machine_kexec_64.c 12.9 KB
Newer Older
1
/*
D
Dave Jones 已提交
2
 * handle transition of Linux booting another kernel
3 4 5 6 7 8
 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */

9 10
#define pr_fmt(fmt)	"kexec: " fmt

11 12 13
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/string.h>
14
#include <linux/gfp.h>
15
#include <linux/reboot.h>
K
Ken'ichi Ohmichi 已提交
16
#include <linux/numa.h>
I
Ingo Molnar 已提交
17
#include <linux/ftrace.h>
18
#include <linux/io.h>
19
#include <linux/suspend.h>
I
Ingo Molnar 已提交
20

21
#include <asm/init.h>
22 23 24
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
25
#include <asm/debugreg.h>
26
#include <asm/kexec-bzimage64.h>
27

28
#ifdef CONFIG_KEXEC_FILE
29
static struct kexec_file_ops *kexec_file_loaders[] = {
30
		&kexec_bzImage64_ops,
31
};
32
#endif
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static void free_transition_pgtable(struct kimage *image)
{
	free_page((unsigned long)image->arch.pud);
	free_page((unsigned long)image->arch.pmd);
	free_page((unsigned long)image->arch.pte);
}

static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
{
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	unsigned long vaddr, paddr;
	int result = -ENOMEM;

	vaddr = (unsigned long)relocate_kernel;
	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
	pgd += pgd_index(vaddr);
	if (!pgd_present(*pgd)) {
		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
		if (!pud)
			goto err;
		image->arch.pud = pud;
		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
	}
	pud = pud_offset(pgd, vaddr);
	if (!pud_present(*pud)) {
		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
		if (!pmd)
			goto err;
		image->arch.pmd = pmd;
		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
	}
	pmd = pmd_offset(pud, vaddr);
	if (!pmd_present(*pmd)) {
		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
		if (!pte)
			goto err;
		image->arch.pte = pte;
		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
	}
	pte = pte_offset_kernel(pmd, vaddr);
	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
	return 0;
err:
	free_transition_pgtable(image);
	return result;
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
static void *alloc_pgt_page(void *data)
{
	struct kimage *image = (struct kimage *)data;
	struct page *page;
	void *p = NULL;

	page = kimage_alloc_control_pages(image, 0);
	if (page) {
		p = page_address(page);
		clear_page(p);
	}

	return p;
}

98 99
static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
{
100 101 102 103 104
	struct x86_mapping_info info = {
		.alloc_pgt_page	= alloc_pgt_page,
		.context	= image,
		.pmd_flag	= __PAGE_KERNEL_LARGE_EXEC,
	};
105
	unsigned long mstart, mend;
106
	pgd_t *level4p;
107
	int result;
108 109
	int i;

110
	level4p = (pgd_t *)__va(start_pgtable);
111
	clear_page(level4p);
112 113 114 115 116 117 118 119 120
	for (i = 0; i < nr_pfn_mapped; i++) {
		mstart = pfn_mapped[i].start << PAGE_SHIFT;
		mend   = pfn_mapped[i].end << PAGE_SHIFT;

		result = kernel_ident_mapping_init(&info,
						 level4p, mstart, mend);
		if (result)
			return result;
	}
121

122
	/*
123 124 125 126
	 * segments's mem ranges could be outside 0 ~ max_pfn,
	 * for example when jump back to original kernel from kexeced kernel.
	 * or first kernel is booted with user mem map, and second kernel
	 * could be loaded out of that range.
127
	 */
128 129 130 131
	for (i = 0; i < image->nr_segments; i++) {
		mstart = image->segment[i].mem;
		mend   = mstart + image->segment[i].memsz;

132 133
		result = kernel_ident_mapping_init(&info,
						 level4p, mstart, mend);
134 135 136 137 138

		if (result)
			return result;
	}

139
	return init_transition_pgtable(image, level4p);
140 141 142 143
}

static void set_idt(void *newidt, u16 limit)
{
144
	struct desc_ptr curidt;
145 146

	/* x86-64 supports unaliged loads & stores */
147 148
	curidt.size    = limit;
	curidt.address = (unsigned long)newidt;
149 150

	__asm__ __volatile__ (
151 152
		"lidtq %0\n"
		: : "m" (curidt)
153 154 155 156 157 158
		);
};


static void set_gdt(void *newgdt, u16 limit)
{
159
	struct desc_ptr curgdt;
160 161

	/* x86-64 supports unaligned loads & stores */
162 163
	curgdt.size    = limit;
	curgdt.address = (unsigned long)newgdt;
164 165

	__asm__ __volatile__ (
166 167
		"lgdtq %0\n"
		: : "m" (curgdt)
168 169 170 171 172 173
		);
};

static void load_segments(void)
{
	__asm__ __volatile__ (
174 175 176 177 178
		"\tmovl %0,%%ds\n"
		"\tmovl %0,%%es\n"
		"\tmovl %0,%%ss\n"
		"\tmovl %0,%%fs\n"
		"\tmovl %0,%%gs\n"
M
Michael Matz 已提交
179
		: : "a" (__KERNEL_DS) : "memory"
180 181 182
		);
}

183
#ifdef CONFIG_KEXEC_FILE
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/* Update purgatory as needed after various image segments have been prepared */
static int arch_update_purgatory(struct kimage *image)
{
	int ret = 0;

	if (!image->file_mode)
		return 0;

	/* Setup copying of backup region */
	if (image->type == KEXEC_TYPE_CRASH) {
		ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
				&image->arch.backup_load_addr,
				sizeof(image->arch.backup_load_addr), 0);
		if (ret)
			return ret;

		ret = kexec_purgatory_get_set_symbol(image, "backup_src",
				&image->arch.backup_src_start,
				sizeof(image->arch.backup_src_start), 0);
		if (ret)
			return ret;

		ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
				&image->arch.backup_src_sz,
				sizeof(image->arch.backup_src_sz), 0);
		if (ret)
			return ret;
	}

	return ret;
}
215 216 217 218 219 220
#else /* !CONFIG_KEXEC_FILE */
static inline int arch_update_purgatory(struct kimage *image)
{
	return 0;
}
#endif /* CONFIG_KEXEC_FILE */
221

222 223
int machine_kexec_prepare(struct kimage *image)
{
224
	unsigned long start_pgtable;
225 226 227
	int result;

	/* Calculate the offsets */
M
Maneesh Soni 已提交
228
	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
229 230 231

	/* Setup the identity mapped 64bit page table */
	result = init_pgtable(image, start_pgtable);
M
Maneesh Soni 已提交
232
	if (result)
233 234
		return result;

235 236 237 238 239
	/* update purgatory as needed */
	result = arch_update_purgatory(image);
	if (result)
		return result;

240 241 242 243 244
	return 0;
}

void machine_kexec_cleanup(struct kimage *image)
{
245
	free_transition_pgtable(image);
246 247 248 249 250 251
}

/*
 * Do not allocate memory (or fail in any way) in machine_kexec().
 * We are past the point of no return, committed to rebooting now.
 */
H
Huang Ying 已提交
252
void machine_kexec(struct kimage *image)
253
{
254 255
	unsigned long page_list[PAGES_NR];
	void *control_page;
256
	int save_ftrace_enabled;
257

258
#ifdef CONFIG_KEXEC_JUMP
259
	if (image->preserve_context)
260 261 262 263
		save_processor_state();
#endif

	save_ftrace_enabled = __ftrace_enabled_save();
I
Ingo Molnar 已提交
264

265 266
	/* Interrupts aren't acceptable while we reboot */
	local_irq_disable();
267
	hw_breakpoint_disable();
268

269 270 271 272 273 274 275 276 277 278 279 280 281
	if (image->preserve_context) {
#ifdef CONFIG_X86_IO_APIC
		/*
		 * We need to put APICs in legacy mode so that we can
		 * get timer interrupts in second kernel. kexec/kdump
		 * paths already have calls to disable_IO_APIC() in
		 * one form or other. kexec jump path also need
		 * one.
		 */
		disable_IO_APIC();
#endif
	}

282
	control_page = page_address(image->control_code_page) + PAGE_SIZE;
283
	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
284

285
	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
286
	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
287 288
	page_list[PA_TABLE_PAGE] =
	  (unsigned long)__pa(page_address(image->control_code_page));
289

290 291 292 293
	if (image->type == KEXEC_TYPE_DEFAULT)
		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
						<< PAGE_SHIFT);

294 295
	/*
	 * The segment registers are funny things, they have both a
296 297 298 299
	 * visible and an invisible part.  Whenever the visible part is
	 * set to a specific selector, the invisible part is loaded
	 * with from a table in memory.  At no other time is the
	 * descriptor table in memory accessed.
300 301 302 303 304
	 *
	 * I take advantage of this here by force loading the
	 * segments, before I zap the gdt with an invalid value.
	 */
	load_segments();
305 306
	/*
	 * The gdt & idt are now invalid.
307 308
	 * If you want to load them you must set up your own idt & gdt.
	 */
309 310
	set_gdt(phys_to_virt(0), 0);
	set_idt(phys_to_virt(0), 0);
311

312
	/* now call it */
313 314 315 316 317 318
	image->start = relocate_kernel((unsigned long)image->head,
				       (unsigned long)page_list,
				       image->start,
				       image->preserve_context);

#ifdef CONFIG_KEXEC_JUMP
319
	if (image->preserve_context)
320 321 322 323
		restore_processor_state();
#endif

	__ftrace_enabled_restore(save_ftrace_enabled);
324
}
325

K
Ken'ichi Ohmichi 已提交
326 327
void arch_crash_save_vmcoreinfo(void)
{
328
	VMCOREINFO_SYMBOL(phys_base);
329
	VMCOREINFO_SYMBOL(init_level4_pgt);
330 331 332 333 334

#ifdef CONFIG_NUMA
	VMCOREINFO_SYMBOL(node_data);
	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
#endif
335 336
	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
			      (unsigned long)&_text - __START_KERNEL);
K
Ken'ichi Ohmichi 已提交
337 338
}

339 340
/* arch-dependent functionality related to kexec file-based syscall */

341
#ifdef CONFIG_KEXEC_FILE
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
				  unsigned long buf_len)
{
	int i, ret = -ENOEXEC;
	struct kexec_file_ops *fops;

	for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
		fops = kexec_file_loaders[i];
		if (!fops || !fops->probe)
			continue;

		ret = fops->probe(buf, buf_len);
		if (!ret) {
			image->fops = fops;
			return ret;
		}
	}

	return ret;
}

void *arch_kexec_kernel_image_load(struct kimage *image)
{
365 366 367
	vfree(image->arch.elf_headers);
	image->arch.elf_headers = NULL;

368 369 370 371 372 373 374 375 376 377 378 379 380 381
	if (!image->fops || !image->fops->load)
		return ERR_PTR(-ENOEXEC);

	return image->fops->load(image, image->kernel_buf,
				 image->kernel_buf_len, image->initrd_buf,
				 image->initrd_buf_len, image->cmdline_buf,
				 image->cmdline_buf_len);
}

int arch_kimage_file_post_load_cleanup(struct kimage *image)
{
	if (!image->fops || !image->fops->cleanup)
		return 0;

382
	return image->fops->cleanup(image->image_loader_data);
383
}
384

385 386 387 388 389 390 391 392 393 394 395
int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
				 unsigned long kernel_len)
{
	if (!image->fops || !image->fops->verify_sig) {
		pr_debug("kernel loader does not support signature verification.");
		return -EKEYREJECTED;
	}

	return image->fops->verify_sig(kernel, kernel_len);
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
/*
 * Apply purgatory relocations.
 *
 * ehdr: Pointer to elf headers
 * sechdrs: Pointer to section headers.
 * relsec: section index of SHT_RELA section.
 *
 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
 */
int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
				     Elf64_Shdr *sechdrs, unsigned int relsec)
{
	unsigned int i;
	Elf64_Rela *rel;
	Elf64_Sym *sym;
	void *location;
	Elf64_Shdr *section, *symtabsec;
	unsigned long address, sec_base, value;
	const char *strtab, *name, *shstrtab;

	/*
	 * ->sh_offset has been modified to keep the pointer to section
	 * contents in memory
	 */
	rel = (void *)sechdrs[relsec].sh_offset;

	/* Section to which relocations apply */
	section = &sechdrs[sechdrs[relsec].sh_info];

	pr_debug("Applying relocate section %u to %u\n", relsec,
		 sechdrs[relsec].sh_info);

	/* Associated symbol table */
	symtabsec = &sechdrs[sechdrs[relsec].sh_link];

	/* String table */
	if (symtabsec->sh_link >= ehdr->e_shnum) {
		/* Invalid strtab section number */
		pr_err("Invalid string table section index %d\n",
		       symtabsec->sh_link);
		return -ENOEXEC;
	}

	strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;

	/* section header string table */
	shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;

	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {

		/*
		 * rel[i].r_offset contains byte offset from beginning
		 * of section to the storage unit affected.
		 *
		 * This is location to update (->sh_offset). This is temporary
		 * buffer where section is currently loaded. This will finally
		 * be loaded to a different address later, pointed to by
		 * ->sh_addr. kexec takes care of moving it
		 *  (kexec_load_segment()).
		 */
		location = (void *)(section->sh_offset + rel[i].r_offset);

		/* Final address of the location */
		address = section->sh_addr + rel[i].r_offset;

		/*
		 * rel[i].r_info contains information about symbol table index
		 * w.r.t which relocation must be made and type of relocation
		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
		 * these respectively.
		 */
		sym = (Elf64_Sym *)symtabsec->sh_offset +
				ELF64_R_SYM(rel[i].r_info);

		if (sym->st_name)
			name = strtab + sym->st_name;
		else
			name = shstrtab + sechdrs[sym->st_shndx].sh_name;

		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
			 name, sym->st_info, sym->st_shndx, sym->st_value,
			 sym->st_size);

		if (sym->st_shndx == SHN_UNDEF) {
			pr_err("Undefined symbol: %s\n", name);
			return -ENOEXEC;
		}

		if (sym->st_shndx == SHN_COMMON) {
			pr_err("symbol '%s' in common section\n", name);
			return -ENOEXEC;
		}

		if (sym->st_shndx == SHN_ABS)
			sec_base = 0;
		else if (sym->st_shndx >= ehdr->e_shnum) {
			pr_err("Invalid section %d for symbol %s\n",
			       sym->st_shndx, name);
			return -ENOEXEC;
		} else
			sec_base = sechdrs[sym->st_shndx].sh_addr;

		value = sym->st_value;
		value += sec_base;
		value += rel[i].r_addend;

		switch (ELF64_R_TYPE(rel[i].r_info)) {
		case R_X86_64_NONE:
			break;
		case R_X86_64_64:
			*(u64 *)location = value;
			break;
		case R_X86_64_32:
			*(u32 *)location = value;
			if (value != *(u32 *)location)
				goto overflow;
			break;
		case R_X86_64_32S:
			*(s32 *)location = value;
			if ((s64)value != *(s32 *)location)
				goto overflow;
			break;
		case R_X86_64_PC32:
			value -= (u64)address;
			*(u32 *)location = value;
			break;
		default:
			pr_err("Unknown rela relocation: %llu\n",
			       ELF64_R_TYPE(rel[i].r_info));
			return -ENOEXEC;
		}
	}
	return 0;

overflow:
	pr_err("Overflow in relocation type %d value 0x%lx\n",
	       (int)ELF64_R_TYPE(rel[i].r_info), value);
	return -ENOEXEC;
}
535
#endif /* CONFIG_KEXEC_FILE */