ccp-dev.c 10.7 KB
Newer Older
1 2 3
/*
 * AMD Cryptographic Coprocessor (CCP) driver
 *
4
 * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Tom Lendacky <thomas.lendacky@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
19
#include <linux/spinlock_types.h>
20
#include <linux/types.h>
21 22 23 24
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/hw_random.h>
#include <linux/cpu.h>
25
#ifdef CONFIG_X86
26
#include <asm/cpu_device_id.h>
27
#endif
28 29 30 31 32 33 34 35 36
#include <linux/ccp.h>

#include "ccp-dev.h"

MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.0.0");
MODULE_DESCRIPTION("AMD Cryptographic Coprocessor driver");

37 38 39 40 41
struct ccp_tasklet_data {
	struct completion completion;
	struct ccp_cmd *cmd;
};

42 43 44 45 46 47 48 49 50 51 52 53 54 55
/* List of CCPs, CCP count, read-write access lock, and access functions
 *
 * Lock structure: get ccp_unit_lock for reading whenever we need to
 * examine the CCP list. While holding it for reading we can acquire
 * the RR lock to update the round-robin next-CCP pointer. The unit lock
 * must be acquired before the RR lock.
 *
 * If the unit-lock is acquired for writing, we have total control over
 * the list, so there's no value in getting the RR lock.
 */
static DEFINE_RWLOCK(ccp_unit_lock);
static LIST_HEAD(ccp_units);

/* Round-robin counter */
56
static DEFINE_SPINLOCK(ccp_rr_lock);
57 58 59 60 61
static struct ccp_device *ccp_rr;

/* Ever-increasing value to produce unique unit numbers */
static atomic_t ccp_unit_ordinal;
unsigned int ccp_increment_unit_ordinal(void)
62
{
63
	return atomic_inc_return(&ccp_unit_ordinal);
64 65
}

66 67 68 69 70
/**
 * ccp_add_device - add a CCP device to the list
 *
 * @ccp: ccp_device struct pointer
 *
71 72
 * Put this CCP on the unit list, which makes it available
 * for use.
73 74
 *
 * Returns zero if a CCP device is present, -ENODEV otherwise.
75
 */
76
void ccp_add_device(struct ccp_device *ccp)
77
{
78 79 80 81 82 83 84 85 86 87
	unsigned long flags;

	write_lock_irqsave(&ccp_unit_lock, flags);
	list_add_tail(&ccp->entry, &ccp_units);
	if (!ccp_rr)
		/* We already have the list lock (we're first) so this
		 * pointer can't change on us. Set its initial value.
		 */
		ccp_rr = ccp;
	write_unlock_irqrestore(&ccp_unit_lock, flags);
88 89
}

90 91 92 93 94 95
/**
 * ccp_del_device - remove a CCP device from the list
 *
 * @ccp: ccp_device struct pointer
 *
 * Remove this unit from the list of devices. If the next device
96 97 98
 * up for use is this one, adjust the pointer. If this is the last
 * device, NULL the pointer.
 */
99
void ccp_del_device(struct ccp_device *ccp)
100
{
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
	unsigned long flags;

	write_lock_irqsave(&ccp_unit_lock, flags);
	if (ccp_rr == ccp) {
		/* ccp_unit_lock is read/write; any read access
		 * will be suspended while we make changes to the
		 * list and RR pointer.
		 */
		if (list_is_last(&ccp_rr->entry, &ccp_units))
			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
						  entry);
		else
			ccp_rr = list_next_entry(ccp_rr, entry);
	}
	list_del(&ccp->entry);
	if (list_empty(&ccp_units))
		ccp_rr = NULL;
	write_unlock_irqrestore(&ccp_unit_lock, flags);
}

static struct ccp_device *ccp_get_device(void)
{
	unsigned long flags;
	struct ccp_device *dp = NULL;

	/* We round-robin through the unit list.
	 * The (ccp_rr) pointer refers to the next unit to use.
	 */
	read_lock_irqsave(&ccp_unit_lock, flags);
	if (!list_empty(&ccp_units)) {
131
		spin_lock(&ccp_rr_lock);
132 133 134 135 136 137
		dp = ccp_rr;
		if (list_is_last(&ccp_rr->entry, &ccp_units))
			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
						  entry);
		else
			ccp_rr = list_next_entry(ccp_rr, entry);
138
		spin_unlock(&ccp_rr_lock);
139 140 141 142
	}
	read_unlock_irqrestore(&ccp_unit_lock, flags);

	return dp;
143 144
}

145 146 147 148 149 150 151
/**
 * ccp_present - check if a CCP device is present
 *
 * Returns zero if a CCP device is present, -ENODEV otherwise.
 */
int ccp_present(void)
{
152 153
	unsigned long flags;
	int ret;
154

155 156 157 158 159
	read_lock_irqsave(&ccp_unit_lock, flags);
	ret = list_empty(&ccp_units);
	read_unlock_irqrestore(&ccp_unit_lock, flags);

	return ret ? -ENODEV : 0;
160 161 162
}
EXPORT_SYMBOL_GPL(ccp_present);

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/**
 * ccp_version - get the version of the CCP device
 *
 * Returns the version from the first unit on the list;
 * otherwise a zero if no CCP device is present
 */
unsigned int ccp_version(void)
{
	struct ccp_device *dp;
	unsigned long flags;
	int ret = 0;

	read_lock_irqsave(&ccp_unit_lock, flags);
	if (!list_empty(&ccp_units)) {
		dp = list_first_entry(&ccp_units, struct ccp_device, entry);
		ret = dp->vdata->version;
	}
	read_unlock_irqrestore(&ccp_unit_lock, flags);

	return ret;
}
EXPORT_SYMBOL_GPL(ccp_version);

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
/**
 * ccp_enqueue_cmd - queue an operation for processing by the CCP
 *
 * @cmd: ccp_cmd struct to be processed
 *
 * Queue a cmd to be processed by the CCP. If queueing the cmd
 * would exceed the defined length of the cmd queue the cmd will
 * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
 * result in a return code of -EBUSY.
 *
 * The callback routine specified in the ccp_cmd struct will be
 * called to notify the caller of completion (if the cmd was not
 * backlogged) or advancement out of the backlog. If the cmd has
 * advanced out of the backlog the "err" value of the callback
 * will be -EINPROGRESS. Any other "err" value during callback is
 * the result of the operation.
 *
 * The cmd has been successfully queued if:
 *   the return code is -EINPROGRESS or
 *   the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
 */
int ccp_enqueue_cmd(struct ccp_cmd *cmd)
{
	struct ccp_device *ccp = ccp_get_device();
	unsigned long flags;
	unsigned int i;
	int ret;

	if (!ccp)
		return -ENODEV;

	/* Caller must supply a callback routine */
	if (!cmd->callback)
		return -EINVAL;

	cmd->ccp = ccp;

	spin_lock_irqsave(&ccp->cmd_lock, flags);

	i = ccp->cmd_q_count;

	if (ccp->cmd_count >= MAX_CMD_QLEN) {
		ret = -EBUSY;
		if (cmd->flags & CCP_CMD_MAY_BACKLOG)
			list_add_tail(&cmd->entry, &ccp->backlog);
	} else {
		ret = -EINPROGRESS;
		ccp->cmd_count++;
		list_add_tail(&cmd->entry, &ccp->cmd);

		/* Find an idle queue */
		if (!ccp->suspending) {
			for (i = 0; i < ccp->cmd_q_count; i++) {
				if (ccp->cmd_q[i].active)
					continue;

				break;
			}
		}
	}

	spin_unlock_irqrestore(&ccp->cmd_lock, flags);

	/* If we found an idle queue, wake it up */
	if (i < ccp->cmd_q_count)
		wake_up_process(ccp->cmd_q[i].kthread);

	return ret;
}
EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);

static void ccp_do_cmd_backlog(struct work_struct *work)
{
	struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
	struct ccp_device *ccp = cmd->ccp;
	unsigned long flags;
	unsigned int i;

	cmd->callback(cmd->data, -EINPROGRESS);

	spin_lock_irqsave(&ccp->cmd_lock, flags);

	ccp->cmd_count++;
	list_add_tail(&cmd->entry, &ccp->cmd);

	/* Find an idle queue */
	for (i = 0; i < ccp->cmd_q_count; i++) {
		if (ccp->cmd_q[i].active)
			continue;

		break;
	}

	spin_unlock_irqrestore(&ccp->cmd_lock, flags);

	/* If we found an idle queue, wake it up */
	if (i < ccp->cmd_q_count)
		wake_up_process(ccp->cmd_q[i].kthread);
}

static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
{
	struct ccp_device *ccp = cmd_q->ccp;
	struct ccp_cmd *cmd = NULL;
	struct ccp_cmd *backlog = NULL;
	unsigned long flags;

	spin_lock_irqsave(&ccp->cmd_lock, flags);

	cmd_q->active = 0;

	if (ccp->suspending) {
		cmd_q->suspended = 1;

		spin_unlock_irqrestore(&ccp->cmd_lock, flags);
		wake_up_interruptible(&ccp->suspend_queue);

		return NULL;
	}

	if (ccp->cmd_count) {
		cmd_q->active = 1;

		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
		list_del(&cmd->entry);

		ccp->cmd_count--;
	}

	if (!list_empty(&ccp->backlog)) {
		backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
					   entry);
		list_del(&backlog->entry);
	}

	spin_unlock_irqrestore(&ccp->cmd_lock, flags);

	if (backlog) {
		INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
		schedule_work(&backlog->work);
	}

	return cmd;
}

331
static void ccp_do_cmd_complete(unsigned long data)
332
{
333 334
	struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data;
	struct ccp_cmd *cmd = tdata->cmd;
335 336

	cmd->callback(cmd->data, cmd->ret);
337
	complete(&tdata->completion);
338 339
}

340 341 342 343 344 345
/**
 * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue
 *
 * @data: thread-specific data
 */
int ccp_cmd_queue_thread(void *data)
346 347 348
{
	struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
	struct ccp_cmd *cmd;
349 350 351 352
	struct ccp_tasklet_data tdata;
	struct tasklet_struct tasklet;

	tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();

		set_current_state(TASK_INTERRUPTIBLE);

		cmd = ccp_dequeue_cmd(cmd_q);
		if (!cmd)
			continue;

		__set_current_state(TASK_RUNNING);

		/* Execute the command */
		cmd->ret = ccp_run_cmd(cmd_q, cmd);

		/* Schedule the completion callback */
370 371 372 373
		tdata.cmd = cmd;
		init_completion(&tdata.completion);
		tasklet_schedule(&tasklet);
		wait_for_completion(&tdata.completion);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	}

	__set_current_state(TASK_RUNNING);

	return 0;
}

/**
 * ccp_alloc_struct - allocate and initialize the ccp_device struct
 *
 * @dev: device struct of the CCP
 */
struct ccp_device *ccp_alloc_struct(struct device *dev)
{
	struct ccp_device *ccp;

390
	ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL);
391
	if (!ccp)
392 393 394 395 396 397 398 399 400 401 402 403
		return NULL;
	ccp->dev = dev;

	INIT_LIST_HEAD(&ccp->cmd);
	INIT_LIST_HEAD(&ccp->backlog);

	spin_lock_init(&ccp->cmd_lock);
	mutex_init(&ccp->req_mutex);
	mutex_init(&ccp->ksb_mutex);
	ccp->ksb_count = KSB_COUNT;
	ccp->ksb_start = 0;

404 405 406 407
	ccp->ord = ccp_increment_unit_ordinal();
	snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", ccp->ord);
	snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", ccp->ord);

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	return ccp;
}

#ifdef CONFIG_PM
bool ccp_queues_suspended(struct ccp_device *ccp)
{
	unsigned int suspended = 0;
	unsigned long flags;
	unsigned int i;

	spin_lock_irqsave(&ccp->cmd_lock, flags);

	for (i = 0; i < ccp->cmd_q_count; i++)
		if (ccp->cmd_q[i].suspended)
			suspended++;

	spin_unlock_irqrestore(&ccp->cmd_lock, flags);

	return ccp->cmd_q_count == suspended;
}
#endif

static int __init ccp_mod_init(void)
{
432
#ifdef CONFIG_X86
433
	int ret;
434

435 436 437
	ret = ccp_pci_init();
	if (ret)
		return ret;
438

439
	/* Don't leave the driver loaded if init failed */
440
	if (ccp_present() != 0) {
441 442
		ccp_pci_exit();
		return -ENODEV;
443
	}
444 445

	return 0;
446 447 448 449 450 451 452 453 454 455
#endif

#ifdef CONFIG_ARM64
	int ret;

	ret = ccp_platform_init();
	if (ret)
		return ret;

	/* Don't leave the driver loaded if init failed */
456
	if (ccp_present() != 0) {
457 458 459 460 461 462
		ccp_platform_exit();
		return -ENODEV;
	}

	return 0;
#endif
463 464 465 466 467 468

	return -ENODEV;
}

static void __exit ccp_mod_exit(void)
{
469
#ifdef CONFIG_X86
470
	ccp_pci_exit();
471 472 473 474 475
#endif

#ifdef CONFIG_ARM64
	ccp_platform_exit();
#endif
476 477 478 479
}

module_init(ccp_mod_init);
module_exit(ccp_mod_exit);