mmzone.h 39.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
#ifndef _LINUX_MMZONE_H
#define _LINUX_MMZONE_H

#ifndef __ASSEMBLY__
C
Christoph Lameter 已提交
5
#ifndef __GENERATING_BOUNDS_H
L
Linus Torvalds 已提交
6 7 8 9

#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/wait.h>
10
#include <linux/bitops.h>
L
Linus Torvalds 已提交
11 12 13 14
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/numa.h>
#include <linux/init.h>
15
#include <linux/seqlock.h>
16
#include <linux/nodemask.h>
17
#include <linux/pageblock-flags.h>
18
#include <linux/page-flags-layout.h>
A
Arun Sharma 已提交
19
#include <linux/atomic.h>
R
Ralf Baechle 已提交
20
#include <asm/page.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26 27

/* Free memory management - zoned buddy allocator.  */
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define MAX_ORDER 11
#else
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
#endif
28
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
L
Linus Torvalds 已提交
29

A
Andy Whitcroft 已提交
30 31 32
/*
 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
 * costly to service.  That is between allocation orders which should
33
 * coalesce naturally under reasonable reclaim pressure and those which
A
Andy Whitcroft 已提交
34 35 36 37
 * will not.
 */
#define PAGE_ALLOC_COSTLY_ORDER 3

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
enum {
	MIGRATE_UNMOVABLE,
	MIGRATE_RECLAIMABLE,
	MIGRATE_MOVABLE,
	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
#ifdef CONFIG_CMA
	/*
	 * MIGRATE_CMA migration type is designed to mimic the way
	 * ZONE_MOVABLE works.  Only movable pages can be allocated
	 * from MIGRATE_CMA pageblocks and page allocator never
	 * implicitly change migration type of MIGRATE_CMA pageblock.
	 *
	 * The way to use it is to change migratetype of a range of
	 * pageblocks to MIGRATE_CMA which can be done by
	 * __free_pageblock_cma() function.  What is important though
	 * is that a range of pageblocks must be aligned to
	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
	 * a single pageblock.
	 */
	MIGRATE_CMA,
#endif
60
#ifdef CONFIG_MEMORY_ISOLATION
61
	MIGRATE_ISOLATE,	/* can't allocate from here */
62
#endif
63 64 65 66 67 68 69 70
	MIGRATE_TYPES
};

#ifdef CONFIG_CMA
#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
#else
#  define is_migrate_cma(migratetype) false
#endif
71 72 73 74 75

#define for_each_migratetype_order(order, type) \
	for (order = 0; order < MAX_ORDER; order++) \
		for (type = 0; type < MIGRATE_TYPES; type++)

76 77
extern int page_group_by_mobility_disabled;

78 79 80
#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)

81 82 83 84 85
#define get_pageblock_migratetype(page)					\
	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
			PB_migrate_end, MIGRATETYPE_MASK)

static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
86
{
87
	BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
88 89
	return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
					MIGRATETYPE_MASK);
90 91
}

L
Linus Torvalds 已提交
92
struct free_area {
93
	struct list_head	free_list[MIGRATE_TYPES];
L
Linus Torvalds 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107
	unsigned long		nr_free;
};

struct pglist_data;

/*
 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
 * So add a wild amount of padding here to ensure that they fall into separate
 * cachelines.  There are very few zone structures in the machine, so space
 * consumption is not a concern here.
 */
#if defined(CONFIG_SMP)
struct zone_padding {
	char x[0];
108
} ____cacheline_internodealigned_in_smp;
L
Linus Torvalds 已提交
109 110 111 112 113
#define ZONE_PADDING(name)	struct zone_padding name;
#else
#define ZONE_PADDING(name)
#endif

114
enum zone_stat_item {
115
	/* First 128 byte cacheline (assuming 64 bit words) */
116
	NR_FREE_PAGES,
117
	NR_ALLOC_BATCH,
118
	NR_LRU_BASE,
119 120 121 122
	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
L
Lee Schermerhorn 已提交
123
	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
N
Nick Piggin 已提交
124
	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
125 126
	NR_ANON_PAGES,	/* Mapped anonymous pages */
	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
127
			   only modified from process context */
128
	NR_FILE_PAGES,
129
	NR_FILE_DIRTY,
130
	NR_WRITEBACK,
131 132 133
	NR_SLAB_RECLAIMABLE,
	NR_SLAB_UNRECLAIMABLE,
	NR_PAGETABLE,		/* used for pagetables */
134 135
	NR_KERNEL_STACK,
	/* Second 128 byte cacheline */
136
	NR_UNSTABLE_NFS,	/* NFS unstable pages */
137
	NR_BOUNCE,
138
	NR_VMSCAN_WRITE,
139
	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
140
	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
K
KOSAKI Motohiro 已提交
141 142
	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
143
	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
144 145
	NR_DIRTIED,		/* page dirtyings since bootup */
	NR_WRITTEN,		/* page writings since bootup */
146
	NR_PAGES_SCANNED,	/* pages scanned since last reclaim */
147 148 149 150 151 152 153 154
#ifdef CONFIG_NUMA
	NUMA_HIT,		/* allocated in intended node */
	NUMA_MISS,		/* allocated in non intended node */
	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
	NUMA_LOCAL,		/* allocation from local node */
	NUMA_OTHER,		/* allocation from other node */
#endif
155 156
	WORKINGSET_REFAULT,
	WORKINGSET_ACTIVATE,
157
	WORKINGSET_NODERECLAIM,
158
	NR_ANON_TRANSPARENT_HUGEPAGES,
159
	NR_FREE_CMA_PAGES,
160 161
	NR_VM_ZONE_STAT_ITEMS };

162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * We do arithmetic on the LRU lists in various places in the code,
 * so it is important to keep the active lists LRU_ACTIVE higher in
 * the array than the corresponding inactive lists, and to keep
 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 *
 * This has to be kept in sync with the statistics in zone_stat_item
 * above and the descriptions in vmstat_text in mm/vmstat.c
 */
#define LRU_BASE 0
#define LRU_ACTIVE 1
#define LRU_FILE 2

175
enum lru_list {
176 177 178 179
	LRU_INACTIVE_ANON = LRU_BASE,
	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
L
Lee Schermerhorn 已提交
180 181 182
	LRU_UNEVICTABLE,
	NR_LRU_LISTS
};
183

H
Hugh Dickins 已提交
184
#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
185

H
Hugh Dickins 已提交
186
#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
L
Lee Schermerhorn 已提交
187

H
Hugh Dickins 已提交
188
static inline int is_file_lru(enum lru_list lru)
189
{
H
Hugh Dickins 已提交
190
	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
191 192
}

H
Hugh Dickins 已提交
193
static inline int is_active_lru(enum lru_list lru)
194
{
H
Hugh Dickins 已提交
195
	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
196 197
}

H
Hugh Dickins 已提交
198
static inline int is_unevictable_lru(enum lru_list lru)
L
Lee Schermerhorn 已提交
199
{
H
Hugh Dickins 已提交
200
	return (lru == LRU_UNEVICTABLE);
L
Lee Schermerhorn 已提交
201 202
}

203 204 205
struct zone_reclaim_stat {
	/*
	 * The pageout code in vmscan.c keeps track of how many of the
206
	 * mem/swap backed and file backed pages are referenced.
207 208 209 210 211 212 213 214 215
	 * The higher the rotated/scanned ratio, the more valuable
	 * that cache is.
	 *
	 * The anon LRU stats live in [0], file LRU stats in [1]
	 */
	unsigned long		recent_rotated[2];
	unsigned long		recent_scanned[2];
};

216 217
struct lruvec {
	struct list_head lists[NR_LRU_LISTS];
218
	struct zone_reclaim_stat reclaim_stat;
A
Andrew Morton 已提交
219
#ifdef CONFIG_MEMCG
220 221
	struct zone *zone;
#endif
222 223
};

224 225 226 227 228
/* Mask used at gathering information at once (see memcontrol.c) */
#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

229
/* Isolate clean file */
230
#define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
231
/* Isolate unmapped file */
232
#define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
233
/* Isolate for asynchronous migration */
234
#define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
M
Minchan Kim 已提交
235 236
/* Isolate unevictable pages */
#define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
237 238 239 240

/* LRU Isolation modes. */
typedef unsigned __bitwise__ isolate_mode_t;

241 242 243 244 245 246 247 248 249 250 251
enum zone_watermarks {
	WMARK_MIN,
	WMARK_LOW,
	WMARK_HIGH,
	NR_WMARK
};

#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])

L
Linus Torvalds 已提交
252 253 254 255
struct per_cpu_pages {
	int count;		/* number of pages in the list */
	int high;		/* high watermark, emptying needed */
	int batch;		/* chunk size for buddy add/remove */
256 257 258

	/* Lists of pages, one per migrate type stored on the pcp-lists */
	struct list_head lists[MIGRATE_PCPTYPES];
L
Linus Torvalds 已提交
259 260 261
};

struct per_cpu_pageset {
262
	struct per_cpu_pages pcp;
263 264 265
#ifdef CONFIG_NUMA
	s8 expire;
#endif
266
#ifdef CONFIG_SMP
267
	s8 stat_threshold;
268 269
	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
#endif
270
};
271

C
Christoph Lameter 已提交
272 273
#endif /* !__GENERATING_BOUNDS.H */

274
enum zone_type {
275
#ifdef CONFIG_ZONE_DMA
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	/*
	 * ZONE_DMA is used when there are devices that are not able
	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
	 * carve out the portion of memory that is needed for these devices.
	 * The range is arch specific.
	 *
	 * Some examples
	 *
	 * Architecture		Limit
	 * ---------------------------
	 * parisc, ia64, sparc	<4G
	 * s390			<2G
	 * arm			Various
	 * alpha		Unlimited or 0-16MB.
	 *
	 * i386, x86_64 and multiple other arches
	 * 			<16M.
	 */
	ZONE_DMA,
295
#endif
296
#ifdef CONFIG_ZONE_DMA32
297 298 299 300 301 302
	/*
	 * x86_64 needs two ZONE_DMAs because it supports devices that are
	 * only able to do DMA to the lower 16M but also 32 bit devices that
	 * can only do DMA areas below 4G.
	 */
	ZONE_DMA32,
303
#endif
304 305 306 307 308 309
	/*
	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
	 * performed on pages in ZONE_NORMAL if the DMA devices support
	 * transfers to all addressable memory.
	 */
	ZONE_NORMAL,
310
#ifdef CONFIG_HIGHMEM
311 312 313 314 315 316 317 318 319
	/*
	 * A memory area that is only addressable by the kernel through
	 * mapping portions into its own address space. This is for example
	 * used by i386 to allow the kernel to address the memory beyond
	 * 900MB. The kernel will set up special mappings (page
	 * table entries on i386) for each page that the kernel needs to
	 * access.
	 */
	ZONE_HIGHMEM,
320
#endif
M
Mel Gorman 已提交
321
	ZONE_MOVABLE,
C
Christoph Lameter 已提交
322
	__MAX_NR_ZONES
323
};
L
Linus Torvalds 已提交
324

C
Christoph Lameter 已提交
325 326
#ifndef __GENERATING_BOUNDS_H

L
Linus Torvalds 已提交
327
struct zone {
328
	/* Read-mostly fields */
329 330 331 332

	/* zone watermarks, access with *_wmark_pages(zone) macros */
	unsigned long watermark[NR_WMARK];

L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340
	/*
	 * We don't know if the memory that we're going to allocate will be freeable
	 * or/and it will be released eventually, so to avoid totally wasting several
	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
	 * to run OOM on the lower zones despite there's tons of freeable ram
	 * on the higher zones). This array is recalculated at runtime if the
	 * sysctl_lowmem_reserve_ratio sysctl changes.
	 */
341
	long lowmem_reserve[MAX_NR_ZONES];
342

343
#ifdef CONFIG_NUMA
344
	int node;
345 346
#endif

347
	/*
348 349
	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
	 * this zone's LRU.  Maintained by the pageout code.
350
	 */
351 352 353
	unsigned int inactive_ratio;

	struct pglist_data	*zone_pgdat;
354
	struct per_cpu_pageset __percpu *pageset;
355

L
Linus Torvalds 已提交
356
	/*
357 358
	 * This is a per-zone reserve of pages that should not be
	 * considered dirtyable memory.
L
Linus Torvalds 已提交
359
	 */
360
	unsigned long		dirty_balance_reserve;
L
Linus Torvalds 已提交
361

362 363
#ifndef CONFIG_SPARSEMEM
	/*
364
	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
365 366 367 368 369
	 * In SPARSEMEM, this map is stored in struct mem_section
	 */
	unsigned long		*pageblock_flags;
#endif /* CONFIG_SPARSEMEM */

370
#ifdef CONFIG_NUMA
L
Linus Torvalds 已提交
371
	/*
372
	 * zone reclaim becomes active if more unmapped pages exist.
L
Linus Torvalds 已提交
373
	 */
374 375 376
	unsigned long		min_unmapped_pages;
	unsigned long		min_slab_pages;
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
377 378 379 380

	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
	unsigned long		zone_start_pfn;

381
	/*
382 383 384
	 * spanned_pages is the total pages spanned by the zone, including
	 * holes, which is calculated as:
	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
385
	 *
386 387
	 * present_pages is physical pages existing within the zone, which
	 * is calculated as:
388
	 *	present_pages = spanned_pages - absent_pages(pages in holes);
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	 *
	 * managed_pages is present pages managed by the buddy system, which
	 * is calculated as (reserved_pages includes pages allocated by the
	 * bootmem allocator):
	 *	managed_pages = present_pages - reserved_pages;
	 *
	 * So present_pages may be used by memory hotplug or memory power
	 * management logic to figure out unmanaged pages by checking
	 * (present_pages - managed_pages). And managed_pages should be used
	 * by page allocator and vm scanner to calculate all kinds of watermarks
	 * and thresholds.
	 *
	 * Locking rules:
	 *
	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
	 * It is a seqlock because it has to be read outside of zone->lock,
	 * and it is done in the main allocator path.  But, it is written
	 * quite infrequently.
	 *
	 * The span_seq lock is declared along with zone->lock because it is
409 410
	 * frequently read in proximity to zone->lock.  It's good to
	 * give them a chance of being in the same cacheline.
411
	 *
412
	 * Write access to present_pages at runtime should be protected by
413 414
	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
	 * present_pages should get_online_mems() to get a stable value.
415 416 417 418 419 420
	 *
	 * Read access to managed_pages should be safe because it's unsigned
	 * long. Write access to zone->managed_pages and totalram_pages are
	 * protected by managed_page_count_lock at runtime. Idealy only
	 * adjust_managed_page_count() should be used instead of directly
	 * touching zone->managed_pages and totalram_pages.
421
	 */
422
	unsigned long		managed_pages;
423 424
	unsigned long		spanned_pages;
	unsigned long		present_pages;
425 426

	const char		*name;
L
Linus Torvalds 已提交
427

428
	/*
429
	 * Number of MIGRATE_RESERVE page block. To maintain for just
430 431 432 433
	 * optimization. Protected by zone->lock.
	 */
	int			nr_migrate_reserve_block;

434 435 436 437 438 439 440 441 442
#ifdef CONFIG_MEMORY_ISOLATION
	/*
	 * Number of isolated pageblock. It is used to solve incorrect
	 * freepage counting problem due to racy retrieving migratetype
	 * of pageblock. Protected by zone->lock.
	 */
	unsigned long		nr_isolate_pageblock;
#endif

443 444 445 446 447
#ifdef CONFIG_MEMORY_HOTPLUG
	/* see spanned/present_pages for more description */
	seqlock_t		span_seqlock;
#endif

L
Linus Torvalds 已提交
448
	/*
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	 * wait_table		-- the array holding the hash table
	 * wait_table_hash_nr_entries	-- the size of the hash table array
	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
	 *
	 * The purpose of all these is to keep track of the people
	 * waiting for a page to become available and make them
	 * runnable again when possible. The trouble is that this
	 * consumes a lot of space, especially when so few things
	 * wait on pages at a given time. So instead of using
	 * per-page waitqueues, we use a waitqueue hash table.
	 *
	 * The bucket discipline is to sleep on the same queue when
	 * colliding and wake all in that wait queue when removing.
	 * When something wakes, it must check to be sure its page is
	 * truly available, a la thundering herd. The cost of a
	 * collision is great, but given the expected load of the
	 * table, they should be so rare as to be outweighed by the
	 * benefits from the saved space.
	 *
	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
	 * primary users of these fields, and in mm/page_alloc.c
	 * free_area_init_core() performs the initialization of them.
L
Linus Torvalds 已提交
471
	 */
472 473 474 475 476 477 478 479 480 481 482
	wait_queue_head_t	*wait_table;
	unsigned long		wait_table_hash_nr_entries;
	unsigned long		wait_table_bits;

	ZONE_PADDING(_pad1_)
	/* free areas of different sizes */
	struct free_area	free_area[MAX_ORDER];

	/* zone flags, see below */
	unsigned long		flags;

483 484 485
	/* Write-intensive fields used from the page allocator */
	spinlock_t		lock;

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	ZONE_PADDING(_pad2_)

	/* Write-intensive fields used by page reclaim */

	/* Fields commonly accessed by the page reclaim scanner */
	spinlock_t		lru_lock;
	struct lruvec		lruvec;

	/* Evictions & activations on the inactive file list */
	atomic_long_t		inactive_age;

	/*
	 * When free pages are below this point, additional steps are taken
	 * when reading the number of free pages to avoid per-cpu counter
	 * drift allowing watermarks to be breached
	 */
	unsigned long percpu_drift_mark;

#if defined CONFIG_COMPACTION || defined CONFIG_CMA
	/* pfn where compaction free scanner should start */
	unsigned long		compact_cached_free_pfn;
	/* pfn where async and sync compaction migration scanner should start */
	unsigned long		compact_cached_migrate_pfn[2];
#endif

#ifdef CONFIG_COMPACTION
	/*
	 * On compaction failure, 1<<compact_defer_shift compactions
	 * are skipped before trying again. The number attempted since
	 * last failure is tracked with compact_considered.
	 */
	unsigned int		compact_considered;
	unsigned int		compact_defer_shift;
	int			compact_order_failed;
#endif

#if defined CONFIG_COMPACTION || defined CONFIG_CMA
	/* Set to true when the PG_migrate_skip bits should be cleared */
	bool			compact_blockskip_flush;
#endif

	ZONE_PADDING(_pad3_)
	/* Zone statistics */
	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
530
} ____cacheline_internodealigned_in_smp;
L
Linus Torvalds 已提交
531

J
Johannes Weiner 已提交
532
enum zone_flags {
533
	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
D
David Rientjes 已提交
534
	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
535 536 537
	ZONE_CONGESTED,			/* zone has many dirty pages backed by
					 * a congested BDI
					 */
J
Johannes Weiner 已提交
538
	ZONE_DIRTY,			/* reclaim scanning has recently found
539 540 541
					 * many dirty file pages at the tail
					 * of the LRU.
					 */
542 543 544
	ZONE_WRITEBACK,			/* reclaim scanning has recently found
					 * many pages under writeback
					 */
545
	ZONE_FAIR_DEPLETED,		/* fair zone policy batch depleted */
J
Johannes Weiner 已提交
546
};
547

R
Russ Anderson 已提交
548
static inline unsigned long zone_end_pfn(const struct zone *zone)
549 550 551 552 553 554 555 556 557
{
	return zone->zone_start_pfn + zone->spanned_pages;
}

static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
{
	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
}

558 559 560 561 562 563 564 565 566 567
static inline bool zone_is_initialized(struct zone *zone)
{
	return !!zone->wait_table;
}

static inline bool zone_is_empty(struct zone *zone)
{
	return zone->spanned_pages == 0;
}

L
Linus Torvalds 已提交
568 569 570 571 572 573 574
/*
 * The "priority" of VM scanning is how much of the queues we will scan in one
 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 * queues ("queue_length >> 12") during an aging round.
 */
#define DEF_PRIORITY 12

575 576 577 578
/* Maximum number of zones on a zonelist */
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)

#ifdef CONFIG_NUMA
579 580

/*
581
 * The NUMA zonelists are doubled because we need zonelists that restrict the
582
 * allocations to a single node for __GFP_THISNODE.
583
 *
584
 * [0]	: Zonelist with fallback
585
 * [1]	: No fallback (__GFP_THISNODE)
586
 */
587
#define MAX_ZONELISTS 2
588 589


590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/*
 * We cache key information from each zonelist for smaller cache
 * footprint when scanning for free pages in get_page_from_freelist().
 *
 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
 *    up short of free memory since the last time (last_fullzone_zap)
 *    we zero'd fullzones.
 * 2) The array z_to_n[] maps each zone in the zonelist to its node
 *    id, so that we can efficiently evaluate whether that node is
 *    set in the current tasks mems_allowed.
 *
 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
 * indexed by a zones offset in the zonelist zones[] array.
 *
 * The get_page_from_freelist() routine does two scans.  During the
 * first scan, we skip zones whose corresponding bit in 'fullzones'
 * is set or whose corresponding node in current->mems_allowed (which
 * comes from cpusets) is not set.  During the second scan, we bypass
 * this zonelist_cache, to ensure we look methodically at each zone.
 *
 * Once per second, we zero out (zap) fullzones, forcing us to
 * reconsider nodes that might have regained more free memory.
 * The field last_full_zap is the time we last zapped fullzones.
 *
 * This mechanism reduces the amount of time we waste repeatedly
 * reexaming zones for free memory when they just came up low on
 * memory momentarilly ago.
 *
 * The zonelist_cache struct members logically belong in struct
 * zonelist.  However, the mempolicy zonelists constructed for
 * MPOL_BIND are intentionally variable length (and usually much
 * shorter).  A general purpose mechanism for handling structs with
 * multiple variable length members is more mechanism than we want
 * here.  We resort to some special case hackery instead.
 *
 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
 * part because they are shorter), so we put the fixed length stuff
 * at the front of the zonelist struct, ending in a variable length
 * zones[], as is needed by MPOL_BIND.
 *
 * Then we put the optional zonelist cache on the end of the zonelist
 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
 * the fixed length portion at the front of the struct.  This pointer
 * both enables us to find the zonelist cache, and in the case of
 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
 * to know that the zonelist cache is not there.
 *
 * The end result is that struct zonelists come in two flavors:
 *  1) The full, fixed length version, shown below, and
 *  2) The custom zonelists for MPOL_BIND.
 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
 *
 * Even though there may be multiple CPU cores on a node modifying
 * fullzones or last_full_zap in the same zonelist_cache at the same
 * time, we don't lock it.  This is just hint data - if it is wrong now
 * and then, the allocator will still function, perhaps a bit slower.
 */


struct zonelist_cache {
	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
651
	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
652 653 654
	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
};
#else
655
#define MAX_ZONELISTS 1
656 657 658
struct zonelist_cache;
#endif

659 660 661 662 663 664 665 666 667
/*
 * This struct contains information about a zone in a zonelist. It is stored
 * here to avoid dereferences into large structures and lookups of tables
 */
struct zoneref {
	struct zone *zone;	/* Pointer to actual zone */
	int zone_idx;		/* zone_idx(zoneref->zone) */
};

L
Linus Torvalds 已提交
668 669 670 671 672 673
/*
 * One allocation request operates on a zonelist. A zonelist
 * is a list of zones, the first one is the 'goal' of the
 * allocation, the other zones are fallback zones, in decreasing
 * priority.
 *
674 675
 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
676 677 678 679 680 681 682 683
 * *
 * To speed the reading of the zonelist, the zonerefs contain the zone index
 * of the entry being read. Helper functions to access information given
 * a struct zoneref are
 *
 * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
 * zonelist_zone_idx()	- Return the index of the zone for an entry
 * zonelist_node_idx()	- Return the index of the node for an entry
L
Linus Torvalds 已提交
684 685
 */
struct zonelist {
686
	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
687
	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
688 689 690
#ifdef CONFIG_NUMA
	struct zonelist_cache zlcache;			     // optional ...
#endif
L
Linus Torvalds 已提交
691 692
};

T
Tejun Heo 已提交
693
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
694 695 696 697 698
struct node_active_region {
	unsigned long start_pfn;
	unsigned long end_pfn;
	int nid;
};
T
Tejun Heo 已提交
699
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
L
Linus Torvalds 已提交
700

701 702 703 704 705
#ifndef CONFIG_DISCONTIGMEM
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
extern struct page *mem_map;
#endif

L
Linus Torvalds 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719
/*
 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 * zone denotes.
 *
 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 * it's memory layout.
 *
 * Memory statistics and page replacement data structures are maintained on a
 * per-zone basis.
 */
struct bootmem_data;
typedef struct pglist_data {
	struct zone node_zones[MAX_NR_ZONES];
720
	struct zonelist node_zonelists[MAX_ZONELISTS];
L
Linus Torvalds 已提交
721
	int nr_zones;
722
#ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
L
Linus Torvalds 已提交
723
	struct page *node_mem_map;
724 725 726
#ifdef CONFIG_PAGE_EXTENSION
	struct page_ext *node_page_ext;
#endif
A
Andy Whitcroft 已提交
727
#endif
728
#ifndef CONFIG_NO_BOOTMEM
L
Linus Torvalds 已提交
729
	struct bootmem_data *bdata;
730
#endif
731 732 733 734 735 736
#ifdef CONFIG_MEMORY_HOTPLUG
	/*
	 * Must be held any time you expect node_start_pfn, node_present_pages
	 * or node_spanned_pages stay constant.  Holding this will also
	 * guarantee that any pfn_valid() stays that way.
	 *
737 738 739
	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
	 *
740
	 * Nests above zone->lock and zone->span_seqlock
741 742 743
	 */
	spinlock_t node_size_lock;
#endif
L
Linus Torvalds 已提交
744 745 746 747 748 749
	unsigned long node_start_pfn;
	unsigned long node_present_pages; /* total number of physical pages */
	unsigned long node_spanned_pages; /* total size of physical page
					     range, including holes */
	int node_id;
	wait_queue_head_t kswapd_wait;
750
	wait_queue_head_t pfmemalloc_wait;
751 752
	struct task_struct *kswapd;	/* Protected by
					   mem_hotplug_begin/end() */
L
Linus Torvalds 已提交
753
	int kswapd_max_order;
754
	enum zone_type classzone_idx;
755
#ifdef CONFIG_NUMA_BALANCING
756
	/* Lock serializing the migrate rate limiting window */
757 758 759 760 761 762 763 764
	spinlock_t numabalancing_migrate_lock;

	/* Rate limiting time interval */
	unsigned long numabalancing_migrate_next_window;

	/* Number of pages migrated during the rate limiting time interval */
	unsigned long numabalancing_migrate_nr_pages;
#endif
L
Linus Torvalds 已提交
765 766 767 768
} pg_data_t;

#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
A
Andy Whitcroft 已提交
769
#ifdef CONFIG_FLAT_NODE_MEM_MAP
770
#define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
A
Andy Whitcroft 已提交
771 772 773
#else
#define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
#endif
774
#define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
L
Linus Torvalds 已提交
775

776
#define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
777
#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
778

779 780 781 782 783 784 785 786 787
static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
{
	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
}

static inline bool pgdat_is_empty(pg_data_t *pgdat)
{
	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
}
788

789 790
#include <linux/memory_hotplug.h>

791
extern struct mutex zonelists_mutex;
792
void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
793
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
794 795 796 797
bool zone_watermark_ok(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, int alloc_flags);
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, int alloc_flags);
D
Dave Hansen 已提交
798 799 800 801
enum memmap_context {
	MEMMAP_EARLY,
	MEMMAP_HOTPLUG,
};
802
extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
D
Dave Hansen 已提交
803 804
				     unsigned long size,
				     enum memmap_context context);
805

806
extern void lruvec_init(struct lruvec *lruvec);
807 808 809

static inline struct zone *lruvec_zone(struct lruvec *lruvec)
{
A
Andrew Morton 已提交
810
#ifdef CONFIG_MEMCG
811 812 813 814 815 816
	return lruvec->zone;
#else
	return container_of(lruvec, struct zone, lruvec);
#endif
}

L
Linus Torvalds 已提交
817 818 819 820 821 822
#ifdef CONFIG_HAVE_MEMORY_PRESENT
void memory_present(int nid, unsigned long start, unsigned long end);
#else
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
#endif

823 824 825 826 827 828
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
int local_memory_node(int node_id);
#else
static inline int local_memory_node(int node_id) { return node_id; };
#endif

L
Linus Torvalds 已提交
829 830 831 832 833 834 835 836 837
#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
#endif

/*
 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 */
#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)

838 839 840 841 842
static inline int populated_zone(struct zone *zone)
{
	return (!!zone->present_pages);
}

M
Mel Gorman 已提交
843 844
extern int movable_zone;

845
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
846 847
static inline int zone_movable_is_highmem(void)
{
848
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Mel Gorman 已提交
849 850
	return movable_zone == ZONE_HIGHMEM;
#else
851
	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
M
Mel Gorman 已提交
852 853
#endif
}
854
#endif
M
Mel Gorman 已提交
855

856
static inline int is_highmem_idx(enum zone_type idx)
L
Linus Torvalds 已提交
857
{
858
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
859 860
	return (idx == ZONE_HIGHMEM ||
		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
861 862 863
#else
	return 0;
#endif
L
Linus Torvalds 已提交
864 865 866 867 868 869 870 871 872 873
}

/**
 * is_highmem - helper function to quickly check if a struct zone is a 
 *              highmem zone or not.  This is an attempt to keep references
 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 * @zone - pointer to struct zone variable
 */
static inline int is_highmem(struct zone *zone)
{
874
#ifdef CONFIG_HIGHMEM
875 876 877 878
	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
		zone_movable_is_highmem());
879 880 881
#else
	return 0;
#endif
L
Linus Torvalds 已提交
882 883 884 885
}

/* These two functions are used to setup the per zone pages min values */
struct ctl_table;
886
int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
L
Linus Torvalds 已提交
887 888
					void __user *, size_t *, loff_t *);
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
889
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
L
Linus Torvalds 已提交
890
					void __user *, size_t *, loff_t *);
891
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
892
					void __user *, size_t *, loff_t *);
893
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
894
			void __user *, size_t *, loff_t *);
895
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
896
			void __user *, size_t *, loff_t *);
L
Linus Torvalds 已提交
897

898
extern int numa_zonelist_order_handler(struct ctl_table *, int,
899
			void __user *, size_t *, loff_t *);
900 901 902
extern char numa_zonelist_order[];
#define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */

903
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
904 905 906 907 908

extern struct pglist_data contig_page_data;
#define NODE_DATA(nid)		(&contig_page_data)
#define NODE_MEM_MAP(nid)	mem_map

909
#else /* CONFIG_NEED_MULTIPLE_NODES */
L
Linus Torvalds 已提交
910 911 912

#include <asm/mmzone.h>

913
#endif /* !CONFIG_NEED_MULTIPLE_NODES */
914

915 916 917
extern struct pglist_data *first_online_pgdat(void);
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
extern struct zone *next_zone(struct zone *zone);
918 919

/**
920
 * for_each_online_pgdat - helper macro to iterate over all online nodes
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
 * @pgdat - pointer to a pg_data_t variable
 */
#define for_each_online_pgdat(pgdat)			\
	for (pgdat = first_online_pgdat();		\
	     pgdat;					\
	     pgdat = next_online_pgdat(pgdat))
/**
 * for_each_zone - helper macro to iterate over all memory zones
 * @zone - pointer to struct zone variable
 *
 * The user only needs to declare the zone variable, for_each_zone
 * fills it in.
 */
#define for_each_zone(zone)			        \
	for (zone = (first_online_pgdat())->node_zones; \
	     zone;					\
	     zone = next_zone(zone))

939 940 941 942 943 944 945 946
#define for_each_populated_zone(zone)		        \
	for (zone = (first_online_pgdat())->node_zones; \
	     zone;					\
	     zone = next_zone(zone))			\
		if (!populated_zone(zone))		\
			; /* do nothing */		\
		else

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static inline struct zone *zonelist_zone(struct zoneref *zoneref)
{
	return zoneref->zone;
}

static inline int zonelist_zone_idx(struct zoneref *zoneref)
{
	return zoneref->zone_idx;
}

static inline int zonelist_node_idx(struct zoneref *zoneref)
{
#ifdef CONFIG_NUMA
	/* zone_to_nid not available in this context */
	return zoneref->zone->node;
#else
	return 0;
#endif /* CONFIG_NUMA */
}

967 968 969 970 971 972 973 974
/**
 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 * @z - The cursor used as a starting point for the search
 * @highest_zoneidx - The zone index of the highest zone to return
 * @nodes - An optional nodemask to filter the zonelist with
 *
 * This function returns the next zone at or below a given zone index that is
 * within the allowed nodemask using a cursor as the starting point for the
975 976 977
 * search. The zoneref returned is a cursor that represents the current zone
 * being examined. It should be advanced by one before calling
 * next_zones_zonelist again.
978 979 980
 */
struct zoneref *next_zones_zonelist(struct zoneref *z,
					enum zone_type highest_zoneidx,
981
					nodemask_t *nodes);
982

983 984 985 986 987 988 989 990 991
/**
 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 * @zonelist - The zonelist to search for a suitable zone
 * @highest_zoneidx - The zone index of the highest zone to return
 * @nodes - An optional nodemask to filter the zonelist with
 * @zone - The first suitable zone found is returned via this parameter
 *
 * This function returns the first zone at or below a given zone index that is
 * within the allowed nodemask. The zoneref returned is a cursor that can be
992 993
 * used to iterate the zonelist with next_zones_zonelist by advancing it by
 * one before calling.
994
 */
995
static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
996 997 998
					enum zone_type highest_zoneidx,
					nodemask_t *nodes,
					struct zone **zone)
999
{
1000 1001 1002 1003
	struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
							highest_zoneidx, nodes);
	*zone = zonelist_zone(z);
	return z;
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/**
 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
 * @zone - The current zone in the iterator
 * @z - The current pointer within zonelist->zones being iterated
 * @zlist - The zonelist being iterated
 * @highidx - The zone index of the highest zone to return
 * @nodemask - Nodemask allowed by the allocator
 *
 * This iterator iterates though all zones at or below a given zone index and
 * within a given nodemask
 */
#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
		zone;							\
1020 1021
		z = next_zones_zonelist(++z, highidx, nodemask),	\
			zone = zonelist_zone(z))			\
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

/**
 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
 * @zone - The current zone in the iterator
 * @z - The current pointer within zonelist->zones being iterated
 * @zlist - The zonelist being iterated
 * @highidx - The zone index of the highest zone to return
 *
 * This iterator iterates though all zones at or below a given zone index.
 */
#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1033
	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1034

A
Andy Whitcroft 已提交
1035 1036 1037 1038
#ifdef CONFIG_SPARSEMEM
#include <asm/sparsemem.h>
#endif

1039
#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
T
Tejun Heo 已提交
1040
	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1041 1042 1043 1044
static inline unsigned long early_pfn_to_nid(unsigned long pfn)
{
	return 0;
}
1045 1046
#endif

1047 1048 1049 1050
#ifdef CONFIG_FLATMEM
#define pfn_to_nid(pfn)		(0)
#endif

A
Andy Whitcroft 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
#ifdef CONFIG_SPARSEMEM

/*
 * SECTION_SHIFT    		#bits space required to store a section #
 *
 * PA_SECTION_SHIFT		physical address to/from section number
 * PFN_SECTION_SHIFT		pfn to/from section number
 */
#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)

#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)

#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))

1067
#define SECTION_BLOCKFLAGS_BITS \
1068
	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1069

A
Andy Whitcroft 已提交
1070 1071 1072 1073
#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
#error Allocator MAX_ORDER exceeds SECTION_SIZE
#endif

1074 1075 1076
#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)

1077 1078 1079
#define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
#define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)

A
Andy Whitcroft 已提交
1080
struct page;
1081
struct page_ext;
A
Andy Whitcroft 已提交
1082
struct mem_section {
A
Andy Whitcroft 已提交
1083 1084 1085 1086 1087
	/*
	 * This is, logically, a pointer to an array of struct
	 * pages.  However, it is stored with some other magic.
	 * (see sparse.c::sparse_init_one_section())
	 *
1088 1089 1090 1091
	 * Additionally during early boot we encode node id of
	 * the location of the section here to guide allocation.
	 * (see sparse.c::memory_present())
	 *
A
Andy Whitcroft 已提交
1092 1093 1094 1095
	 * Making it a UL at least makes someone do a cast
	 * before using it wrong.
	 */
	unsigned long section_mem_map;
1096 1097 1098

	/* See declaration of similar field in struct zone */
	unsigned long *pageblock_flags;
1099 1100 1101 1102 1103 1104 1105 1106
#ifdef CONFIG_PAGE_EXTENSION
	/*
	 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
	 * section. (see page_ext.h about this.)
	 */
	struct page_ext *page_ext;
	unsigned long pad;
#endif
1107 1108 1109 1110
	/*
	 * WARNING: mem_section must be a power-of-2 in size for the
	 * calculation and use of SECTION_ROOT_MASK to make sense.
	 */
A
Andy Whitcroft 已提交
1111 1112
};

1113 1114 1115 1116 1117
#ifdef CONFIG_SPARSEMEM_EXTREME
#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
#else
#define SECTIONS_PER_ROOT	1
#endif
B
Bob Picco 已提交
1118

1119
#define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1120
#define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1121
#define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
B
Bob Picco 已提交
1122

1123 1124
#ifdef CONFIG_SPARSEMEM_EXTREME
extern struct mem_section *mem_section[NR_SECTION_ROOTS];
B
Bob Picco 已提交
1125
#else
1126 1127
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
#endif
A
Andy Whitcroft 已提交
1128

A
Andy Whitcroft 已提交
1129 1130
static inline struct mem_section *__nr_to_section(unsigned long nr)
{
1131 1132 1133
	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
		return NULL;
	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
A
Andy Whitcroft 已提交
1134
}
1135
extern int __section_nr(struct mem_section* ms);
1136
extern unsigned long usemap_size(void);
A
Andy Whitcroft 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

/*
 * We use the lower bits of the mem_map pointer to store
 * a little bit of information.  There should be at least
 * 3 bits here due to 32-bit alignment.
 */
#define	SECTION_MARKED_PRESENT	(1UL<<0)
#define SECTION_HAS_MEM_MAP	(1UL<<1)
#define SECTION_MAP_LAST_BIT	(1UL<<2)
#define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1147
#define SECTION_NID_SHIFT	2
A
Andy Whitcroft 已提交
1148 1149 1150 1151 1152 1153 1154 1155

static inline struct page *__section_mem_map_addr(struct mem_section *section)
{
	unsigned long map = section->section_mem_map;
	map &= SECTION_MAP_MASK;
	return (struct page *)map;
}

1156
static inline int present_section(struct mem_section *section)
A
Andy Whitcroft 已提交
1157
{
B
Bob Picco 已提交
1158
	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
A
Andy Whitcroft 已提交
1159 1160
}

1161 1162 1163 1164 1165 1166
static inline int present_section_nr(unsigned long nr)
{
	return present_section(__nr_to_section(nr));
}

static inline int valid_section(struct mem_section *section)
A
Andy Whitcroft 已提交
1167
{
B
Bob Picco 已提交
1168
	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
A
Andy Whitcroft 已提交
1169 1170 1171 1172 1173 1174 1175
}

static inline int valid_section_nr(unsigned long nr)
{
	return valid_section(__nr_to_section(nr));
}

A
Andy Whitcroft 已提交
1176 1177
static inline struct mem_section *__pfn_to_section(unsigned long pfn)
{
A
Andy Whitcroft 已提交
1178
	return __nr_to_section(pfn_to_section_nr(pfn));
A
Andy Whitcroft 已提交
1179 1180
}

1181
#ifndef CONFIG_HAVE_ARCH_PFN_VALID
A
Andy Whitcroft 已提交
1182 1183 1184 1185
static inline int pfn_valid(unsigned long pfn)
{
	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
		return 0;
A
Andy Whitcroft 已提交
1186
	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
A
Andy Whitcroft 已提交
1187
}
1188
#endif
A
Andy Whitcroft 已提交
1189

1190 1191 1192 1193 1194 1195 1196
static inline int pfn_present(unsigned long pfn)
{
	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
		return 0;
	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
}

A
Andy Whitcroft 已提交
1197 1198 1199 1200 1201 1202
/*
 * These are _only_ used during initialisation, therefore they
 * can use __initdata ...  They could have names to indicate
 * this restriction.
 */
#ifdef CONFIG_NUMA
1203 1204 1205 1206 1207
#define pfn_to_nid(pfn)							\
({									\
	unsigned long __pfn_to_nid_pfn = (pfn);				\
	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
})
1208 1209
#else
#define pfn_to_nid(pfn)		(0)
A
Andy Whitcroft 已提交
1210 1211 1212 1213 1214 1215
#endif

#define early_pfn_valid(pfn)	pfn_valid(pfn)
void sparse_init(void);
#else
#define sparse_init()	do {} while (0)
1216
#define sparse_index_init(_sec, _nid)  do {} while (0)
A
Andy Whitcroft 已提交
1217 1218
#endif /* CONFIG_SPARSEMEM */

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/*
 * During memory init memblocks map pfns to nids. The search is expensive and
 * this caches recent lookups. The implementation of __early_pfn_to_nid
 * may treat start/end as pfns or sections.
 */
struct mminit_pfnnid_cache {
	unsigned long last_start;
	unsigned long last_end;
	int last_nid;
};

A
Andy Whitcroft 已提交
1230 1231 1232 1233 1234 1235 1236
#ifndef early_pfn_valid
#define early_pfn_valid(pfn)	(1)
#endif

void memory_present(int nid, unsigned long start, unsigned long end);
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/*
 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
 * pfn_valid_within() should be used in this case; we optimise this away
 * when we have no holes within a MAX_ORDER_NR_PAGES block.
 */
#ifdef CONFIG_HOLES_IN_ZONE
#define pfn_valid_within(pfn) pfn_valid(pfn)
#else
#define pfn_valid_within(pfn) (1)
#endif

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
/*
 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
 * associated with it or not. In FLATMEM, it is expected that holes always
 * have valid memmap as long as there is valid PFNs either side of the hole.
 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
 * entire section.
 *
 * However, an ARM, and maybe other embedded architectures in the future
 * free memmap backing holes to save memory on the assumption the memmap is
 * never used. The page_zone linkages are then broken even though pfn_valid()
 * returns true. A walker of the full memmap must then do this additional
 * check to ensure the memmap they are looking at is sane by making sure
 * the zone and PFN linkages are still valid. This is expensive, but walkers
 * of the full memmap are extremely rare.
 */
int memmap_valid_within(unsigned long pfn,
					struct page *page, struct zone *zone);
#else
static inline int memmap_valid_within(unsigned long pfn,
					struct page *page, struct zone *zone)
{
	return 1;
}
#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */

C
Christoph Lameter 已提交
1275
#endif /* !__GENERATING_BOUNDS.H */
L
Linus Torvalds 已提交
1276 1277
#endif /* !__ASSEMBLY__ */
#endif /* _LINUX_MMZONE_H */