generated when we write PMAO, and we get
	 * stuck with no counters counting but no exception delivered.
	 *
	 * The workaround is to detect this case and tweak the hardware to
	 * create another pending PMU exception.
	 *
	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
	 * enabling the PMU. That causes a new exception to be generated in the
	 * chip, but we don't take it yet because we have interrupts hard
	 * disabled. We then write back the PMU state as we want it to be seen
	 * by the exception handler. When we reenable interrupts the exception
	 * handler will be called and see the correct state.
	 *
	 * The logic is the same for EBB, except that the exception is gated by
	 * us having interrupts hard disabled as well as the fact that we are
	 * not in userspace. The exception is finally delivered when we return
	 * to userspace.
	 */

	/* Only if PMAO is set and PMAO_SYNC is clear */
	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
		return;

	/* If we're doing EBB, only if BESCR[GE] is set */
	if (ebb && !(current->thread.bescr & BESCR_GE))
		return;

	/*
	 * We are already soft-disabled in power_pmu_enable(). We need to hard
	 * enable to actually prevent the PMU exception from firing.
	 */
	hard_irq_disable();

	/*
	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
	 * Using read/write_pmc() in a for loop adds 12 function calls and
	 * almost doubles our code size.
	 */
	pmcs[0] = mfspr(SPRN_PMC1);
	pmcs[1] = mfspr(SPRN_PMC2);
	pmcs[2] = mfspr(SPRN_PMC3);
	pmcs[3] = mfspr(SPRN_PMC4);
	pmcs[4] = mfspr(SPRN_PMC5);
	pmcs[5] = mfspr(SPRN_PMC6);

	/* Ensure all freeze bits are unset */
	mtspr(SPRN_MMCR2, 0);

	/* Set up PMC6 to overflow in one cycle */
	mtspr(SPRN_PMC6, 0x7FFFFFFE);

	/* Enable exceptions and unfreeze PMC6 */
	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);

	/* Now we need to refreeze and restore the PMCs */
	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);

	mtspr(SPRN_PMC1, pmcs[0]);
	mtspr(SPRN_PMC2, pmcs[1]);
	mtspr(SPRN_PMC3, pmcs[2]);
	mtspr(SPRN_PMC4, pmcs[3]);
	mtspr(SPRN_PMC5, pmcs[4]);
	mtspr(SPRN_PMC6, pmcs[5]);
}
660 661
#endif /* CONFIG_PPC64 */

662
static void perf_event_interrupt(struct pt_regs *regs);
663

664
/*
I
Ingo Molnar 已提交
665
 * Read one performance monitor counter (PMC).
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
690
#ifdef CONFIG_PPC64
691 692 693 694 695 696
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
697
#endif /* CONFIG_PPC64 */
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
729
#ifdef CONFIG_PPC64
730 731 732 733 734 735
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
736
#endif /* CONFIG_PPC64 */
737 738 739 740 741
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/* Called from sysrq_handle_showregs() */
void perf_event_print_debug(void)
{
	unsigned long sdar, sier, flags;
	u32 pmcs[MAX_HWEVENTS];
	int i;

	if (!ppmu->n_counter)
		return;

	local_irq_save(flags);

	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
		 smp_processor_id(), ppmu->name, ppmu->n_counter);

	for (i = 0; i < ppmu->n_counter; i++)
		pmcs[i] = read_pmc(i + 1);

	for (; i < MAX_HWEVENTS; i++)
		pmcs[i] = 0xdeadbeef;

	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);

	if (ppmu->n_counter > 4)
		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);

	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));

	sdar = sier = 0;
#ifdef CONFIG_PPC64
	sdar = mfspr(SPRN_SDAR);

	if (ppmu->flags & PPMU_HAS_SIER)
		sier = mfspr(SPRN_SIER);

	if (ppmu->flags & PPMU_EBB) {
		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
		pr_info("EBBRR: %016lx BESCR: %016lx\n",
			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
	}
#endif
	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
		mfspr(SPRN_SIAR), sdar, sier);

	local_irq_restore(flags);
}

793 794 795 796
/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
797
 * The feasible set is returned in event_id[].
798
 */
799 800
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
801
				   int n_ev)
802
{
803
	unsigned long mask, value, nv;
804 805
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
806
	int i, j;
807 808
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
809

810
	if (n_ev > ppmu->n_counter)
811 812 813 814
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
815
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
816 817
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
818
					       cpuhw->alternatives[i]);
819
			event_id[i] = cpuhw->alternatives[i][0];
820
		}
821
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
822
					 &cpuhw->avalues[i][0]))
823 824 825 826
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
827 828
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
829
		if ((((nv + tadd) ^ value) & mask) != 0 ||
830 831
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
832 833
			break;
		value = nv;
834
		mask |= cpuhw->amasks[i][0];
835 836 837 838 839 840 841 842
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
843
		choice[i] = 0;
844
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
845
						  cpuhw->alternatives[i]);
846
		for (j = 1; j < n_alt[i]; ++j)
847 848 849
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
850 851 852 853 854 855 856 857 858 859 860 861 862 863
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
864
		 * See if any alternative k for event_id i,
865 866 867
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
868 869
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
870
			if ((((nv + tadd) ^ value) & mask) == 0 &&
871 872
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
873 874 875 876 877
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
878
			 * to event_id i-1 and continue enumerating its
879 880 881 882 883 884
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
885 886 887
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
888 889 890 891 892 893
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
894
			mask |= cpuhw->amasks[i][j];
895 896 897 898 899 900 901
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
902
		event_id[i] = cpuhw->alternatives[i][choice[i]];
903 904 905
	return 0;
}

906
/*
907
 * Check if newly-added events have consistent settings for
908
 * exclude_{user,kernel,hv} with each other and any previously
909
 * added events.
910
 */
911
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
912
			  int n_prev, int n_new)
913
{
914 915
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
916
	struct perf_event *event;
917 918 919 920 921

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

922 923 924 925 926 927
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
928
		event = ctrs[i];
929
		if (first) {
930 931 932
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
933
			first = 0;
934 935 936
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
937
			return -EAGAIN;
938
		}
939
	}
940 941 942 943 944 945

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

946 947 948
	return 0;
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
	 * number of events to rollback at once.  If we dectect a rollback
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

968
static void power_pmu_read(struct perf_event *event)
969
{
970
	s64 val, delta, prev;
971

P
Peter Zijlstra 已提交
972 973 974
	if (event->hw.state & PERF_HES_STOPPED)
		return;

975
	if (!event->hw.idx)
976
		return;
977 978 979 980 981 982 983

	if (is_ebb_event(event)) {
		val = read_pmc(event->hw.idx);
		local64_set(&event->hw.prev_count, val);
		return;
	}

984 985 986 987 988 989
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
990
		prev = local64_read(&event->hw.prev_count);
991
		barrier();
992
		val = read_pmc(event->hw.idx);
993 994 995
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
996
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
997

998 999
	local64_add(delta, &event->count);
	local64_sub(delta, &event->hw.period_left);
1000 1001
}

1002 1003 1004
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
1005
 * us if `event' is using such a PMC.
1006 1007 1008
 */
static int is_limited_pmc(int pmcnum)
{
1009 1010
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
1011 1012
}

1013
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1014 1015
				    unsigned long pmc5, unsigned long pmc6)
{
1016
	struct perf_event *event;
1017 1018 1019 1020
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1021
		event = cpuhw->limited_counter[i];
1022
		if (!event->hw.idx)
1023
			continue;
1024
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1025
		prev = local64_read(&event->hw.prev_count);
1026
		event->hw.idx = 0;
1027 1028 1029
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
1030 1031 1032
	}
}

1033
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1034 1035
				  unsigned long pmc5, unsigned long pmc6)
{
1036
	struct perf_event *event;
1037
	u64 val, prev;
1038 1039 1040
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1041
		event = cpuhw->limited_counter[i];
1042 1043
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1044 1045 1046
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
1047
		perf_event_update_userpage(event);
1048 1049 1050 1051
	}
}

/*
1052
 * Since limited events don't respect the freeze conditions, we
1053
 * have to read them immediately after freezing or unfreezing the
1054 1055
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
1056
 * cycles and instructions) between freezing/unfreezing and reading
1057 1058
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
1059 1060 1061
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
1062
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1073 1074
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
1075
	 * events, we first write MMCR0 with the event overflow
1076
	 * interrupt enable bits turned off.
1077 1078 1079
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
1080 1081
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
1082 1083 1084
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
1085
		freeze_limited_counters(cpuhw, pmc5, pmc6);
1086
	else
1087
		thaw_limited_counters(cpuhw, pmc5, pmc6);
1088 1089

	/*
1090
	 * Write the full MMCR0 including the event overflow interrupt
1091 1092 1093 1094
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
1095 1096
}

1097
/*
1098 1099
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
1100
 */
P
Peter Zijlstra 已提交
1101
static void power_pmu_disable(struct pmu *pmu)
1102
{
1103
	struct cpu_hw_events *cpuhw;
1104
	unsigned long flags, mmcr0, val;
1105

1106 1107
	if (!ppmu)
		return;
1108
	local_irq_save(flags);
1109
	cpuhw = &__get_cpu_var(cpu_hw_events);
1110

1111
	if (!cpuhw->disabled) {
1112 1113 1114 1115
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
1116
			ppc_enable_pmcs();
1117 1118 1119
			cpuhw->pmcs_enabled = 1;
		}

1120
		/*
1121
		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1122
		 */
1123
		val  = mmcr0 = mfspr(SPRN_MMCR0);
1124
		val |= MMCR0_FC;
1125 1126
		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
			 MMCR0_FC56);
1127 1128 1129 1130 1131 1132 1133 1134 1135

		/*
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the events etc.
		 * before we return.
		 */
		write_mmcr0(cpuhw, val);
		mb();

1136 1137 1138 1139 1140 1141 1142 1143 1144
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

1145 1146
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;
1147 1148

		ebb_switch_out(mmcr0);
1149
	}
1150

1151 1152 1153 1154
	local_irq_restore(flags);
}

/*
1155 1156
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
1157 1158
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
1159
static void power_pmu_enable(struct pmu *pmu)
1160
{
1161 1162
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
1163 1164
	unsigned long flags;
	long i;
1165
	unsigned long val, mmcr0;
1166
	s64 left;
1167
	unsigned int hwc_index[MAX_HWEVENTS];
1168 1169
	int n_lim;
	int idx;
1170
	bool ebb;
1171

1172 1173
	if (!ppmu)
		return;
1174
	local_irq_save(flags);
1175

1176
	cpuhw = &__get_cpu_var(cpu_hw_events);
1177 1178 1179
	if (!cpuhw->disabled)
		goto out;

1180 1181 1182 1183 1184
	if (cpuhw->n_events == 0) {
		ppc_set_pmu_inuse(0);
		goto out;
	}

1185 1186
	cpuhw->disabled = 0;

1187 1188 1189 1190 1191 1192 1193
	/*
	 * EBB requires an exclusive group and all events must have the EBB
	 * flag set, or not set, so we can just check a single event. Also we
	 * know we have at least one event.
	 */
	ebb = is_ebb_event(cpuhw->event[0]);

1194
	/*
1195
	 * If we didn't change anything, or only removed events,
1196 1197
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
1198
	 * (possibly updated for removal of events).
1199 1200
	 */
	if (!cpuhw->n_added) {
1201
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1202
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1203
		goto out_enable;
1204 1205 1206
	}

	/*
1207
	 * Compute MMCR* values for the new set of events
1208
	 */
1209
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1210 1211 1212 1213 1214 1215
			       cpuhw->mmcr)) {
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

1216 1217
	/*
	 * Add in MMCR0 freeze bits corresponding to the
1218 1219 1220
	 * attr.exclude_* bits for the first event.
	 * We have already checked that all events have the
	 * same values for these bits as the first event.
1221
	 */
1222 1223
	event = cpuhw->event[0];
	if (event->attr.exclude_user)
1224
		cpuhw->mmcr[0] |= MMCR0_FCP;
1225 1226 1227
	if (event->attr.exclude_kernel)
		cpuhw->mmcr[0] |= freeze_events_kernel;
	if (event->attr.exclude_hv)
1228 1229
		cpuhw->mmcr[0] |= MMCR0_FCHV;

1230 1231
	/*
	 * Write the new configuration to MMCR* with the freeze
1232 1233
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
1234
	 */
1235
	ppc_set_pmu_inuse(1);
1236
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1237 1238 1239 1240 1241
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);

	/*
1242
	 * Read off any pre-existing events that need to move
1243 1244
	 * to another PMC.
	 */
1245 1246 1247 1248 1249 1250
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
1251 1252 1253 1254
		}
	}

	/*
1255
	 * Initialize the PMCs for all the new and moved events.
1256
	 */
1257
	cpuhw->n_limited = n_lim = 0;
1258 1259 1260
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
1261
			continue;
1262 1263
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
1264
			cpuhw->limited_counter[n_lim] = event;
1265 1266 1267 1268
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

		if (ebb)
			val = local64_read(&event->hw.prev_count);
		else {
			val = 0;
			if (event->hw.sample_period) {
				left = local64_read(&event->hw.period_left);
				if (left < 0x80000000L)
					val = 0x80000000L - left;
			}
			local64_set(&event->hw.prev_count, val);
1280
		}
1281

1282
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
1283 1284
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
1285
		write_pmc(idx, val);
1286

1287
		perf_event_update_userpage(event);
1288
	}
1289
	cpuhw->n_limited = n_lim;
1290
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1291 1292

 out_enable:
1293 1294
	pmao_restore_workaround(ebb);

1295 1296
	mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);

1297
	mb();
1298 1299 1300
	if (cpuhw->bhrb_users)
		ppmu->config_bhrb(cpuhw->bhrb_filter);

1301
	write_mmcr0(cpuhw, mmcr0);
1302

1303 1304 1305 1306 1307 1308 1309 1310
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

1311
 out:
1312

1313 1314 1315
	local_irq_restore(flags);
}

1316 1317
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
1318
			  unsigned int *flags)
1319 1320
{
	int n = 0;
1321
	struct perf_event *event;
1322

1323
	if (!is_software_event(group)) {
1324 1325 1326
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
1327
		flags[n] = group->hw.event_base;
1328 1329
		events[n++] = group->hw.config;
	}
1330
	list_for_each_entry(event, &group->sibling_list, group_entry) {
1331 1332
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
1333 1334
			if (n >= max_count)
				return -1;
1335 1336 1337
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
1338 1339 1340 1341 1342 1343
		}
	}
	return n;
}

/*
1344 1345
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
1346
 * re-enable the PMU in order to get hw_perf_enable to do the
1347 1348
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
1349
static int power_pmu_add(struct perf_event *event, int ef_flags)
1350
{
1351
	struct cpu_hw_events *cpuhw;
1352 1353 1354 1355 1356
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1357
	perf_pmu_disable(event->pmu);
1358 1359

	/*
1360
	 * Add the event to the list (if there is room)
1361 1362
	 * and check whether the total set is still feasible.
	 */
1363 1364
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n0 = cpuhw->n_events;
1365
	if (n0 >= ppmu->n_counter)
1366
		goto out;
1367 1368 1369
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
1370

1371 1372 1373 1374 1375 1376
	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
P
Peter Zijlstra 已提交
1377 1378
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1379 1380
	else
		event->hw.state = 0;
P
Peter Zijlstra 已提交
1381

1382 1383
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1384
	 * skip the schedulability test here, it will be performed
1385 1386
	 * at commit time(->commit_txn) as a whole
	 */
1387
	if (cpuhw->group_flag & PERF_EVENT_TXN)
1388 1389
		goto nocheck;

1390
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1391
		goto out;
1392
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1393
		goto out;
1394
	event->hw.config = cpuhw->events[n0];
1395 1396

nocheck:
1397 1398
	ebb_event_add(event);

1399
	++cpuhw->n_events;
1400 1401 1402 1403
	++cpuhw->n_added;

	ret = 0;
 out:
1404
	if (has_branch_stack(event)) {
1405
		power_pmu_bhrb_enable(event);
1406 1407 1408
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);
	}
1409

P
Peter Zijlstra 已提交
1410
	perf_pmu_enable(event->pmu);
1411 1412 1413 1414 1415
	local_irq_restore(flags);
	return ret;
}

/*
1416
 * Remove a event from the PMU.
1417
 */
P
Peter Zijlstra 已提交
1418
static void power_pmu_del(struct perf_event *event, int ef_flags)
1419
{
1420
	struct cpu_hw_events *cpuhw;
1421 1422 1423 1424
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1425
	perf_pmu_disable(event->pmu);
1426

1427 1428 1429 1430 1431
	power_pmu_read(event);

	cpuhw = &__get_cpu_var(cpu_hw_events);
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
1432
			while (++i < cpuhw->n_events) {
1433
				cpuhw->event[i-1] = cpuhw->event[i];
1434 1435 1436
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
1437 1438 1439 1440 1441
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
1442
			}
1443
			perf_event_update_userpage(event);
1444 1445 1446
			break;
		}
	}
1447
	for (i = 0; i < cpuhw->n_limited; ++i)
1448
		if (event == cpuhw->limited_counter[i])
1449 1450 1451
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
1452
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1453 1454 1455 1456
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
1457 1458
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
1459 1460 1461
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

1462 1463 1464
	if (has_branch_stack(event))
		power_pmu_bhrb_disable(event);

P
Peter Zijlstra 已提交
1465
	perf_pmu_enable(event->pmu);
1466 1467 1468
	local_irq_restore(flags);
}

1469
/*
P
Peter Zijlstra 已提交
1470 1471
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
1472
 */
P
Peter Zijlstra 已提交
1473 1474

static void power_pmu_start(struct perf_event *event, int ef_flags)
1475 1476
{
	unsigned long flags;
P
Peter Zijlstra 已提交
1477
	s64 left;
1478
	unsigned long val;
1479

1480
	if (!event->hw.idx || !event->hw.sample_period)
1481
		return;
P
Peter Zijlstra 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
1494 1495 1496 1497 1498 1499

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

1516
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1517
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
1518

1519
	power_pmu_read(event);
P
Peter Zijlstra 已提交
1520 1521 1522
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

1523
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1524
	perf_pmu_enable(event->pmu);
1525 1526 1527
	local_irq_restore(flags);
}

1528 1529 1530 1531 1532
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1533
void power_pmu_start_txn(struct pmu *pmu)
1534 1535 1536
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1537
	perf_pmu_disable(pmu);
1538
	cpuhw->group_flag |= PERF_EVENT_TXN;
1539 1540 1541 1542 1543 1544 1545 1546
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1547
void power_pmu_cancel_txn(struct pmu *pmu)
1548 1549 1550
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1551
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1552
	perf_pmu_enable(pmu);
1553 1554 1555 1556 1557 1558 1559
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1560
int power_pmu_commit_txn(struct pmu *pmu)
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

1578
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1579
	perf_pmu_enable(pmu);
1580 1581 1582
	return 0;
}

1583
/*
1584
 * Return 1 if we might be able to put event on a limited PMC,
1585
 * or 0 if not.
1586
 * A event can only go on a limited PMC if it counts something
1587 1588 1589
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1590
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1591 1592 1593
				 unsigned int flags)
{
	int n;
1594
	u64 alt[MAX_EVENT_ALTERNATIVES];
1595

1596 1597 1598 1599
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1600 1601 1602 1603 1604 1605
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1606
	 * The requested event_id isn't on a limited PMC already;
1607 1608 1609 1610 1611 1612 1613 1614
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1615
	return n > 0;
1616 1617 1618
}

/*
1619 1620 1621
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1622
 */
1623
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1624
{
1625
	u64 alt[MAX_EVENT_ALTERNATIVES];
1626 1627 1628 1629 1630 1631 1632 1633 1634
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1635 1636
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1637 1638 1639 1640
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1641
 * Release the PMU if this is the last perf_event.
1642
 */
1643
static void hw_perf_event_destroy(struct perf_event *event)
1644
{
1645
	if (!atomic_add_unless(&num_events, -1, 1)) {
1646
		mutex_lock(&pmc_reserve_mutex);
1647
		if (atomic_dec_return(&num_events) == 0)
1648 1649 1650 1651 1652
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1653
/*
1654
 * Translate a generic cache event_id config to a raw event_id code.
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1683
static int power_pmu_event_init(struct perf_event *event)
1684
{
1685 1686
	u64 ev;
	unsigned long flags;
1687 1688 1689
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1690
	int n;
1691
	int err;
1692
	struct cpu_hw_events *cpuhw;
1693 1694

	if (!ppmu)
1695 1696
		return -ENOENT;

1697 1698 1699 1700 1701
	if (has_branch_stack(event)) {
	        /* PMU has BHRB enabled */
		if (!(ppmu->flags & PPMU_BHRB))
			return -EOPNOTSUPP;
	}
1702

1703
	switch (event->attr.type) {
1704
	case PERF_TYPE_HARDWARE:
1705
		ev = event->attr.config;
1706
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1707
			return -EOPNOTSUPP;
1708
		ev = ppmu->generic_events[ev];
1709 1710
		break;
	case PERF_TYPE_HW_CACHE:
1711
		err = hw_perf_cache_event(event->attr.config, &ev);
1712
		if (err)
1713
			return err;
1714 1715
		break;
	case PERF_TYPE_RAW:
1716
		ev = event->attr.config;
1717
		break;
1718
	default:
1719
		return -ENOENT;
1720
	}
1721

1722 1723
	event->hw.config_base = ev;
	event->hw.idx = 0;
1724

1725 1726 1727
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1728
	 * the user set it to.
1729 1730
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1731
		event->attr.exclude_hv = 0;
1732 1733

	/*
1734
	 * If this is a per-task event, then we can use
1735 1736 1737 1738 1739
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1740
	if (event->attach_state & PERF_ATTACH_TASK)
1741 1742 1743
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1744 1745
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1746
	 */
1747
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1748
		if (can_go_on_limited_pmc(event, ev, flags)) {
1749 1750 1751
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1752
			 * The requested event_id is on a limited PMC,
1753 1754 1755 1756 1757
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1758
				return -EINVAL;
1759 1760 1761
		}
	}

1762 1763 1764 1765 1766
	/* Extra checks for EBB */
	err = ebb_event_check(event);
	if (err)
		return err;

1767 1768
	/*
	 * If this is in a group, check if it can go on with all the
1769
	 * other hardware events in the group.  We assume the event
1770 1771 1772
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1773
	if (event->group_leader != event) {
1774
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1775
				   ctrs, events, cflags);
1776
		if (n < 0)
1777
			return -EINVAL;
1778
	}
1779
	events[n] = ev;
1780
	ctrs[n] = event;
1781 1782
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1783
		return -EINVAL;
1784

1785
	cpuhw = &get_cpu_var(cpu_hw_events);
1786
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1787 1788 1789 1790 1791 1792 1793 1794 1795

	if (has_branch_stack(event)) {
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);

		if(cpuhw->bhrb_filter == -1)
			return -EOPNOTSUPP;
	}

1796
	put_cpu_var(cpu_hw_events);
1797
	if (err)
1798
		return -EINVAL;
1799

1800 1801 1802
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1803
	local64_set(&event->hw.period_left, event->hw.last_period);
1804

1805 1806 1807 1808 1809 1810 1811
	/*
	 * For EBB events we just context switch the PMC value, we don't do any
	 * of the sample_period logic. We use hw.prev_count for this.
	 */
	if (is_ebb_event(event))
		local64_set(&event->hw.prev_count, 0);

1812 1813
	/*
	 * See if we need to reserve the PMU.
1814
	 * If no events are currently in use, then we have to take a
1815 1816 1817 1818
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1819
	if (!atomic_inc_not_zero(&num_events)) {
1820
		mutex_lock(&pmc_reserve_mutex);
1821 1822
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1823 1824
			err = -EBUSY;
		else
1825
			atomic_inc(&num_events);
1826 1827
		mutex_unlock(&pmc_reserve_mutex);
	}
1828
	event->destroy = hw_perf_event_destroy;
1829

1830
	return err;
1831 1832
}

1833 1834 1835 1836 1837
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

1848
struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1849 1850
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1851
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
1852 1853 1854 1855
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
1856 1857 1858 1859
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
1860
	.event_idx	= power_pmu_event_idx,
1861
	.flush_branch_stack = power_pmu_flush_branch_stack,
1862 1863
};

1864
/*
I
Ingo Molnar 已提交
1865
 * A counter has overflowed; update its count and record
1866 1867 1868
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
1869
static void record_and_restart(struct perf_event *event, unsigned long val,
1870
			       struct pt_regs *regs)
1871
{
1872
	u64 period = event->hw.sample_period;
1873 1874 1875
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
1876 1877 1878 1879 1880
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

1881
	/* we don't have to worry about interrupts here */
1882
	prev = local64_read(&event->hw.prev_count);
1883
	delta = check_and_compute_delta(prev, val);
1884
	local64_add(delta, &event->count);
1885 1886

	/*
1887
	 * See if the total period for this event has expired,
1888 1889 1890
	 * and update for the next period.
	 */
	val = 0;
1891
	left = local64_read(&event->hw.period_left) - delta;
1892 1893
	if (delta == 0)
		left++;
1894
	if (period) {
1895
		if (left <= 0) {
1896
			left += period;
1897
			if (left <= 0)
1898
				left = period;
1899
			record = siar_valid(regs);
1900
			event->hw.last_period = event->hw.sample_period;
1901
		}
1902 1903
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
1904 1905
	}

P
Peter Zijlstra 已提交
1906 1907 1908 1909 1910
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

1911 1912 1913
	/*
	 * Finally record data if requested.
	 */
1914
	if (record) {
1915 1916
		struct perf_sample_data data;

1917
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1918

1919
		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1920 1921
			perf_get_data_addr(regs, &data.addr);

1922 1923 1924 1925 1926 1927 1928
		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
			struct cpu_hw_events *cpuhw;
			cpuhw = &__get_cpu_var(cpu_hw_events);
			power_pmu_bhrb_read(cpuhw);
			data.br_stack = &cpuhw->bhrb_stack;
		}

1929
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1930
			power_pmu_stop(event, 0);
1931 1932 1933 1934 1935
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
1936
 * for an event_id.
1937 1938 1939
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
1940
	u32 flags = perf_get_misc_flags(regs);
1941

1942 1943
	if (flags)
		return flags;
1944 1945
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
1946 1947 1948 1949
}

/*
 * Called from generic code to get the instruction pointer
1950
 * for an event_id.
1951 1952 1953
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
1954
	bool use_siar = regs_use_siar(regs);
1955

1956
	if (use_siar && siar_valid(regs))
1957
		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1958 1959
	else if (use_siar)
		return 0;		// no valid instruction pointer
1960
	else
1961
		return regs->nip;
1962 1963
}

1964
static bool pmc_overflow_power7(unsigned long val)
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
1977 1978 1979 1980 1981 1982 1983 1984 1985
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
1986 1987 1988 1989 1990
		return true;

	return false;
}

1991 1992 1993
/*
 * Performance monitor interrupt stuff
 */
1994
static void perf_event_interrupt(struct pt_regs *regs)
1995
{
1996
	int i, j;
1997 1998
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
	struct perf_event *event;
1999 2000
	unsigned long val[8];
	int found, active;
2001 2002
	int nmi;

2003
	if (cpuhw->n_limited)
2004
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2005 2006
					mfspr(SPRN_PMC6));

2007
	perf_read_regs(regs);
2008

2009
	nmi = perf_intr_is_nmi(regs);
2010 2011 2012 2013
	if (nmi)
		nmi_enter();
	else
		irq_enter();
2014

2015 2016 2017 2018 2019 2020 2021 2022
	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		val[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(val[i]))
2023
			continue;
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, val[i], regs);
				break;
			}
2040
		}
2041 2042 2043
		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
2044
	}
2045 2046 2047 2048 2049
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2050
				continue;
2051 2052 2053 2054 2055 2056 2057
			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   val[event->hw.idx - 1],
						   regs);
			}
2058 2059
		}
	}
2060
	if (!found && !nmi && printk_ratelimit())
2061
		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2062 2063 2064

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
2065
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2066
	 * and thus allow interrupts to occur again.
2067
	 * XXX might want to use MSR.PM to keep the events frozen until
2068 2069
	 * we get back out of this interrupt.
	 */
2070
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2071

2072 2073 2074
	if (nmi)
		nmi_exit();
	else
2075
		irq_exit();
2076 2077
}

2078
static void power_pmu_setup(int cpu)
2079
{
2080
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2081

2082 2083
	if (!ppmu)
		return;
2084 2085 2086 2087
	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

2088
static int
2089
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
{
	unsigned int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
		power_pmu_setup(cpu);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

2105
int register_power_pmu(struct power_pmu *pmu)
2106
{
2107 2108 2109 2110 2111 2112
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
2113

2114 2115
	power_pmu.attr_groups = ppmu->attr_groups;

2116
#ifdef MSR_HV
2117 2118 2119 2120
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
2121
		freeze_events_kernel = MMCR0_FCHV;
2122
#endif /* CONFIG_PPC64 */
2123

P
Peter Zijlstra 已提交
2124
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2125 2126
	perf_cpu_notifier(power_pmu_notifier);

2127 2128
	return 0;
}