slice.c 19.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * address space "slices" (meta-segments) support
 *
 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
 *
 * Based on hugetlb implementation
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#undef DEBUG

#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/spinlock.h>
32
#include <linux/export.h>
33
#include <linux/hugetlb.h>
34 35
#include <asm/mman.h>
#include <asm/mmu.h>
36
#include <asm/copro.h>
37
#include <asm/hugetlb.h>
38

39
/* some sanity checks */
40 41
#if (H_PGTABLE_RANGE >> 43) > SLICE_MASK_SIZE
#error H_PGTABLE_RANGE exceeds slice_mask high_slices size
42 43
#endif

R
Roel Kluin 已提交
44
static DEFINE_SPINLOCK(slice_convert_lock);
45 46 47 48 49 50 51


#ifdef DEBUG
int _slice_debug = 1;

static void slice_print_mask(const char *label, struct slice_mask mask)
{
52
	char	*p, buf[16 + 3 + 64 + 1];
53 54 55 56 57 58 59 60 61 62 63
	int	i;

	if (!_slice_debug)
		return;
	p = buf;
	for (i = 0; i < SLICE_NUM_LOW; i++)
		*(p++) = (mask.low_slices & (1 << i)) ? '1' : '0';
	*(p++) = ' ';
	*(p++) = '-';
	*(p++) = ' ';
	for (i = 0; i < SLICE_NUM_HIGH; i++)
64
		*(p++) = (mask.high_slices & (1ul << i)) ? '1' : '0';
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	*(p++) = 0;

	printk(KERN_DEBUG "%s:%s\n", label, buf);
}

#define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0)

#else

static void slice_print_mask(const char *label, struct slice_mask mask) {}
#define slice_dbg(fmt...)

#endif

static struct slice_mask slice_range_to_mask(unsigned long start,
					     unsigned long len)
{
	unsigned long end = start + len - 1;
	struct slice_mask ret = { 0, 0 };

	if (start < SLICE_LOW_TOP) {
		unsigned long mend = min(end, SLICE_LOW_TOP);
		unsigned long mstart = min(start, SLICE_LOW_TOP);

		ret.low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
			- (1u << GET_LOW_SLICE_INDEX(mstart));
	}

	if ((start + len) > SLICE_LOW_TOP)
94 95
		ret.high_slices = (1ul << (GET_HIGH_SLICE_INDEX(end) + 1))
			- (1ul << GET_HIGH_SLICE_INDEX(start));
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

	return ret;
}

static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
			      unsigned long len)
{
	struct vm_area_struct *vma;

	if ((mm->task_size - len) < addr)
		return 0;
	vma = find_vma(mm, addr);
	return (!vma || (addr + len) <= vma->vm_start);
}

static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
{
	return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
				   1ul << SLICE_LOW_SHIFT);
}

static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
{
	unsigned long start = slice << SLICE_HIGH_SHIFT;
	unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);

	/* Hack, so that each addresses is controlled by exactly one
	 * of the high or low area bitmaps, the first high area starts
	 * at 4GB, not 0 */
	if (start == 0)
		start = SLICE_LOW_TOP;

	return !slice_area_is_free(mm, start, end - start);
}

static struct slice_mask slice_mask_for_free(struct mm_struct *mm)
{
	struct slice_mask ret = { 0, 0 };
	unsigned long i;

	for (i = 0; i < SLICE_NUM_LOW; i++)
		if (!slice_low_has_vma(mm, i))
			ret.low_slices |= 1u << i;

	if (mm->task_size <= SLICE_LOW_TOP)
		return ret;

	for (i = 0; i < SLICE_NUM_HIGH; i++)
		if (!slice_high_has_vma(mm, i))
145
			ret.high_slices |= 1ul << i;
146 147 148 149 150 151

	return ret;
}

static struct slice_mask slice_mask_for_size(struct mm_struct *mm, int psize)
{
152 153
	unsigned char *hpsizes;
	int index, mask_index;
154 155
	struct slice_mask ret = { 0, 0 };
	unsigned long i;
156
	u64 lpsizes;
157

158
	lpsizes = mm->context.low_slices_psize;
159
	for (i = 0; i < SLICE_NUM_LOW; i++)
160
		if (((lpsizes >> (i * 4)) & 0xf) == psize)
161 162
			ret.low_slices |= 1u << i;

163 164 165 166 167 168 169
	hpsizes = mm->context.high_slices_psize;
	for (i = 0; i < SLICE_NUM_HIGH; i++) {
		mask_index = i & 0x1;
		index = i >> 1;
		if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == psize)
			ret.high_slices |= 1ul << i;
	}
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

	return ret;
}

static int slice_check_fit(struct slice_mask mask, struct slice_mask available)
{
	return (mask.low_slices & available.low_slices) == mask.low_slices &&
		(mask.high_slices & available.high_slices) == mask.high_slices;
}

static void slice_flush_segments(void *parm)
{
	struct mm_struct *mm = parm;
	unsigned long flags;

	if (mm != current->active_mm)
		return;

188
	copy_mm_to_paca(&current->active_mm->context);
189 190 191 192 193 194 195 196

	local_irq_save(flags);
	slb_flush_and_rebolt();
	local_irq_restore(flags);
}

static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize)
{
197
	int index, mask_index;
198
	/* Write the new slice psize bits */
199 200
	unsigned char *hpsizes;
	u64 lpsizes;
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	unsigned long i, flags;

	slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
	slice_print_mask(" mask", mask);

	/* We need to use a spinlock here to protect against
	 * concurrent 64k -> 4k demotion ...
	 */
	spin_lock_irqsave(&slice_convert_lock, flags);

	lpsizes = mm->context.low_slices_psize;
	for (i = 0; i < SLICE_NUM_LOW; i++)
		if (mask.low_slices & (1u << i))
			lpsizes = (lpsizes & ~(0xful << (i * 4))) |
				(((unsigned long)psize) << (i * 4));

217
	/* Assign the value back */
218
	mm->context.low_slices_psize = lpsizes;
219 220 221 222 223 224 225 226 227 228

	hpsizes = mm->context.high_slices_psize;
	for (i = 0; i < SLICE_NUM_HIGH; i++) {
		mask_index = i & 0x1;
		index = i >> 1;
		if (mask.high_slices & (1ul << i))
			hpsizes[index] = (hpsizes[index] &
					  ~(0xf << (mask_index * 4))) |
				(((unsigned long)psize) << (mask_index * 4));
	}
229 230 231 232 233 234 235

	slice_dbg(" lsps=%lx, hsps=%lx\n",
		  mm->context.low_slices_psize,
		  mm->context.high_slices_psize);

	spin_unlock_irqrestore(&slice_convert_lock, flags);

236
	copro_flush_all_slbs(mm);
237 238
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
/*
 * Compute which slice addr is part of;
 * set *boundary_addr to the start or end boundary of that slice
 * (depending on 'end' parameter);
 * return boolean indicating if the slice is marked as available in the
 * 'available' slice_mark.
 */
static bool slice_scan_available(unsigned long addr,
				 struct slice_mask available,
				 int end,
				 unsigned long *boundary_addr)
{
	unsigned long slice;
	if (addr < SLICE_LOW_TOP) {
		slice = GET_LOW_SLICE_INDEX(addr);
		*boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
		return !!(available.low_slices & (1u << slice));
	} else {
		slice = GET_HIGH_SLICE_INDEX(addr);
		*boundary_addr = (slice + end) ?
			((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
260
		return !!(available.high_slices & (1ul << slice));
261 262 263
	}
}

264 265 266
static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
					      unsigned long len,
					      struct slice_mask available,
267
					      int psize)
268 269
{
	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
270 271
	unsigned long addr, found, next_end;
	struct vm_unmapped_area_info info;
272

273 274 275 276
	info.flags = 0;
	info.length = len;
	info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
	info.align_offset = 0;
277

278 279 280 281
	addr = TASK_UNMAPPED_BASE;
	while (addr < TASK_SIZE) {
		info.low_limit = addr;
		if (!slice_scan_available(addr, available, 1, &addr))
282
			continue;
283 284 285 286 287 288 289 290 291 292 293 294 295

 next_slice:
		/*
		 * At this point [info.low_limit; addr) covers
		 * available slices only and ends at a slice boundary.
		 * Check if we need to reduce the range, or if we can
		 * extend it to cover the next available slice.
		 */
		if (addr >= TASK_SIZE)
			addr = TASK_SIZE;
		else if (slice_scan_available(addr, available, 1, &next_end)) {
			addr = next_end;
			goto next_slice;
296
		}
297 298 299 300 301
		info.high_limit = addr;

		found = vm_unmapped_area(&info);
		if (!(found & ~PAGE_MASK))
			return found;
302 303 304 305 306 307 308 309
	}

	return -ENOMEM;
}

static unsigned long slice_find_area_topdown(struct mm_struct *mm,
					     unsigned long len,
					     struct slice_mask available,
310
					     int psize)
311 312
{
	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
313 314 315 316 317 318 319
	unsigned long addr, found, prev;
	struct vm_unmapped_area_info info;

	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
	info.length = len;
	info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
	info.align_offset = 0;
320 321

	addr = mm->mmap_base;
322 323 324
	while (addr > PAGE_SIZE) {
		info.high_limit = addr;
		if (!slice_scan_available(addr - 1, available, 0, &addr))
325 326
			continue;

327
 prev_slice:
328
		/*
329 330 331 332
		 * At this point [addr; info.high_limit) covers
		 * available slices only and starts at a slice boundary.
		 * Check if we need to reduce the range, or if we can
		 * extend it to cover the previous available slice.
333
		 */
334 335 336 337 338 339 340
		if (addr < PAGE_SIZE)
			addr = PAGE_SIZE;
		else if (slice_scan_available(addr - 1, available, 0, &prev)) {
			addr = prev;
			goto prev_slice;
		}
		info.low_limit = addr;
341

342 343 344
		found = vm_unmapped_area(&info);
		if (!(found & ~PAGE_MASK))
			return found;
345 346 347 348 349 350 351 352
	}

	/*
	 * A failed mmap() very likely causes application failure,
	 * so fall back to the bottom-up function here. This scenario
	 * can happen with large stack limits and large mmap()
	 * allocations.
	 */
353
	return slice_find_area_bottomup(mm, len, available, psize);
354 355 356 357 358
}


static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
				     struct slice_mask mask, int psize,
359
				     int topdown)
360 361
{
	if (topdown)
362
		return slice_find_area_topdown(mm, len, mask, psize);
363
	else
364
		return slice_find_area_bottomup(mm, len, mask, psize);
365 366
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
#define or_mask(dst, src)	do {			\
	(dst).low_slices |= (src).low_slices;		\
	(dst).high_slices |= (src).high_slices;		\
} while (0)

#define andnot_mask(dst, src)	do {			\
	(dst).low_slices &= ~(src).low_slices;		\
	(dst).high_slices &= ~(src).high_slices;	\
} while (0)

#ifdef CONFIG_PPC_64K_PAGES
#define MMU_PAGE_BASE	MMU_PAGE_64K
#else
#define MMU_PAGE_BASE	MMU_PAGE_4K
#endif

383 384
unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
				      unsigned long flags, unsigned int psize,
385
				      int topdown)
386
{
387
	struct slice_mask mask = {0, 0};
388 389
	struct slice_mask good_mask;
	struct slice_mask potential_mask = {0,0} /* silence stupid warning */;
390
	struct slice_mask compat_mask = {0, 0};
391 392 393
	int fixed = (flags & MAP_FIXED);
	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
	struct mm_struct *mm = current->mm;
394
	unsigned long newaddr;
395 396 397

	/* Sanity checks */
	BUG_ON(mm->task_size == 0);
398
	VM_BUG_ON(radix_enabled());
399 400

	slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
401 402
	slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
		  addr, len, flags, topdown);
403 404 405

	if (len > mm->task_size)
		return -ENOMEM;
406 407
	if (len & ((1ul << pshift) - 1))
		return -EINVAL;
408 409 410
	if (fixed && (addr & ((1ul << pshift) - 1)))
		return -EINVAL;
	if (fixed && addr > (mm->task_size - len))
411
		return -ENOMEM;
412 413 414 415 416

	/* If hint, make sure it matches our alignment restrictions */
	if (!fixed && addr) {
		addr = _ALIGN_UP(addr, 1ul << pshift);
		slice_dbg(" aligned addr=%lx\n", addr);
417 418 419 420
		/* Ignore hint if it's too large or overlaps a VMA */
		if (addr > mm->task_size - len ||
		    !slice_area_is_free(mm, addr, len))
			addr = 0;
421 422
	}

423
	/* First make up a "good" mask of slices that have the right size
424 425 426 427 428
	 * already
	 */
	good_mask = slice_mask_for_size(mm, psize);
	slice_print_mask(" good_mask", good_mask);

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	/*
	 * Here "good" means slices that are already the right page size,
	 * "compat" means slices that have a compatible page size (i.e.
	 * 4k in a 64k pagesize kernel), and "free" means slices without
	 * any VMAs.
	 *
	 * If MAP_FIXED:
	 *	check if fits in good | compat => OK
	 *	check if fits in good | compat | free => convert free
	 *	else bad
	 * If have hint:
	 *	check if hint fits in good => OK
	 *	check if hint fits in good | free => convert free
	 * Otherwise:
	 *	search in good, found => OK
	 *	search in good | free, found => convert free
	 *	search in good | compat | free, found => convert free.
	 */
447

448 449 450 451 452 453 454 455
#ifdef CONFIG_PPC_64K_PAGES
	/* If we support combo pages, we can allow 64k pages in 4k slices */
	if (psize == MMU_PAGE_64K) {
		compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
		if (fixed)
			or_mask(good_mask, compat_mask);
	}
#endif
456

457 458
	/* First check hint if it's valid or if we have MAP_FIXED */
	if (addr != 0 || fixed) {
459 460 461 462 463 464 465 466 467 468 469
		/* Build a mask for the requested range */
		mask = slice_range_to_mask(addr, len);
		slice_print_mask(" mask", mask);

		/* Check if we fit in the good mask. If we do, we just return,
		 * nothing else to do
		 */
		if (slice_check_fit(mask, good_mask)) {
			slice_dbg(" fits good !\n");
			return addr;
		}
470 471 472
	} else {
		/* Now let's see if we can find something in the existing
		 * slices for that size
473
		 */
474
		newaddr = slice_find_area(mm, len, good_mask, psize, topdown);
475 476 477 478 479 480
		if (newaddr != -ENOMEM) {
			/* Found within the good mask, we don't have to setup,
			 * we thus return directly
			 */
			slice_dbg(" found area at 0x%lx\n", newaddr);
			return newaddr;
481 482 483
		}
	}

484 485 486 487 488 489 490 491 492 493 494 495 496
	/* We don't fit in the good mask, check what other slices are
	 * empty and thus can be converted
	 */
	potential_mask = slice_mask_for_free(mm);
	or_mask(potential_mask, good_mask);
	slice_print_mask(" potential", potential_mask);

	if ((addr != 0 || fixed) && slice_check_fit(mask, potential_mask)) {
		slice_dbg(" fits potential !\n");
		goto convert;
	}

	/* If we have MAP_FIXED and failed the above steps, then error out */
497 498 499 500 501
	if (fixed)
		return -EBUSY;

	slice_dbg(" search...\n");

502 503
	/* If we had a hint that didn't work out, see if we can fit
	 * anywhere in the good area.
504
	 */
505
	if (addr) {
506
		addr = slice_find_area(mm, len, good_mask, psize, topdown);
507 508 509 510
		if (addr != -ENOMEM) {
			slice_dbg(" found area at 0x%lx\n", addr);
			return addr;
		}
511 512 513
	}

	/* Now let's see if we can find something in the existing slices
514
	 * for that size plus free slices
515
	 */
516
	addr = slice_find_area(mm, len, potential_mask, psize, topdown);
517 518 519 520 521 522

#ifdef CONFIG_PPC_64K_PAGES
	if (addr == -ENOMEM && psize == MMU_PAGE_64K) {
		/* retry the search with 4k-page slices included */
		or_mask(potential_mask, compat_mask);
		addr = slice_find_area(mm, len, potential_mask, psize,
523
				       topdown);
524 525 526
	}
#endif

527 528 529 530 531 532 533 534
	if (addr == -ENOMEM)
		return -ENOMEM;

	mask = slice_range_to_mask(addr, len);
	slice_dbg(" found potential area at 0x%lx\n", addr);
	slice_print_mask(" mask", mask);

 convert:
535 536 537 538 539
	andnot_mask(mask, good_mask);
	andnot_mask(mask, compat_mask);
	if (mask.low_slices || mask.high_slices) {
		slice_convert(mm, mask, psize);
		if (psize > MMU_PAGE_BASE)
540
			on_each_cpu(slice_flush_segments, mm, 1);
541
	}
542 543 544 545 546 547 548 549 550 551 552 553
	return addr;

}
EXPORT_SYMBOL_GPL(slice_get_unmapped_area);

unsigned long arch_get_unmapped_area(struct file *filp,
				     unsigned long addr,
				     unsigned long len,
				     unsigned long pgoff,
				     unsigned long flags)
{
	return slice_get_unmapped_area(addr, len, flags,
554
				       current->mm->context.user_psize, 0);
555 556 557 558 559 560 561 562 563
}

unsigned long arch_get_unmapped_area_topdown(struct file *filp,
					     const unsigned long addr0,
					     const unsigned long len,
					     const unsigned long pgoff,
					     const unsigned long flags)
{
	return slice_get_unmapped_area(addr0, len, flags,
564
				       current->mm->context.user_psize, 1);
565 566 567 568
}

unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
{
569 570
	unsigned char *hpsizes;
	int index, mask_index;
571

572 573 574 575 576 577 578 579 580 581
	/*
	 * Radix doesn't use slice, but can get enabled along with MMU_SLICE
	 */
	if (radix_enabled()) {
#ifdef CONFIG_PPC_64K_PAGES
		return MMU_PAGE_64K;
#else
		return MMU_PAGE_4K;
#endif
	}
582
	if (addr < SLICE_LOW_TOP) {
583 584
		u64 lpsizes;
		lpsizes = mm->context.low_slices_psize;
585
		index = GET_LOW_SLICE_INDEX(addr);
586
		return (lpsizes >> (index * 4)) & 0xf;
587
	}
588 589 590 591
	hpsizes = mm->context.high_slices_psize;
	index = GET_HIGH_SLICE_INDEX(addr);
	mask_index = index & 0x1;
	return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xf;
592 593 594 595 596 597 598 599 600 601 602
}
EXPORT_SYMBOL_GPL(get_slice_psize);

/*
 * This is called by hash_page when it needs to do a lazy conversion of
 * an address space from real 64K pages to combo 4K pages (typically
 * when hitting a non cacheable mapping on a processor or hypervisor
 * that won't allow them for 64K pages).
 *
 * This is also called in init_new_context() to change back the user
 * psize from whatever the parent context had it set to
603
 * N.B. This may be called before mm->context.id has been set.
604 605 606 607 608 609 610
 *
 * This function will only change the content of the {low,high)_slice_psize
 * masks, it will not flush SLBs as this shall be handled lazily by the
 * caller.
 */
void slice_set_user_psize(struct mm_struct *mm, unsigned int psize)
{
611 612 613
	int index, mask_index;
	unsigned char *hpsizes;
	unsigned long flags, lpsizes;
614 615 616 617 618
	unsigned int old_psize;
	int i;

	slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize);

619
	VM_BUG_ON(radix_enabled());
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
	spin_lock_irqsave(&slice_convert_lock, flags);

	old_psize = mm->context.user_psize;
	slice_dbg(" old_psize=%d\n", old_psize);
	if (old_psize == psize)
		goto bail;

	mm->context.user_psize = psize;
	wmb();

	lpsizes = mm->context.low_slices_psize;
	for (i = 0; i < SLICE_NUM_LOW; i++)
		if (((lpsizes >> (i * 4)) & 0xf) == old_psize)
			lpsizes = (lpsizes & ~(0xful << (i * 4))) |
				(((unsigned long)psize) << (i * 4));
635 636
	/* Assign the value back */
	mm->context.low_slices_psize = lpsizes;
637 638

	hpsizes = mm->context.high_slices_psize;
639 640 641 642 643 644 645 646 647 648
	for (i = 0; i < SLICE_NUM_HIGH; i++) {
		mask_index = i & 0x1;
		index = i >> 1;
		if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == old_psize)
			hpsizes[index] = (hpsizes[index] &
					  ~(0xf << (mask_index * 4))) |
				(((unsigned long)psize) << (mask_index * 4));
	}


649 650 651 652 653 654 655 656 657 658


	slice_dbg(" lsps=%lx, hsps=%lx\n",
		  mm->context.low_slices_psize,
		  mm->context.high_slices_psize);

 bail:
	spin_unlock_irqrestore(&slice_convert_lock, flags);
}

659 660 661 662 663
void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
			   unsigned long len, unsigned int psize)
{
	struct slice_mask mask = slice_range_to_mask(start, len);

664
	VM_BUG_ON(radix_enabled());
665 666 667
	slice_convert(mm, mask, psize);
}

668
#ifdef CONFIG_HUGETLB_PAGE
669
/*
670
 * is_hugepage_only_range() is used by generic code to verify whether
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
 *
 * until the generic code provides a more generic hook and/or starts
 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
 * here knows how to deal with), we hijack it to keep standard mappings
 * away from us.
 *
 * because of that generic code limitation, MAP_FIXED mapping cannot
 * "convert" back a slice with no VMAs to the standard page size, only
 * get_unmapped_area() can. It would be possible to fix it here but I
 * prefer working on fixing the generic code instead.
 *
 * WARNING: This will not work if hugetlbfs isn't enabled since the
 * generic code will redefine that function as 0 in that. This is ok
 * for now as we only use slices with hugetlbfs enabled. This should
 * be fixed as the generic code gets fixed.
 */
int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
			   unsigned long len)
{
	struct slice_mask mask, available;
692
	unsigned int psize = mm->context.user_psize;
693

694 695 696
	if (radix_enabled())
		return 0;

697
	mask = slice_range_to_mask(addr, len);
698 699 700 701 702 703 704 705 706
	available = slice_mask_for_size(mm, psize);
#ifdef CONFIG_PPC_64K_PAGES
	/* We need to account for 4k slices too */
	if (psize == MMU_PAGE_64K) {
		struct slice_mask compat_mask;
		compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
		or_mask(available, compat_mask);
	}
#endif
707 708 709 710 711 712 713 714 715

#if 0 /* too verbose */
	slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n",
		 mm, addr, len);
	slice_print_mask(" mask", mask);
	slice_print_mask(" available", available);
#endif
	return !slice_check_fit(mask, available);
}
716
#endif