volumes.c 92.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */
#include <linux/sched.h>
#include <linux/bio.h>
20
#include <linux/slab.h>
21
#include <linux/buffer_head.h>
22
#include <linux/blkdev.h>
23
#include <linux/random.h>
24
#include <linux/iocontext.h>
25
#include <linux/capability.h>
26
#include <asm/div64.h>
C
Chris Mason 已提交
27
#include "compat.h"
28 29 30 31 32 33
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
34
#include "async-thread.h"
35

Y
Yan Zheng 已提交
36 37 38 39 40
static int init_first_rw_device(struct btrfs_trans_handle *trans,
				struct btrfs_root *root,
				struct btrfs_device *device);
static int btrfs_relocate_sys_chunks(struct btrfs_root *root);

41
#define map_lookup_size(n) (sizeof(struct map_lookup) + \
42
			    (sizeof(struct btrfs_bio_stripe) * (n)))
43

44 45 46
static DEFINE_MUTEX(uuid_mutex);
static LIST_HEAD(fs_uuids);

47 48 49 50 51 52 53 54 55 56
void btrfs_lock_volumes(void)
{
	mutex_lock(&uuid_mutex);
}

void btrfs_unlock_volumes(void)
{
	mutex_unlock(&uuid_mutex);
}

57 58 59 60 61 62 63 64 65 66
static void lock_chunks(struct btrfs_root *root)
{
	mutex_lock(&root->fs_info->chunk_mutex);
}

static void unlock_chunks(struct btrfs_root *root)
{
	mutex_unlock(&root->fs_info->chunk_mutex);
}

Y
Yan Zheng 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_device *device;
	WARN_ON(fs_devices->opened);
	while (!list_empty(&fs_devices->devices)) {
		device = list_entry(fs_devices->devices.next,
				    struct btrfs_device, dev_list);
		list_del(&device->dev_list);
		kfree(device->name);
		kfree(device);
	}
	kfree(fs_devices);
}

81 82 83 84
int btrfs_cleanup_fs_uuids(void)
{
	struct btrfs_fs_devices *fs_devices;

Y
Yan Zheng 已提交
85 86 87 88
	while (!list_empty(&fs_uuids)) {
		fs_devices = list_entry(fs_uuids.next,
					struct btrfs_fs_devices, list);
		list_del(&fs_devices->list);
Y
Yan Zheng 已提交
89
		free_fs_devices(fs_devices);
90 91 92 93
	}
	return 0;
}

94 95
static noinline struct btrfs_device *__find_device(struct list_head *head,
						   u64 devid, u8 *uuid)
96 97 98
{
	struct btrfs_device *dev;

99
	list_for_each_entry(dev, head, dev_list) {
100
		if (dev->devid == devid &&
101
		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
102
			return dev;
103
		}
104 105 106 107
	}
	return NULL;
}

108
static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
109 110 111
{
	struct btrfs_fs_devices *fs_devices;

112
	list_for_each_entry(fs_devices, &fs_uuids, list) {
113 114 115 116 117 118
		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
			return fs_devices;
	}
	return NULL;
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132
static void requeue_list(struct btrfs_pending_bios *pending_bios,
			struct bio *head, struct bio *tail)
{

	struct bio *old_head;

	old_head = pending_bios->head;
	pending_bios->head = head;
	if (pending_bios->tail)
		tail->bi_next = old_head;
	else
		pending_bios->tail = tail;
}

133 134 135 136 137 138 139 140 141 142 143
/*
 * we try to collect pending bios for a device so we don't get a large
 * number of procs sending bios down to the same device.  This greatly
 * improves the schedulers ability to collect and merge the bios.
 *
 * But, it also turns into a long list of bios to process and that is sure
 * to eventually make the worker thread block.  The solution here is to
 * make some progress and then put this work struct back at the end of
 * the list if the block device is congested.  This way, multiple devices
 * can make progress from a single worker thread.
 */
144
static noinline int run_scheduled_bios(struct btrfs_device *device)
145 146 147
{
	struct bio *pending;
	struct backing_dev_info *bdi;
148
	struct btrfs_fs_info *fs_info;
149
	struct btrfs_pending_bios *pending_bios;
150 151 152
	struct bio *tail;
	struct bio *cur;
	int again = 0;
153 154
	unsigned long num_run;
	unsigned long num_sync_run;
155
	unsigned long batch_run = 0;
156
	unsigned long limit;
157
	unsigned long last_waited = 0;
158
	int force_reg = 0;
159

160
	bdi = blk_get_backing_dev_info(device->bdev);
161 162 163 164
	fs_info = device->dev_root->fs_info;
	limit = btrfs_async_submit_limit(fs_info);
	limit = limit * 2 / 3;

165 166 167 168 169
	/* we want to make sure that every time we switch from the sync
	 * list to the normal list, we unplug
	 */
	num_sync_run = 0;

170 171 172
loop:
	spin_lock(&device->io_lock);

173
loop_lock:
174
	num_run = 0;
175

176 177 178 179 180
	/* take all the bios off the list at once and process them
	 * later on (without the lock held).  But, remember the
	 * tail and other pointers so the bios can be properly reinserted
	 * into the list if we hit congestion
	 */
181
	if (!force_reg && device->pending_sync_bios.head) {
182
		pending_bios = &device->pending_sync_bios;
183 184
		force_reg = 1;
	} else {
185
		pending_bios = &device->pending_bios;
186 187
		force_reg = 0;
	}
188 189 190

	pending = pending_bios->head;
	tail = pending_bios->tail;
191 192 193 194 195 196 197 198 199 200
	WARN_ON(pending && !tail);

	/*
	 * if pending was null this time around, no bios need processing
	 * at all and we can stop.  Otherwise it'll loop back up again
	 * and do an additional check so no bios are missed.
	 *
	 * device->running_pending is used to synchronize with the
	 * schedule_bio code.
	 */
201 202
	if (device->pending_sync_bios.head == NULL &&
	    device->pending_bios.head == NULL) {
203 204
		again = 0;
		device->running_pending = 0;
205 206 207
	} else {
		again = 1;
		device->running_pending = 1;
208
	}
209 210 211 212

	pending_bios->head = NULL;
	pending_bios->tail = NULL;

213 214
	spin_unlock(&device->io_lock);

215 216 217 218 219 220 221 222 223
	/*
	 * if we're doing the regular priority list, make sure we unplug
	 * for any high prio bios we've sent down
	 */
	if (pending_bios == &device->pending_bios && num_sync_run > 0) {
		num_sync_run = 0;
		blk_run_backing_dev(bdi, NULL);
	}

224
	while (pending) {
225 226

		rmb();
227 228 229 230 231 232 233 234
		/* we want to work on both lists, but do more bios on the
		 * sync list than the regular list
		 */
		if ((num_run > 32 &&
		    pending_bios != &device->pending_sync_bios &&
		    device->pending_sync_bios.head) ||
		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
		    device->pending_bios.head)) {
235 236 237 238 239
			spin_lock(&device->io_lock);
			requeue_list(pending_bios, pending, tail);
			goto loop_lock;
		}

240 241 242
		cur = pending;
		pending = pending->bi_next;
		cur->bi_next = NULL;
243 244 245 246 247
		atomic_dec(&fs_info->nr_async_bios);

		if (atomic_read(&fs_info->nr_async_bios) < limit &&
		    waitqueue_active(&fs_info->async_submit_wait))
			wake_up(&fs_info->async_submit_wait);
248 249

		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
250

251
		if (cur->bi_rw & REQ_SYNC)
252 253
			num_sync_run++;

254 255 256
		submit_bio(cur->bi_rw, cur);
		num_run++;
		batch_run++;
257 258 259 260 261 262 263
		if (need_resched()) {
			if (num_sync_run) {
				blk_run_backing_dev(bdi, NULL);
				num_sync_run = 0;
			}
			cond_resched();
		}
264 265 266 267 268 269

		/*
		 * we made progress, there is more work to do and the bdi
		 * is now congested.  Back off and let other work structs
		 * run instead
		 */
270
		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
271
		    fs_info->fs_devices->open_devices > 1) {
272
			struct io_context *ioc;
273

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
			ioc = current->io_context;

			/*
			 * the main goal here is that we don't want to
			 * block if we're going to be able to submit
			 * more requests without blocking.
			 *
			 * This code does two great things, it pokes into
			 * the elevator code from a filesystem _and_
			 * it makes assumptions about how batching works.
			 */
			if (ioc && ioc->nr_batch_requests > 0 &&
			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
			    (last_waited == 0 ||
			     ioc->last_waited == last_waited)) {
				/*
				 * we want to go through our batch of
				 * requests and stop.  So, we copy out
				 * the ioc->last_waited time and test
				 * against it before looping
				 */
				last_waited = ioc->last_waited;
296 297 298 299 300 301 302
				if (need_resched()) {
					if (num_sync_run) {
						blk_run_backing_dev(bdi, NULL);
						num_sync_run = 0;
					}
					cond_resched();
				}
303 304
				continue;
			}
305
			spin_lock(&device->io_lock);
306
			requeue_list(pending_bios, pending, tail);
307
			device->running_pending = 1;
308 309 310 311 312 313

			spin_unlock(&device->io_lock);
			btrfs_requeue_work(&device->work);
			goto done;
		}
	}
314 315 316 317 318

	if (num_sync_run) {
		num_sync_run = 0;
		blk_run_backing_dev(bdi, NULL);
	}
319 320 321 322 323 324 325 326 327 328 329
	/*
	 * IO has already been through a long path to get here.  Checksumming,
	 * async helper threads, perhaps compression.  We've done a pretty
	 * good job of collecting a batch of IO and should just unplug
	 * the device right away.
	 *
	 * This will help anyone who is waiting on the IO, they might have
	 * already unplugged, but managed to do so before the bio they
	 * cared about found its way down here.
	 */
	blk_run_backing_dev(bdi, NULL);
330 331 332 333 334 335 336 337 338 339

	cond_resched();
	if (again)
		goto loop;

	spin_lock(&device->io_lock);
	if (device->pending_bios.head || device->pending_sync_bios.head)
		goto loop_lock;
	spin_unlock(&device->io_lock);

340 341 342 343
done:
	return 0;
}

344
static void pending_bios_fn(struct btrfs_work *work)
345 346 347 348 349 350 351
{
	struct btrfs_device *device;

	device = container_of(work, struct btrfs_device, work);
	run_scheduled_bios(device);
}

352
static noinline int device_list_add(const char *path,
353 354 355 356 357 358
			   struct btrfs_super_block *disk_super,
			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices;
	u64 found_transid = btrfs_super_generation(disk_super);
359
	char *name;
360 361 362

	fs_devices = find_fsid(disk_super->fsid);
	if (!fs_devices) {
363
		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
364 365 366
		if (!fs_devices)
			return -ENOMEM;
		INIT_LIST_HEAD(&fs_devices->devices);
367
		INIT_LIST_HEAD(&fs_devices->alloc_list);
368 369 370 371
		list_add(&fs_devices->list, &fs_uuids);
		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
372
		mutex_init(&fs_devices->device_list_mutex);
373 374
		device = NULL;
	} else {
375 376
		device = __find_device(&fs_devices->devices, devid,
				       disk_super->dev_item.uuid);
377 378
	}
	if (!device) {
Y
Yan Zheng 已提交
379 380 381
		if (fs_devices->opened)
			return -EBUSY;

382 383 384 385 386 387
		device = kzalloc(sizeof(*device), GFP_NOFS);
		if (!device) {
			/* we can safely leave the fs_devices entry around */
			return -ENOMEM;
		}
		device->devid = devid;
388
		device->work.func = pending_bios_fn;
389 390
		memcpy(device->uuid, disk_super->dev_item.uuid,
		       BTRFS_UUID_SIZE);
391
		spin_lock_init(&device->io_lock);
392 393 394 395 396
		device->name = kstrdup(path, GFP_NOFS);
		if (!device->name) {
			kfree(device);
			return -ENOMEM;
		}
Y
Yan Zheng 已提交
397
		INIT_LIST_HEAD(&device->dev_alloc_list);
398 399

		mutex_lock(&fs_devices->device_list_mutex);
400
		list_add(&device->dev_list, &fs_devices->devices);
401 402
		mutex_unlock(&fs_devices->device_list_mutex);

Y
Yan Zheng 已提交
403
		device->fs_devices = fs_devices;
404
		fs_devices->num_devices++;
405
	} else if (!device->name || strcmp(device->name, path)) {
406 407 408 409 410
		name = kstrdup(path, GFP_NOFS);
		if (!name)
			return -ENOMEM;
		kfree(device->name);
		device->name = name;
411 412 413 414
		if (device->missing) {
			fs_devices->missing_devices--;
			device->missing = 0;
		}
415 416 417 418 419 420 421 422 423 424
	}

	if (found_transid > fs_devices->latest_trans) {
		fs_devices->latest_devid = devid;
		fs_devices->latest_trans = found_transid;
	}
	*fs_devices_ret = fs_devices;
	return 0;
}

Y
Yan Zheng 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437
static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
{
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_device *device;
	struct btrfs_device *orig_dev;

	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
	if (!fs_devices)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&fs_devices->devices);
	INIT_LIST_HEAD(&fs_devices->alloc_list);
	INIT_LIST_HEAD(&fs_devices->list);
438
	mutex_init(&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
439 440 441 442
	fs_devices->latest_devid = orig->latest_devid;
	fs_devices->latest_trans = orig->latest_trans;
	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));

443
	mutex_lock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
444 445 446 447 448 449
	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
		device = kzalloc(sizeof(*device), GFP_NOFS);
		if (!device)
			goto error;

		device->name = kstrdup(orig_dev->name, GFP_NOFS);
450 451
		if (!device->name) {
			kfree(device);
Y
Yan Zheng 已提交
452
			goto error;
453
		}
Y
Yan Zheng 已提交
454 455 456 457 458 459 460 461 462 463 464 465

		device->devid = orig_dev->devid;
		device->work.func = pending_bios_fn;
		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
		spin_lock_init(&device->io_lock);
		INIT_LIST_HEAD(&device->dev_list);
		INIT_LIST_HEAD(&device->dev_alloc_list);

		list_add(&device->dev_list, &fs_devices->devices);
		device->fs_devices = fs_devices;
		fs_devices->num_devices++;
	}
466
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
467 468
	return fs_devices;
error:
469
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
470 471 472 473
	free_fs_devices(fs_devices);
	return ERR_PTR(-ENOMEM);
}

474 475
int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
{
476
	struct btrfs_device *device, *next;
477 478 479

	mutex_lock(&uuid_mutex);
again:
480
	mutex_lock(&fs_devices->device_list_mutex);
481
	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
Y
Yan Zheng 已提交
482 483 484 485
		if (device->in_fs_metadata)
			continue;

		if (device->bdev) {
486
			blkdev_put(device->bdev, device->mode);
Y
Yan Zheng 已提交
487 488 489 490 491 492 493 494
			device->bdev = NULL;
			fs_devices->open_devices--;
		}
		if (device->writeable) {
			list_del_init(&device->dev_alloc_list);
			device->writeable = 0;
			fs_devices->rw_devices--;
		}
Y
Yan Zheng 已提交
495 496 497 498
		list_del_init(&device->dev_list);
		fs_devices->num_devices--;
		kfree(device->name);
		kfree(device);
499
	}
500
	mutex_unlock(&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
501 502 503 504 505 506

	if (fs_devices->seed) {
		fs_devices = fs_devices->seed;
		goto again;
	}

507 508 509
	mutex_unlock(&uuid_mutex);
	return 0;
}
510

Y
Yan Zheng 已提交
511
static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
512 513
{
	struct btrfs_device *device;
Y
Yan Zheng 已提交
514

Y
Yan Zheng 已提交
515 516
	if (--fs_devices->opened > 0)
		return 0;
517

518
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
519
		if (device->bdev) {
520
			blkdev_put(device->bdev, device->mode);
521
			fs_devices->open_devices--;
522
		}
Y
Yan Zheng 已提交
523 524 525 526 527
		if (device->writeable) {
			list_del_init(&device->dev_alloc_list);
			fs_devices->rw_devices--;
		}

528
		device->bdev = NULL;
Y
Yan Zheng 已提交
529
		device->writeable = 0;
530
		device->in_fs_metadata = 0;
531
	}
Y
Yan Zheng 已提交
532 533
	WARN_ON(fs_devices->open_devices);
	WARN_ON(fs_devices->rw_devices);
Y
Yan Zheng 已提交
534 535 536
	fs_devices->opened = 0;
	fs_devices->seeding = 0;

537 538 539
	return 0;
}

Y
Yan Zheng 已提交
540 541
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
Y
Yan Zheng 已提交
542
	struct btrfs_fs_devices *seed_devices = NULL;
Y
Yan Zheng 已提交
543 544 545 546
	int ret;

	mutex_lock(&uuid_mutex);
	ret = __btrfs_close_devices(fs_devices);
Y
Yan Zheng 已提交
547 548 549 550
	if (!fs_devices->opened) {
		seed_devices = fs_devices->seed;
		fs_devices->seed = NULL;
	}
Y
Yan Zheng 已提交
551
	mutex_unlock(&uuid_mutex);
Y
Yan Zheng 已提交
552 553 554 555 556 557 558

	while (seed_devices) {
		fs_devices = seed_devices;
		seed_devices = fs_devices->seed;
		__btrfs_close_devices(fs_devices);
		free_fs_devices(fs_devices);
	}
Y
Yan Zheng 已提交
559 560 561
	return ret;
}

Y
Yan Zheng 已提交
562 563
static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
				fmode_t flags, void *holder)
564 565 566 567
{
	struct block_device *bdev;
	struct list_head *head = &fs_devices->devices;
	struct btrfs_device *device;
568 569 570 571 572 573
	struct block_device *latest_bdev = NULL;
	struct buffer_head *bh;
	struct btrfs_super_block *disk_super;
	u64 latest_devid = 0;
	u64 latest_transid = 0;
	u64 devid;
Y
Yan Zheng 已提交
574
	int seeding = 1;
575
	int ret = 0;
576

577 578
	flags |= FMODE_EXCL;

579
	list_for_each_entry(device, head, dev_list) {
580 581
		if (device->bdev)
			continue;
582 583 584
		if (!device->name)
			continue;

585
		bdev = blkdev_get_by_path(device->name, flags, holder);
586
		if (IS_ERR(bdev)) {
587
			printk(KERN_INFO "open %s failed\n", device->name);
588
			goto error;
589
		}
590
		set_blocksize(bdev, 4096);
591

Y
Yan Zheng 已提交
592
		bh = btrfs_read_dev_super(bdev);
593 594
		if (!bh) {
			ret = -EINVAL;
595
			goto error_close;
596
		}
597 598

		disk_super = (struct btrfs_super_block *)bh->b_data;
599
		devid = btrfs_stack_device_id(&disk_super->dev_item);
600 601 602
		if (devid != device->devid)
			goto error_brelse;

Y
Yan Zheng 已提交
603 604 605 606 607 608
		if (memcmp(device->uuid, disk_super->dev_item.uuid,
			   BTRFS_UUID_SIZE))
			goto error_brelse;

		device->generation = btrfs_super_generation(disk_super);
		if (!latest_transid || device->generation > latest_transid) {
609
			latest_devid = devid;
Y
Yan Zheng 已提交
610
			latest_transid = device->generation;
611 612 613
			latest_bdev = bdev;
		}

Y
Yan Zheng 已提交
614 615 616 617 618 619 620
		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
			device->writeable = 0;
		} else {
			device->writeable = !bdev_read_only(bdev);
			seeding = 0;
		}

621
		device->bdev = bdev;
622
		device->in_fs_metadata = 0;
623 624
		device->mode = flags;

625 626 627
		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
			fs_devices->rotating = 1;

628
		fs_devices->open_devices++;
Y
Yan Zheng 已提交
629 630 631 632 633
		if (device->writeable) {
			fs_devices->rw_devices++;
			list_add(&device->dev_alloc_list,
				 &fs_devices->alloc_list);
		}
634
		continue;
635

636 637 638
error_brelse:
		brelse(bh);
error_close:
639
		blkdev_put(bdev, flags);
640 641
error:
		continue;
642
	}
643 644 645 646
	if (fs_devices->open_devices == 0) {
		ret = -EIO;
		goto out;
	}
Y
Yan Zheng 已提交
647 648
	fs_devices->seeding = seeding;
	fs_devices->opened = 1;
649 650 651
	fs_devices->latest_bdev = latest_bdev;
	fs_devices->latest_devid = latest_devid;
	fs_devices->latest_trans = latest_transid;
Y
Yan Zheng 已提交
652
	fs_devices->total_rw_bytes = 0;
653
out:
Y
Yan Zheng 已提交
654 655 656 657
	return ret;
}

int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
658
		       fmode_t flags, void *holder)
Y
Yan Zheng 已提交
659 660 661 662 663
{
	int ret;

	mutex_lock(&uuid_mutex);
	if (fs_devices->opened) {
Y
Yan Zheng 已提交
664 665
		fs_devices->opened++;
		ret = 0;
Y
Yan Zheng 已提交
666
	} else {
667
		ret = __btrfs_open_devices(fs_devices, flags, holder);
Y
Yan Zheng 已提交
668
	}
669 670 671 672
	mutex_unlock(&uuid_mutex);
	return ret;
}

673
int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
674 675 676 677 678 679 680
			  struct btrfs_fs_devices **fs_devices_ret)
{
	struct btrfs_super_block *disk_super;
	struct block_device *bdev;
	struct buffer_head *bh;
	int ret;
	u64 devid;
681
	u64 transid;
682 683 684

	mutex_lock(&uuid_mutex);

685 686
	flags |= FMODE_EXCL;
	bdev = blkdev_get_by_path(path, flags, holder);
687 688 689 690 691 692 693 694 695

	if (IS_ERR(bdev)) {
		ret = PTR_ERR(bdev);
		goto error;
	}

	ret = set_blocksize(bdev, 4096);
	if (ret)
		goto error_close;
Y
Yan Zheng 已提交
696
	bh = btrfs_read_dev_super(bdev);
697
	if (!bh) {
698
		ret = -EINVAL;
699 700 701
		goto error_close;
	}
	disk_super = (struct btrfs_super_block *)bh->b_data;
702
	devid = btrfs_stack_device_id(&disk_super->dev_item);
703
	transid = btrfs_super_generation(disk_super);
704
	if (disk_super->label[0])
705
		printk(KERN_INFO "device label %s ", disk_super->label);
706 707
	else {
		/* FIXME, make a readl uuid parser */
708
		printk(KERN_INFO "device fsid %llx-%llx ",
709 710 711
		       *(unsigned long long *)disk_super->fsid,
		       *(unsigned long long *)(disk_super->fsid + 8));
	}
712
	printk(KERN_CONT "devid %llu transid %llu %s\n",
713
	       (unsigned long long)devid, (unsigned long long)transid, path);
714 715 716 717
	ret = device_list_add(path, disk_super, devid, fs_devices_ret);

	brelse(bh);
error_close:
718
	blkdev_put(bdev, flags);
719 720 721 722
error:
	mutex_unlock(&uuid_mutex);
	return ret;
}
723

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
/* helper to account the used device space in the range */
int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
				   u64 end, u64 *length)
{
	struct btrfs_key key;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent;
	struct btrfs_path *path;
	u64 extent_end;
	int ret;
	int slot;
	struct extent_buffer *l;

	*length = 0;

	if (start >= device->total_bytes)
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->reada = 2;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid, key.type);
		if (ret < 0)
			goto out;
	}

	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto out;

			break;
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
			break;

		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
			goto next;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		extent_end = key.offset + btrfs_dev_extent_length(l,
								  dev_extent);
		if (key.offset <= start && extent_end > end) {
			*length = end - start + 1;
			break;
		} else if (key.offset <= start && extent_end > start)
			*length += extent_end - start;
		else if (key.offset > start && extent_end <= end)
			*length += extent_end - key.offset;
		else if (key.offset > start && key.offset <= end) {
			*length += end - key.offset + 1;
			break;
		} else if (key.offset > end)
			break;

next:
		path->slots[0]++;
	}
	ret = 0;
out:
	btrfs_free_path(path);
	return ret;
}

808
/*
809 810 811 812 813 814 815 816
 * find_free_dev_extent - find free space in the specified device
 * @trans:	transaction handler
 * @device:	the device which we search the free space in
 * @num_bytes:	the size of the free space that we need
 * @start:	store the start of the free space.
 * @len:	the size of the free space. that we find, or the size of the max
 * 		free space if we don't find suitable free space
 *
817 818 819
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
820 821 822 823 824 825 826 827
 *
 * @start is used to store the start of the free space if we find. But if we
 * don't find suitable free space, it will be used to store the start position
 * of the max free space.
 *
 * @len is used to store the size of the free space that we find.
 * But if we don't find suitable free space, it is used to store the size of
 * the max free space.
828
 */
829 830
int find_free_dev_extent(struct btrfs_trans_handle *trans,
			 struct btrfs_device *device, u64 num_bytes,
831
			 u64 *start, u64 *len)
832 833 834
{
	struct btrfs_key key;
	struct btrfs_root *root = device->dev_root;
835
	struct btrfs_dev_extent *dev_extent;
Y
Yan Zheng 已提交
836
	struct btrfs_path *path;
837 838 839 840 841
	u64 hole_size;
	u64 max_hole_start;
	u64 max_hole_size;
	u64 extent_end;
	u64 search_start;
842 843
	u64 search_end = device->total_bytes;
	int ret;
844
	int slot;
845 846 847 848
	struct extent_buffer *l;

	/* FIXME use last free of some kind */

849 850 851
	/* we don't want to overwrite the superblock on the drive,
	 * so we make sure to start at an offset of at least 1MB
	 */
A
Arne Jansen 已提交
852
	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
853

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	max_hole_start = search_start;
	max_hole_size = 0;

	if (search_start >= search_end) {
		ret = -ENOSPC;
		goto error;
	}

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto error;
	}
	path->reada = 2;

869 870 871
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
872

873 874
	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
	if (ret < 0)
875
		goto out;
876 877 878
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid, key.type);
		if (ret < 0)
879
			goto out;
880
	}
881

882 883 884 885 886 887 888 889
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
890 891 892
				goto out;

			break;
893 894 895 896 897 898 899
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
900
			break;
901

902 903
		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
			goto next;
904

905 906
		if (key.offset > search_start) {
			hole_size = key.offset - search_start;
907

908 909 910 911
			if (hole_size > max_hole_size) {
				max_hole_start = search_start;
				max_hole_size = hole_size;
			}
912

913 914 915 916 917 918 919 920 921 922 923 924
			/*
			 * If this free space is greater than which we need,
			 * it must be the max free space that we have found
			 * until now, so max_hole_start must point to the start
			 * of this free space and the length of this free space
			 * is stored in max_hole_size. Thus, we return
			 * max_hole_start and max_hole_size and go back to the
			 * caller.
			 */
			if (hole_size >= num_bytes) {
				ret = 0;
				goto out;
925 926 927 928
			}
		}

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
929 930 931 932
		extent_end = key.offset + btrfs_dev_extent_length(l,
								  dev_extent);
		if (extent_end > search_start)
			search_start = extent_end;
933 934 935 936 937
next:
		path->slots[0]++;
		cond_resched();
	}

938 939 940 941
	hole_size = search_end- search_start;
	if (hole_size > max_hole_size) {
		max_hole_start = search_start;
		max_hole_size = hole_size;
942 943
	}

944 945 946 947 948 949 950
	/* See above. */
	if (hole_size < num_bytes)
		ret = -ENOSPC;
	else
		ret = 0;

out:
Y
Yan Zheng 已提交
951
	btrfs_free_path(path);
952 953
error:
	*start = max_hole_start;
954
	if (len)
955
		*len = max_hole_size;
956 957 958
	return ret;
}

959
static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
960 961 962 963 964 965 966
			  struct btrfs_device *device,
			  u64 start)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_key key;
967 968 969
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
970 971 972 973 974 975 976 977 978 979

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
		BUG_ON(ret);
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
		ret = 0;
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
	}
996 997
	BUG_ON(ret);

998 999
	if (device->bytes_used > 0)
		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
1000 1001 1002 1003 1004 1005 1006
	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);

	btrfs_free_path(path);
	return ret;
}

Y
Yan Zheng 已提交
1007
int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1008
			   struct btrfs_device *device,
1009
			   u64 chunk_tree, u64 chunk_objectid,
Y
Yan Zheng 已提交
1010
			   u64 chunk_offset, u64 start, u64 num_bytes)
1011 1012 1013 1014 1015 1016 1017 1018
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

1019
	WARN_ON(!device->in_fs_metadata);
1020 1021 1022 1023 1024
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
Y
Yan Zheng 已提交
1025
	key.offset = start;
1026 1027 1028 1029 1030 1031 1032 1033
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
	BUG_ON(ret);

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
1034 1035 1036 1037 1038 1039 1040 1041
	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
		    BTRFS_UUID_SIZE);

1042 1043 1044 1045 1046 1047
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
	btrfs_free_path(path);
	return ret;
}

1048 1049
static noinline int find_next_chunk(struct btrfs_root *root,
				    u64 objectid, u64 *offset)
1050 1051 1052 1053
{
	struct btrfs_path *path;
	int ret;
	struct btrfs_key key;
1054
	struct btrfs_chunk *chunk;
1055 1056 1057 1058 1059
	struct btrfs_key found_key;

	path = btrfs_alloc_path();
	BUG_ON(!path);

1060
	key.objectid = objectid;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
	if (ret) {
1072
		*offset = 0;
1073 1074 1075
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
1076 1077 1078 1079 1080 1081 1082 1083
		if (found_key.objectid != objectid)
			*offset = 0;
		else {
			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
					       struct btrfs_chunk);
			*offset = found_key.offset +
				btrfs_chunk_length(path->nodes[0], chunk);
		}
1084 1085 1086 1087 1088 1089 1090
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

Y
Yan Zheng 已提交
1091
static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1092 1093 1094 1095
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
Y
Yan Zheng 已提交
1096 1097 1098 1099 1100 1101 1102
	struct btrfs_path *path;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto error;

	BUG_ON(ret == 0);

	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
		*objectid = 1;
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		*objectid = found_key.offset + 1;
	}
	ret = 0;
error:
Y
Yan Zheng 已提交
1125
	btrfs_free_path(path);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
int btrfs_add_device(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
Y
Yan Zheng 已提交
1152
	key.offset = device->devid;
1153 1154

	ret = btrfs_insert_empty_item(trans, root, path, &key,
1155
				      sizeof(*dev_item));
1156 1157 1158 1159 1160 1161 1162
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
Y
Yan Zheng 已提交
1163
	btrfs_set_device_generation(leaf, dev_item, 0);
1164 1165 1166 1167 1168 1169
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1170 1171 1172
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1173
	btrfs_set_device_start_offset(leaf, dev_item, 0);
1174 1175

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1176
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
Y
Yan Zheng 已提交
1177 1178
	ptr = (unsigned long)btrfs_device_fsid(dev_item);
	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1179 1180
	btrfs_mark_buffer_dirty(leaf);

Y
Yan Zheng 已提交
1181
	ret = 0;
1182 1183 1184 1185
out:
	btrfs_free_path(path);
	return ret;
}
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
static int btrfs_rm_dev_item(struct btrfs_root *root,
			     struct btrfs_device *device)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1201
	trans = btrfs_start_transaction(root, 0);
1202 1203 1204 1205
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}
1206 1207 1208
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;
1209
	lock_chunks(root);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
	if (ret)
		goto out;
out:
	btrfs_free_path(path);
1225
	unlock_chunks(root);
1226 1227 1228 1229 1230 1231 1232
	btrfs_commit_transaction(trans, root);
	return ret;
}

int btrfs_rm_device(struct btrfs_root *root, char *device_path)
{
	struct btrfs_device *device;
Y
Yan Zheng 已提交
1233
	struct btrfs_device *next_device;
1234
	struct block_device *bdev;
1235
	struct buffer_head *bh = NULL;
1236 1237 1238
	struct btrfs_super_block *disk_super;
	u64 all_avail;
	u64 devid;
Y
Yan Zheng 已提交
1239 1240
	u64 num_devices;
	u8 *dev_uuid;
1241 1242 1243
	int ret = 0;

	mutex_lock(&uuid_mutex);
1244
	mutex_lock(&root->fs_info->volume_mutex);
1245 1246 1247 1248 1249 1250

	all_avail = root->fs_info->avail_data_alloc_bits |
		root->fs_info->avail_system_alloc_bits |
		root->fs_info->avail_metadata_alloc_bits;

	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1251
	    root->fs_info->fs_devices->num_devices <= 4) {
1252 1253
		printk(KERN_ERR "btrfs: unable to go below four devices "
		       "on raid10\n");
1254 1255 1256 1257 1258
		ret = -EINVAL;
		goto out;
	}

	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1259
	    root->fs_info->fs_devices->num_devices <= 2) {
1260 1261
		printk(KERN_ERR "btrfs: unable to go below two "
		       "devices on raid1\n");
1262 1263 1264 1265
		ret = -EINVAL;
		goto out;
	}

1266 1267 1268
	if (strcmp(device_path, "missing") == 0) {
		struct list_head *devices;
		struct btrfs_device *tmp;
1269

1270 1271
		device = NULL;
		devices = &root->fs_info->fs_devices->devices;
1272
		mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1273
		list_for_each_entry(tmp, devices, dev_list) {
1274 1275 1276 1277 1278
			if (tmp->in_fs_metadata && !tmp->bdev) {
				device = tmp;
				break;
			}
		}
1279
		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1280 1281 1282 1283
		bdev = NULL;
		bh = NULL;
		disk_super = NULL;
		if (!device) {
1284 1285
			printk(KERN_ERR "btrfs: no missing devices found to "
			       "remove\n");
1286 1287 1288
			goto out;
		}
	} else {
1289 1290
		bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
					  root->fs_info->bdev_holder);
1291 1292 1293 1294
		if (IS_ERR(bdev)) {
			ret = PTR_ERR(bdev);
			goto out;
		}
1295

Y
Yan Zheng 已提交
1296
		set_blocksize(bdev, 4096);
Y
Yan Zheng 已提交
1297
		bh = btrfs_read_dev_super(bdev);
1298
		if (!bh) {
1299
			ret = -EINVAL;
1300 1301 1302
			goto error_close;
		}
		disk_super = (struct btrfs_super_block *)bh->b_data;
1303
		devid = btrfs_stack_device_id(&disk_super->dev_item);
Y
Yan Zheng 已提交
1304 1305 1306
		dev_uuid = disk_super->dev_item.uuid;
		device = btrfs_find_device(root, devid, dev_uuid,
					   disk_super->fsid);
1307 1308 1309 1310
		if (!device) {
			ret = -ENOENT;
			goto error_brelse;
		}
Y
Yan Zheng 已提交
1311
	}
1312

Y
Yan Zheng 已提交
1313
	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1314 1315
		printk(KERN_ERR "btrfs: unable to remove the only writeable "
		       "device\n");
Y
Yan Zheng 已提交
1316 1317 1318 1319 1320 1321 1322
		ret = -EINVAL;
		goto error_brelse;
	}

	if (device->writeable) {
		list_del_init(&device->dev_alloc_list);
		root->fs_info->fs_devices->rw_devices--;
1323
	}
1324 1325 1326

	ret = btrfs_shrink_device(device, 0);
	if (ret)
1327
		goto error_undo;
1328 1329 1330

	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
	if (ret)
1331
		goto error_undo;
1332

Y
Yan Zheng 已提交
1333
	device->in_fs_metadata = 0;
1334 1335 1336 1337 1338 1339 1340

	/*
	 * the device list mutex makes sure that we don't change
	 * the device list while someone else is writing out all
	 * the device supers.
	 */
	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
1341
	list_del_init(&device->dev_list);
1342 1343
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

Y
Yan Zheng 已提交
1344
	device->fs_devices->num_devices--;
Y
Yan Zheng 已提交
1345

1346 1347 1348
	if (device->missing)
		root->fs_info->fs_devices->missing_devices--;

Y
Yan Zheng 已提交
1349 1350 1351 1352 1353 1354 1355
	next_device = list_entry(root->fs_info->fs_devices->devices.next,
				 struct btrfs_device, dev_list);
	if (device->bdev == root->fs_info->sb->s_bdev)
		root->fs_info->sb->s_bdev = next_device->bdev;
	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
		root->fs_info->fs_devices->latest_bdev = next_device->bdev;

Y
Yan Zheng 已提交
1356
	if (device->bdev) {
1357
		blkdev_put(device->bdev, device->mode);
Y
Yan Zheng 已提交
1358 1359 1360 1361
		device->bdev = NULL;
		device->fs_devices->open_devices--;
	}

Y
Yan Zheng 已提交
1362 1363 1364
	num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
	btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);

Y
Yan Zheng 已提交
1365 1366 1367 1368 1369 1370 1371
	if (device->fs_devices->open_devices == 0) {
		struct btrfs_fs_devices *fs_devices;
		fs_devices = root->fs_info->fs_devices;
		while (fs_devices) {
			if (fs_devices->seed == device->fs_devices)
				break;
			fs_devices = fs_devices->seed;
Y
Yan Zheng 已提交
1372
		}
Y
Yan Zheng 已提交
1373 1374 1375 1376
		fs_devices->seed = device->fs_devices->seed;
		device->fs_devices->seed = NULL;
		__btrfs_close_devices(device->fs_devices);
		free_fs_devices(device->fs_devices);
Y
Yan Zheng 已提交
1377 1378 1379 1380 1381 1382 1383
	}

	/*
	 * at this point, the device is zero sized.  We want to
	 * remove it from the devices list and zero out the old super
	 */
	if (device->writeable) {
1384 1385 1386 1387 1388 1389 1390
		/* make sure this device isn't detected as part of
		 * the FS anymore
		 */
		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
		set_buffer_dirty(bh);
		sync_dirty_buffer(bh);
	}
1391 1392 1393 1394 1395 1396 1397 1398

	kfree(device->name);
	kfree(device);
	ret = 0;

error_brelse:
	brelse(bh);
error_close:
1399
	if (bdev)
1400
		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1401
out:
1402
	mutex_unlock(&root->fs_info->volume_mutex);
1403 1404
	mutex_unlock(&uuid_mutex);
	return ret;
1405 1406 1407 1408 1409 1410 1411
error_undo:
	if (device->writeable) {
		list_add(&device->dev_alloc_list,
			 &root->fs_info->fs_devices->alloc_list);
		root->fs_info->fs_devices->rw_devices++;
	}
	goto error_brelse;
1412 1413
}

Y
Yan Zheng 已提交
1414 1415 1416 1417 1418 1419 1420 1421
/*
 * does all the dirty work required for changing file system's UUID.
 */
static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
				struct btrfs_root *root)
{
	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
	struct btrfs_fs_devices *old_devices;
Y
Yan Zheng 已提交
1422
	struct btrfs_fs_devices *seed_devices;
Y
Yan Zheng 已提交
1423 1424 1425 1426 1427
	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
	struct btrfs_device *device;
	u64 super_flags;

	BUG_ON(!mutex_is_locked(&uuid_mutex));
Y
Yan Zheng 已提交
1428
	if (!fs_devices->seeding)
Y
Yan Zheng 已提交
1429 1430
		return -EINVAL;

Y
Yan Zheng 已提交
1431 1432
	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
	if (!seed_devices)
Y
Yan Zheng 已提交
1433 1434
		return -ENOMEM;

Y
Yan Zheng 已提交
1435 1436 1437 1438
	old_devices = clone_fs_devices(fs_devices);
	if (IS_ERR(old_devices)) {
		kfree(seed_devices);
		return PTR_ERR(old_devices);
Y
Yan Zheng 已提交
1439
	}
Y
Yan Zheng 已提交
1440

Y
Yan Zheng 已提交
1441 1442
	list_add(&old_devices->list, &fs_uuids);

Y
Yan Zheng 已提交
1443 1444 1445 1446
	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
	seed_devices->opened = 1;
	INIT_LIST_HEAD(&seed_devices->devices);
	INIT_LIST_HEAD(&seed_devices->alloc_list);
1447
	mutex_init(&seed_devices->device_list_mutex);
Y
Yan Zheng 已提交
1448 1449 1450 1451 1452 1453
	list_splice_init(&fs_devices->devices, &seed_devices->devices);
	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
	list_for_each_entry(device, &seed_devices->devices, dev_list) {
		device->fs_devices = seed_devices;
	}

Y
Yan Zheng 已提交
1454 1455 1456
	fs_devices->seeding = 0;
	fs_devices->num_devices = 0;
	fs_devices->open_devices = 0;
Y
Yan Zheng 已提交
1457
	fs_devices->seed = seed_devices;
Y
Yan Zheng 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

	generate_random_uuid(fs_devices->fsid);
	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
	super_flags = btrfs_super_flags(disk_super) &
		      ~BTRFS_SUPER_FLAG_SEEDING;
	btrfs_set_super_flags(disk_super, super_flags);

	return 0;
}

/*
 * strore the expected generation for seed devices in device items.
 */
static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root)
{
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_dev_item *dev_item;
	struct btrfs_device *device;
	struct btrfs_key key;
	u8 fs_uuid[BTRFS_UUID_SIZE];
	u8 dev_uuid[BTRFS_UUID_SIZE];
	u64 devid;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	root = root->fs_info->chunk_root;
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = BTRFS_DEV_ITEM_KEY;

	while (1) {
		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
		if (ret < 0)
			goto error;

		leaf = path->nodes[0];
next_slot:
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret > 0)
				break;
			if (ret < 0)
				goto error;
			leaf = path->nodes[0];
			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
			btrfs_release_path(root, path);
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
		    key.type != BTRFS_DEV_ITEM_KEY)
			break;

		dev_item = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_dev_item);
		devid = btrfs_device_id(leaf, dev_item);
		read_extent_buffer(leaf, dev_uuid,
				   (unsigned long)btrfs_device_uuid(dev_item),
				   BTRFS_UUID_SIZE);
		read_extent_buffer(leaf, fs_uuid,
				   (unsigned long)btrfs_device_fsid(dev_item),
				   BTRFS_UUID_SIZE);
		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
		BUG_ON(!device);

		if (device->fs_devices->seeding) {
			btrfs_set_device_generation(leaf, dev_item,
						    device->generation);
			btrfs_mark_buffer_dirty(leaf);
		}

		path->slots[0]++;
		goto next_slot;
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

1545 1546 1547 1548 1549 1550
int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
	struct list_head *devices;
Y
Yan Zheng 已提交
1551
	struct super_block *sb = root->fs_info->sb;
1552
	u64 total_bytes;
Y
Yan Zheng 已提交
1553
	int seeding_dev = 0;
1554 1555
	int ret = 0;

Y
Yan Zheng 已提交
1556 1557
	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
		return -EINVAL;
1558

1559 1560
	bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
				  root->fs_info->bdev_holder);
1561 1562
	if (IS_ERR(bdev))
		return PTR_ERR(bdev);
1563

Y
Yan Zheng 已提交
1564 1565 1566 1567 1568 1569
	if (root->fs_info->fs_devices->seeding) {
		seeding_dev = 1;
		down_write(&sb->s_umount);
		mutex_lock(&uuid_mutex);
	}

1570
	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1571
	mutex_lock(&root->fs_info->volume_mutex);
1572

1573
	devices = &root->fs_info->fs_devices->devices;
1574 1575 1576 1577
	/*
	 * we have the volume lock, so we don't need the extra
	 * device list mutex while reading the list here.
	 */
1578
	list_for_each_entry(device, devices, dev_list) {
1579 1580
		if (device->bdev == bdev) {
			ret = -EEXIST;
Y
Yan Zheng 已提交
1581
			goto error;
1582 1583 1584 1585 1586 1587 1588
		}
	}

	device = kzalloc(sizeof(*device), GFP_NOFS);
	if (!device) {
		/* we can safely leave the fs_devices entry around */
		ret = -ENOMEM;
Y
Yan Zheng 已提交
1589
		goto error;
1590 1591 1592 1593 1594
	}

	device->name = kstrdup(device_path, GFP_NOFS);
	if (!device->name) {
		kfree(device);
Y
Yan Zheng 已提交
1595 1596
		ret = -ENOMEM;
		goto error;
1597
	}
Y
Yan Zheng 已提交
1598 1599 1600

	ret = find_next_devid(root, &device->devid);
	if (ret) {
1601
		kfree(device->name);
Y
Yan Zheng 已提交
1602 1603 1604 1605
		kfree(device);
		goto error;
	}

1606
	trans = btrfs_start_transaction(root, 0);
1607
	if (IS_ERR(trans)) {
1608
		kfree(device->name);
1609 1610 1611 1612 1613
		kfree(device);
		ret = PTR_ERR(trans);
		goto error;
	}

Y
Yan Zheng 已提交
1614 1615 1616 1617 1618 1619 1620
	lock_chunks(root);

	device->writeable = 1;
	device->work.func = pending_bios_fn;
	generate_random_uuid(device->uuid);
	spin_lock_init(&device->io_lock);
	device->generation = trans->transid;
1621 1622 1623 1624
	device->io_width = root->sectorsize;
	device->io_align = root->sectorsize;
	device->sector_size = root->sectorsize;
	device->total_bytes = i_size_read(bdev->bd_inode);
1625
	device->disk_total_bytes = device->total_bytes;
1626 1627
	device->dev_root = root->fs_info->dev_root;
	device->bdev = bdev;
1628
	device->in_fs_metadata = 1;
1629
	device->mode = FMODE_EXCL;
Y
Yan Zheng 已提交
1630
	set_blocksize(device->bdev, 4096);
1631

Y
Yan Zheng 已提交
1632 1633 1634 1635 1636
	if (seeding_dev) {
		sb->s_flags &= ~MS_RDONLY;
		ret = btrfs_prepare_sprout(trans, root);
		BUG_ON(ret);
	}
1637

Y
Yan Zheng 已提交
1638
	device->fs_devices = root->fs_info->fs_devices;
1639 1640 1641 1642 1643 1644

	/*
	 * we don't want write_supers to jump in here with our device
	 * half setup
	 */
	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
1645 1646 1647 1648 1649 1650 1651
	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
	list_add(&device->dev_alloc_list,
		 &root->fs_info->fs_devices->alloc_list);
	root->fs_info->fs_devices->num_devices++;
	root->fs_info->fs_devices->open_devices++;
	root->fs_info->fs_devices->rw_devices++;
	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1652

1653 1654 1655
	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
		root->fs_info->fs_devices->rotating = 1;

1656 1657 1658 1659 1660 1661 1662
	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
				    total_bytes + device->total_bytes);

	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
	btrfs_set_super_num_devices(&root->fs_info->super_copy,
				    total_bytes + 1);
1663
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1664

Y
Yan Zheng 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673
	if (seeding_dev) {
		ret = init_first_rw_device(trans, root, device);
		BUG_ON(ret);
		ret = btrfs_finish_sprout(trans, root);
		BUG_ON(ret);
	} else {
		ret = btrfs_add_device(trans, root, device);
	}

1674 1675 1676 1677 1678 1679
	/*
	 * we've got more storage, clear any full flags on the space
	 * infos
	 */
	btrfs_clear_space_info_full(root->fs_info);

1680
	unlock_chunks(root);
Y
Yan Zheng 已提交
1681
	btrfs_commit_transaction(trans, root);
1682

Y
Yan Zheng 已提交
1683 1684 1685
	if (seeding_dev) {
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
1686

Y
Yan Zheng 已提交
1687 1688 1689 1690 1691 1692 1693
		ret = btrfs_relocate_sys_chunks(root);
		BUG_ON(ret);
	}
out:
	mutex_unlock(&root->fs_info->volume_mutex);
	return ret;
error:
1694
	blkdev_put(bdev, FMODE_EXCL);
Y
Yan Zheng 已提交
1695 1696 1697 1698
	if (seeding_dev) {
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
	}
1699 1700 1701
	goto out;
}

1702 1703
static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
					struct btrfs_device *device)
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_root *root;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	root = device->dev_root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1739
	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1740 1741 1742 1743 1744 1745 1746 1747
	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

1748
static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1749 1750 1751 1752 1753 1754 1755
		      struct btrfs_device *device, u64 new_size)
{
	struct btrfs_super_block *super_copy =
		&device->dev_root->fs_info->super_copy;
	u64 old_total = btrfs_super_total_bytes(super_copy);
	u64 diff = new_size - device->total_bytes;

Y
Yan Zheng 已提交
1756 1757 1758 1759 1760
	if (!device->writeable)
		return -EACCES;
	if (new_size <= device->total_bytes)
		return -EINVAL;

1761
	btrfs_set_super_total_bytes(super_copy, old_total + diff);
Y
Yan Zheng 已提交
1762 1763 1764
	device->fs_devices->total_rw_bytes += diff;

	device->total_bytes = new_size;
1765
	device->disk_total_bytes = new_size;
1766 1767
	btrfs_clear_space_info_full(device->dev_root->fs_info);

1768 1769 1770
	return btrfs_update_device(trans, device);
}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
int btrfs_grow_device(struct btrfs_trans_handle *trans,
		      struct btrfs_device *device, u64 new_size)
{
	int ret;
	lock_chunks(device->dev_root);
	ret = __btrfs_grow_device(trans, device, new_size);
	unlock_chunks(device->dev_root);
	return ret;
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    u64 chunk_tree, u64 chunk_objectid,
			    u64 chunk_offset)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	root = root->fs_info->chunk_root;
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = chunk_objectid;
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	BUG_ON(ret);

	ret = btrfs_del_item(trans, root, path);
	BUG_ON(ret);

	btrfs_free_path(path);
	return 0;
}

1809
static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
			chunk_offset)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
		if (key.objectid == chunk_objectid &&
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
	return ret;
}

1855
static int btrfs_relocate_chunk(struct btrfs_root *root,
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
			 u64 chunk_tree, u64 chunk_objectid,
			 u64 chunk_offset)
{
	struct extent_map_tree *em_tree;
	struct btrfs_root *extent_root;
	struct btrfs_trans_handle *trans;
	struct extent_map *em;
	struct map_lookup *map;
	int ret;
	int i;

	root = root->fs_info->chunk_root;
	extent_root = root->fs_info->extent_root;
	em_tree = &root->fs_info->mapping_tree.map_tree;

1871 1872 1873 1874
	ret = btrfs_can_relocate(extent_root, chunk_offset);
	if (ret)
		return -ENOSPC;

1875
	/* step one, relocate all the extents inside this chunk */
1876
	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1877 1878
	if (ret)
		return ret;
1879

1880
	trans = btrfs_start_transaction(root, 0);
1881
	BUG_ON(IS_ERR(trans));
1882

1883 1884
	lock_chunks(root);

1885 1886 1887 1888
	/*
	 * step two, delete the device extents and the
	 * chunk tree entries
	 */
1889
	read_lock(&em_tree->lock);
1890
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1891
	read_unlock(&em_tree->lock);
1892

1893 1894
	BUG_ON(em->start > chunk_offset ||
	       em->start + em->len < chunk_offset);
1895 1896 1897 1898 1899 1900
	map = (struct map_lookup *)em->bdev;

	for (i = 0; i < map->num_stripes; i++) {
		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
					    map->stripes[i].physical);
		BUG_ON(ret);
1901

1902 1903 1904 1905
		if (map->stripes[i].dev) {
			ret = btrfs_update_device(trans, map->stripes[i].dev);
			BUG_ON(ret);
		}
1906 1907 1908 1909 1910 1911
	}
	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
			       chunk_offset);

	BUG_ON(ret);

1912 1913
	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);

1914 1915 1916 1917 1918
	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
		BUG_ON(ret);
	}

Y
Yan Zheng 已提交
1919 1920 1921
	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
	BUG_ON(ret);

1922
	write_lock(&em_tree->lock);
Y
Yan Zheng 已提交
1923
	remove_extent_mapping(em_tree, em);
1924
	write_unlock(&em_tree->lock);
Y
Yan Zheng 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948

	kfree(map);
	em->bdev = NULL;

	/* once for the tree */
	free_extent_map(em);
	/* once for us */
	free_extent_map(em);

	unlock_chunks(root);
	btrfs_end_transaction(trans, root);
	return 0;
}

static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
{
	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_chunk *chunk;
	struct btrfs_key key;
	struct btrfs_key found_key;
	u64 chunk_tree = chunk_root->root_key.objectid;
	u64 chunk_type;
1949 1950
	bool retried = false;
	int failed = 0;
Y
Yan Zheng 已提交
1951 1952 1953 1954 1955 1956
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1957
again:
Y
Yan Zheng 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
		if (ret < 0)
			goto error;
		BUG_ON(ret == 0);

		ret = btrfs_previous_item(chunk_root, path, key.objectid,
					  key.type);
		if (ret < 0)
			goto error;
		if (ret > 0)
			break;
1974

Y
Yan Zheng 已提交
1975 1976
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1977

Y
Yan Zheng 已提交
1978 1979 1980 1981
		chunk = btrfs_item_ptr(leaf, path->slots[0],
				       struct btrfs_chunk);
		chunk_type = btrfs_chunk_type(leaf, chunk);
		btrfs_release_path(chunk_root, path);
1982

Y
Yan Zheng 已提交
1983 1984 1985 1986
		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
						   found_key.objectid,
						   found_key.offset);
1987 1988 1989 1990
			if (ret == -ENOSPC)
				failed++;
			else if (ret)
				BUG();
Y
Yan Zheng 已提交
1991
		}
1992

Y
Yan Zheng 已提交
1993 1994 1995 1996 1997
		if (found_key.offset == 0)
			break;
		key.offset = found_key.offset - 1;
	}
	ret = 0;
1998 1999 2000 2001 2002 2003 2004 2005
	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
	} else if (failed && retried) {
		WARN_ON(1);
		ret = -ENOSPC;
	}
Y
Yan Zheng 已提交
2006 2007 2008
error:
	btrfs_free_path(path);
	return ret;
2009 2010
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
static u64 div_factor(u64 num, int factor)
{
	if (factor == 10)
		return num;
	num *= factor;
	do_div(num, 10);
	return num;
}

int btrfs_balance(struct btrfs_root *dev_root)
{
	int ret;
	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
	struct btrfs_device *device;
	u64 old_size;
	u64 size_to_free;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
	struct btrfs_trans_handle *trans;
	struct btrfs_key found_key;

Y
Yan Zheng 已提交
2033 2034
	if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
		return -EROFS;
2035

2036 2037 2038
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

2039
	mutex_lock(&dev_root->fs_info->volume_mutex);
2040 2041 2042
	dev_root = dev_root->fs_info->dev_root;

	/* step one make some room on all the devices */
2043
	list_for_each_entry(device, devices, dev_list) {
2044 2045 2046
		old_size = device->total_bytes;
		size_to_free = div_factor(old_size, 1);
		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
Y
Yan Zheng 已提交
2047 2048
		if (!device->writeable ||
		    device->total_bytes - device->bytes_used > size_to_free)
2049 2050 2051
			continue;

		ret = btrfs_shrink_device(device, old_size - size_to_free);
2052 2053
		if (ret == -ENOSPC)
			break;
2054 2055
		BUG_ON(ret);

2056
		trans = btrfs_start_transaction(dev_root, 0);
2057
		BUG_ON(IS_ERR(trans));
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

		ret = btrfs_grow_device(trans, device, old_size);
		BUG_ON(ret);

		btrfs_end_transaction(trans, dev_root);
	}

	/* step two, relocate all the chunks */
	path = btrfs_alloc_path();
	BUG_ON(!path);

	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

2073
	while (1) {
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
		if (ret < 0)
			goto error;

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
			break;

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
2087
		if (ret)
2088
			break;
2089

2090 2091 2092 2093
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		if (found_key.objectid != key.objectid)
			break;
2094

2095
		/* chunk zero is special */
2096
		if (found_key.offset == 0)
2097 2098
			break;

2099
		btrfs_release_path(chunk_root, path);
2100 2101 2102 2103
		ret = btrfs_relocate_chunk(chunk_root,
					   chunk_root->root_key.objectid,
					   found_key.objectid,
					   found_key.offset);
2104 2105
		BUG_ON(ret && ret != -ENOSPC);
		key.offset = found_key.offset - 1;
2106 2107 2108 2109
	}
	ret = 0;
error:
	btrfs_free_path(path);
2110
	mutex_unlock(&dev_root->fs_info->volume_mutex);
2111 2112 2113
	return ret;
}

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = device->dev_root;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
2131 2132
	int failed = 0;
	bool retried = false;
2133 2134 2135 2136
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	u64 old_total = btrfs_super_total_bytes(super_copy);
2137
	u64 old_size = device->total_bytes;
2138 2139
	u64 diff = device->total_bytes - new_size;

Y
Yan Zheng 已提交
2140 2141
	if (new_size >= device->total_bytes)
		return -EINVAL;
2142 2143 2144 2145 2146 2147 2148

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;

2149 2150
	lock_chunks(root);

2151
	device->total_bytes = new_size;
Y
Yan Zheng 已提交
2152 2153
	if (device->writeable)
		device->fs_devices->total_rw_bytes -= diff;
2154
	unlock_chunks(root);
2155

2156
again:
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto done;

		ret = btrfs_previous_item(root, path, 0, key.type);
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
2171
			btrfs_release_path(root, path);
2172
			break;
2173 2174 2175 2176 2177 2178
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

2179 2180
		if (key.objectid != device->devid) {
			btrfs_release_path(root, path);
2181
			break;
2182
		}
2183 2184 2185 2186

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

2187 2188
		if (key.offset + length <= new_size) {
			btrfs_release_path(root, path);
2189
			break;
2190
		}
2191 2192 2193 2194 2195 2196 2197 2198

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
		btrfs_release_path(root, path);

		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
					   chunk_offset);
2199
		if (ret && ret != -ENOSPC)
2200
			goto done;
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
		if (ret == -ENOSPC)
			failed++;
		key.offset -= 1;
	}

	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
	} else if (failed && retried) {
		ret = -ENOSPC;
		lock_chunks(root);

		device->total_bytes = old_size;
		if (device->writeable)
			device->fs_devices->total_rw_bytes += diff;
		unlock_chunks(root);
		goto done;
2219 2220
	}

2221
	/* Shrinking succeeded, else we would be at "done". */
2222
	trans = btrfs_start_transaction(root, 0);
2223 2224 2225 2226 2227
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto done;
	}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
	lock_chunks(root);

	device->disk_total_bytes = new_size;
	/* Now btrfs_update_device() will change the on-disk size. */
	ret = btrfs_update_device(trans, device);
	if (ret) {
		unlock_chunks(root);
		btrfs_end_transaction(trans, root);
		goto done;
	}
	WARN_ON(diff > old_total);
	btrfs_set_super_total_bytes(super_copy, old_total - diff);
	unlock_chunks(root);
	btrfs_end_transaction(trans, root);
2242 2243 2244 2245 2246
done:
	btrfs_free_path(path);
	return ret;
}

2247
static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
			   struct btrfs_root *root,
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

	array_size = btrfs_super_sys_array_size(super_copy);
	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
		return -EFBIG;

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
	return 0;
}

2271 2272 2273 2274
/*
 * sort the devices in descending order by max_avail, total_avail
 */
static int btrfs_cmp_device_info(const void *a, const void *b)
2275
{
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	const struct btrfs_device_info *di_a = a;
	const struct btrfs_device_info *di_b = b;

	if (di_a->max_avail > di_b->max_avail)
		return -1;
	if (di_a->max_avail < di_b->max_avail)
		return 1;
	if (di_a->total_avail > di_b->total_avail)
		return -1;
	if (di_a->total_avail < di_b->total_avail)
		return 1;
	return 0;
2288 2289
}

2290 2291 2292 2293 2294
static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
			       struct btrfs_root *extent_root,
			       struct map_lookup **map_ret,
			       u64 *num_bytes_out, u64 *stripe_size_out,
			       u64 start, u64 type)
2295
{
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	struct btrfs_fs_info *info = extent_root->fs_info;
	struct btrfs_fs_devices *fs_devices = info->fs_devices;
	struct list_head *cur;
	struct map_lookup *map = NULL;
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct btrfs_device_info *devices_info = NULL;
	u64 total_avail;
	int num_stripes;	/* total number of stripes to allocate */
	int sub_stripes;	/* sub_stripes info for map */
	int dev_stripes;	/* stripes per dev */
	int devs_max;		/* max devs to use */
	int devs_min;		/* min devs needed */
	int devs_increment;	/* ndevs has to be a multiple of this */
	int ncopies;		/* how many copies to data has */
	int ret;
	u64 max_stripe_size;
	u64 max_chunk_size;
	u64 stripe_size;
	u64 num_bytes;
	int ndevs;
	int i;
	int j;
2319

2320 2321 2322 2323
	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
	    (type & BTRFS_BLOCK_GROUP_DUP)) {
		WARN_ON(1);
		type &= ~BTRFS_BLOCK_GROUP_DUP;
C
Chris Mason 已提交
2324
	}
2325

2326 2327
	if (list_empty(&fs_devices->alloc_list))
		return -ENOSPC;
2328

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	sub_stripes = 1;
	dev_stripes = 1;
	devs_increment = 1;
	ncopies = 1;
	devs_max = 0;	/* 0 == as many as possible */
	devs_min = 1;

	/*
	 * define the properties of each RAID type.
	 * FIXME: move this to a global table and use it in all RAID
	 * calculation code
	 */
	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
		dev_stripes = 2;
		ncopies = 2;
		devs_max = 1;
	} else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
		devs_min = 2;
	} else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
		devs_increment = 2;
2349
		ncopies = 2;
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
		devs_max = 2;
		devs_min = 2;
	} else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
		sub_stripes = 2;
		devs_increment = 2;
		ncopies = 2;
		devs_min = 4;
	} else {
		devs_max = 1;
	}
2360

2361
	if (type & BTRFS_BLOCK_GROUP_DATA) {
2362 2363
		max_stripe_size = 1024 * 1024 * 1024;
		max_chunk_size = 10 * max_stripe_size;
2364
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2365 2366
		max_stripe_size = 256 * 1024 * 1024;
		max_chunk_size = max_stripe_size;
2367
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2368 2369 2370 2371 2372 2373
		max_stripe_size = 8 * 1024 * 1024;
		max_chunk_size = 2 * max_stripe_size;
	} else {
		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
		       type);
		BUG_ON(1);
2374 2375
	}

Y
Yan Zheng 已提交
2376 2377 2378
	/* we don't want a chunk larger than 10% of writeable space */
	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
			     max_chunk_size);
2379

2380 2381 2382 2383
	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
			       GFP_NOFS);
	if (!devices_info)
		return -ENOMEM;
2384

2385
	cur = fs_devices->alloc_list.next;
2386

2387
	/*
2388 2389
	 * in the first pass through the devices list, we gather information
	 * about the available holes on each device.
2390
	 */
2391 2392 2393 2394 2395
	ndevs = 0;
	while (cur != &fs_devices->alloc_list) {
		struct btrfs_device *device;
		u64 max_avail;
		u64 dev_offset;
2396

2397
		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2398

2399
		cur = cur->next;
2400

2401 2402 2403 2404 2405 2406
		if (!device->writeable) {
			printk(KERN_ERR
			       "btrfs: read-only device in alloc_list\n");
			WARN_ON(1);
			continue;
		}
2407

2408 2409
		if (!device->in_fs_metadata)
			continue;
2410

2411 2412 2413 2414 2415 2416
		if (device->total_bytes > device->bytes_used)
			total_avail = device->total_bytes - device->bytes_used;
		else
			total_avail = 0;
		/* avail is off by max(alloc_start, 1MB), but that is the same
		 * for all devices, so it doesn't hurt the sorting later on
2417 2418
		 */

2419 2420 2421 2422 2423
		ret = find_free_dev_extent(trans, device,
					   max_stripe_size * dev_stripes,
					   &dev_offset, &max_avail);
		if (ret && ret != -ENOSPC)
			goto error;
2424

2425 2426
		if (ret == 0)
			max_avail = max_stripe_size * dev_stripes;
2427

2428 2429
		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
			continue;
2430

2431 2432 2433 2434 2435 2436
		devices_info[ndevs].dev_offset = dev_offset;
		devices_info[ndevs].max_avail = max_avail;
		devices_info[ndevs].total_avail = total_avail;
		devices_info[ndevs].dev = device;
		++ndevs;
	}
2437

2438 2439 2440 2441 2442
	/*
	 * now sort the devices by hole size / available space
	 */
	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
	     btrfs_cmp_device_info, NULL);
2443

2444 2445
	/* round down to number of usable stripes */
	ndevs -= ndevs % devs_increment;
2446

2447 2448 2449
	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
		ret = -ENOSPC;
		goto error;
2450
	}
2451

2452 2453 2454 2455 2456 2457 2458 2459
	if (devs_max && ndevs > devs_max)
		ndevs = devs_max;
	/*
	 * the primary goal is to maximize the number of stripes, so use as many
	 * devices as possible, even if the stripes are not maximum sized.
	 */
	stripe_size = devices_info[ndevs-1].max_avail;
	num_stripes = ndevs * dev_stripes;
2460

2461 2462 2463
	if (stripe_size * num_stripes > max_chunk_size * ncopies) {
		stripe_size = max_chunk_size * ncopies;
		do_div(stripe_size, num_stripes);
2464 2465
	}

2466 2467 2468
	do_div(stripe_size, dev_stripes);
	do_div(stripe_size, BTRFS_STRIPE_LEN);
	stripe_size *= BTRFS_STRIPE_LEN;
2469 2470 2471 2472 2473 2474 2475

	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
	if (!map) {
		ret = -ENOMEM;
		goto error;
	}
	map->num_stripes = num_stripes;
2476

2477 2478 2479 2480 2481 2482
	for (i = 0; i < ndevs; ++i) {
		for (j = 0; j < dev_stripes; ++j) {
			int s = i * dev_stripes + j;
			map->stripes[s].dev = devices_info[i].dev;
			map->stripes[s].physical = devices_info[i].dev_offset +
						   j * stripe_size;
2483 2484
		}
	}
Y
Yan Zheng 已提交
2485
	map->sector_size = extent_root->sectorsize;
2486 2487 2488
	map->stripe_len = BTRFS_STRIPE_LEN;
	map->io_align = BTRFS_STRIPE_LEN;
	map->io_width = BTRFS_STRIPE_LEN;
Y
Yan Zheng 已提交
2489 2490
	map->type = type;
	map->sub_stripes = sub_stripes;
2491

Y
Yan Zheng 已提交
2492
	*map_ret = map;
2493
	num_bytes = stripe_size * (num_stripes / ncopies);
2494

2495 2496 2497 2498
	*stripe_size_out = stripe_size;
	*num_bytes_out = num_bytes;

	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
2499

Y
Yan Zheng 已提交
2500 2501
	em = alloc_extent_map(GFP_NOFS);
	if (!em) {
2502 2503
		ret = -ENOMEM;
		goto error;
2504
	}
Y
Yan Zheng 已提交
2505 2506
	em->bdev = (struct block_device *)map;
	em->start = start;
2507
	em->len = num_bytes;
Y
Yan Zheng 已提交
2508 2509
	em->block_start = 0;
	em->block_len = em->len;
2510

Y
Yan Zheng 已提交
2511
	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2512
	write_lock(&em_tree->lock);
Y
Yan Zheng 已提交
2513
	ret = add_extent_mapping(em_tree, em);
2514
	write_unlock(&em_tree->lock);
Y
Yan Zheng 已提交
2515 2516
	BUG_ON(ret);
	free_extent_map(em);
2517

Y
Yan Zheng 已提交
2518 2519
	ret = btrfs_make_block_group(trans, extent_root, 0, type,
				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2520
				     start, num_bytes);
Y
Yan Zheng 已提交
2521
	BUG_ON(ret);
2522

2523 2524 2525 2526 2527 2528
	for (i = 0; i < map->num_stripes; ++i) {
		struct btrfs_device *device;
		u64 dev_offset;

		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
2529 2530

		ret = btrfs_alloc_dev_extent(trans, device,
Y
Yan Zheng 已提交
2531 2532
				info->chunk_root->root_key.objectid,
				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2533
				start, dev_offset, stripe_size);
2534
		BUG_ON(ret);
Y
Yan Zheng 已提交
2535 2536
	}

2537
	kfree(devices_info);
Y
Yan Zheng 已提交
2538
	return 0;
2539 2540 2541 2542 2543

error:
	kfree(map);
	kfree(devices_info);
	return ret;
Y
Yan Zheng 已提交
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
}

static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
				struct btrfs_root *extent_root,
				struct map_lookup *map, u64 chunk_offset,
				u64 chunk_size, u64 stripe_size)
{
	u64 dev_offset;
	struct btrfs_key key;
	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
	struct btrfs_device *device;
	struct btrfs_chunk *chunk;
	struct btrfs_stripe *stripe;
	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
	int index = 0;
	int ret;

	chunk = kzalloc(item_size, GFP_NOFS);
	if (!chunk)
		return -ENOMEM;

	index = 0;
	while (index < map->num_stripes) {
		device = map->stripes[index].dev;
		device->bytes_used += stripe_size;
2569 2570
		ret = btrfs_update_device(trans, device);
		BUG_ON(ret);
Y
Yan Zheng 已提交
2571 2572 2573 2574 2575 2576 2577 2578
		index++;
	}

	index = 0;
	stripe = &chunk->stripe;
	while (index < map->num_stripes) {
		device = map->stripes[index].dev;
		dev_offset = map->stripes[index].physical;
2579

2580 2581 2582
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
Y
Yan Zheng 已提交
2583
		stripe++;
2584 2585 2586
		index++;
	}

Y
Yan Zheng 已提交
2587
	btrfs_set_stack_chunk_length(chunk, chunk_size);
2588
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
Y
Yan Zheng 已提交
2589 2590 2591 2592 2593
	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
	btrfs_set_stack_chunk_type(chunk, map->type);
	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2594
	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
Y
Yan Zheng 已提交
2595
	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2596

Y
Yan Zheng 已提交
2597 2598 2599
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	key.offset = chunk_offset;
2600

Y
Yan Zheng 已提交
2601 2602
	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
	BUG_ON(ret);
2603

Y
Yan Zheng 已提交
2604 2605 2606
	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
					     item_size);
2607 2608
		BUG_ON(ret);
	}
2609

2610
	kfree(chunk);
Y
Yan Zheng 已提交
2611 2612
	return 0;
}
2613

Y
Yan Zheng 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
/*
 * Chunk allocation falls into two parts. The first part does works
 * that make the new allocated chunk useable, but not do any operation
 * that modifies the chunk tree. The second part does the works that
 * require modifying the chunk tree. This division is important for the
 * bootstrap process of adding storage to a seed btrfs.
 */
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
		      struct btrfs_root *extent_root, u64 type)
{
	u64 chunk_offset;
	u64 chunk_size;
	u64 stripe_size;
	struct map_lookup *map;
	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
	int ret;

	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
			      &chunk_offset);
	if (ret)
		return ret;

	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
				  &stripe_size, chunk_offset, type);
	if (ret)
		return ret;

	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
				   chunk_size, stripe_size);
	BUG_ON(ret);
	return 0;
}

2647
static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
Y
Yan Zheng 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
					 struct btrfs_root *root,
					 struct btrfs_device *device)
{
	u64 chunk_offset;
	u64 sys_chunk_offset;
	u64 chunk_size;
	u64 sys_chunk_size;
	u64 stripe_size;
	u64 sys_stripe_size;
	u64 alloc_profile;
	struct map_lookup *map;
	struct map_lookup *sys_map;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;

	ret = find_next_chunk(fs_info->chunk_root,
			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
	BUG_ON(ret);

	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
			(fs_info->metadata_alloc_profile &
			 fs_info->avail_metadata_alloc_bits);
	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);

	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
				  &stripe_size, chunk_offset, alloc_profile);
	BUG_ON(ret);

	sys_chunk_offset = chunk_offset + chunk_size;

	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
			(fs_info->system_alloc_profile &
			 fs_info->avail_system_alloc_bits);
	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);

	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
				  &sys_chunk_size, &sys_stripe_size,
				  sys_chunk_offset, alloc_profile);
	BUG_ON(ret);

	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
	BUG_ON(ret);

	/*
	 * Modifying chunk tree needs allocating new blocks from both
	 * system block group and metadata block group. So we only can
	 * do operations require modifying the chunk tree after both
	 * block groups were created.
	 */
	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
				   chunk_size, stripe_size);
	BUG_ON(ret);

	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
				   sys_chunk_offset, sys_chunk_size,
				   sys_stripe_size);
2705
	BUG_ON(ret);
Y
Yan Zheng 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	return 0;
}

int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
	int readonly = 0;
	int i;

2717
	read_lock(&map_tree->map_tree.lock);
Y
Yan Zheng 已提交
2718
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2719
	read_unlock(&map_tree->map_tree.lock);
Y
Yan Zheng 已提交
2720 2721 2722
	if (!em)
		return 1;

2723 2724 2725 2726 2727
	if (btrfs_test_opt(root, DEGRADED)) {
		free_extent_map(em);
		return 0;
	}

Y
Yan Zheng 已提交
2728 2729 2730 2731 2732 2733 2734
	map = (struct map_lookup *)em->bdev;
	for (i = 0; i < map->num_stripes; i++) {
		if (!map->stripes[i].dev->writeable) {
			readonly = 1;
			break;
		}
	}
2735
	free_extent_map(em);
Y
Yan Zheng 已提交
2736
	return readonly;
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
}

void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
{
	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
}

void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
{
	struct extent_map *em;

2748
	while (1) {
2749
		write_lock(&tree->map_tree.lock);
2750 2751 2752
		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
		if (em)
			remove_extent_mapping(&tree->map_tree, em);
2753
		write_unlock(&tree->map_tree.lock);
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
		if (!em)
			break;
		kfree(em->bdev);
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

2764 2765 2766 2767 2768 2769 2770
int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	int ret;

2771
	read_lock(&em_tree->lock);
2772
	em = lookup_extent_mapping(em_tree, logical, len);
2773
	read_unlock(&em_tree->lock);
2774 2775 2776 2777 2778 2779
	BUG_ON(!em);

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
		ret = map->num_stripes;
C
Chris Mason 已提交
2780 2781
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
2782 2783 2784 2785 2786 2787
	else
		ret = 1;
	free_extent_map(em);
	return ret;
}

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
static int find_live_mirror(struct map_lookup *map, int first, int num,
			    int optimal)
{
	int i;
	if (map->stripes[optimal].dev->bdev)
		return optimal;
	for (i = first; i < first + num; i++) {
		if (map->stripes[i].dev->bdev)
			return i;
	}
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
	return optimal;
}

2804 2805 2806 2807
static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
			     u64 logical, u64 *length,
			     struct btrfs_multi_bio **multi_ret,
			     int mirror_num, struct page *unplug_page)
2808 2809 2810 2811 2812
{
	struct extent_map *em;
	struct map_lookup *map;
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	u64 offset;
2813
	u64 stripe_offset;
2814
	u64 stripe_end_offset;
2815
	u64 stripe_nr;
2816 2817
	u64 stripe_nr_orig;
	u64 stripe_nr_end;
2818
	int stripes_allocated = 8;
C
Chris Mason 已提交
2819
	int stripes_required = 1;
2820
	int stripe_index;
2821
	int i;
2822
	int num_stripes;
2823
	int max_errors = 0;
2824
	struct btrfs_multi_bio *multi = NULL;
2825

2826
	if (multi_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
2827 2828 2829 2830 2831 2832 2833
		stripes_allocated = 1;
again:
	if (multi_ret) {
		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
				GFP_NOFS);
		if (!multi)
			return -ENOMEM;
2834 2835

		atomic_set(&multi->error, 0);
2836
	}
2837

2838
	read_lock(&em_tree->lock);
2839
	em = lookup_extent_mapping(em_tree, logical, *length);
2840
	read_unlock(&em_tree->lock);
2841

2842 2843
	if (!em && unplug_page) {
		kfree(multi);
2844
		return 0;
2845
	}
2846

2847
	if (!em) {
2848 2849 2850
		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
		       (unsigned long long)logical,
		       (unsigned long long)*length);
2851
		BUG();
2852
	}
2853 2854 2855 2856

	BUG_ON(em->start > logical || em->start + em->len < logical);
	map = (struct map_lookup *)em->bdev;
	offset = logical - em->start;
2857

2858 2859 2860
	if (mirror_num > map->num_stripes)
		mirror_num = 0;

2861
	/* if our multi bio struct is too small, back off and try again */
2862
	if (rw & REQ_WRITE) {
C
Chris Mason 已提交
2863 2864 2865
		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
				 BTRFS_BLOCK_GROUP_DUP)) {
			stripes_required = map->num_stripes;
2866
			max_errors = 1;
C
Chris Mason 已提交
2867 2868
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripes_required = map->sub_stripes;
2869
			max_errors = 1;
C
Chris Mason 已提交
2870 2871
		}
	}
2872 2873 2874 2875 2876 2877 2878 2879 2880
	if (rw & REQ_DISCARD) {
		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
				 BTRFS_BLOCK_GROUP_RAID1 |
				 BTRFS_BLOCK_GROUP_DUP |
				 BTRFS_BLOCK_GROUP_RAID10)) {
			stripes_required = map->num_stripes;
		}
	}
	if (multi_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
C
Chris Mason 已提交
2881
	    stripes_allocated < stripes_required) {
2882 2883 2884 2885 2886
		stripes_allocated = map->num_stripes;
		free_extent_map(em);
		kfree(multi);
		goto again;
	}
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
	stripe_nr = offset;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	do_div(stripe_nr, map->stripe_len);

	stripe_offset = stripe_nr * map->stripe_len;
	BUG_ON(offset < stripe_offset);

	/* stripe_offset is the offset of this block in its stripe*/
	stripe_offset = offset - stripe_offset;

2900 2901 2902 2903 2904 2905
	if (rw & REQ_DISCARD)
		*length = min_t(u64, em->len - offset, *length);
	else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			      BTRFS_BLOCK_GROUP_RAID1 |
			      BTRFS_BLOCK_GROUP_RAID10 |
			      BTRFS_BLOCK_GROUP_DUP)) {
2906 2907
		/* we limit the length of each bio to what fits in a stripe */
		*length = min_t(u64, em->len - offset,
2908
				map->stripe_len - stripe_offset);
2909 2910 2911
	} else {
		*length = em->len - offset;
	}
2912 2913

	if (!multi_ret && !unplug_page)
2914 2915
		goto out;

2916
	num_stripes = 1;
2917
	stripe_index = 0;
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	stripe_nr_orig = stripe_nr;
	stripe_nr_end = (offset + *length + map->stripe_len - 1) &
			(~(map->stripe_len - 1));
	do_div(stripe_nr_end, map->stripe_len);
	stripe_end_offset = stripe_nr_end * map->stripe_len -
			    (offset + *length);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		if (rw & REQ_DISCARD)
			num_stripes = min_t(u64, map->num_stripes,
					    stripe_nr_end - stripe_nr_orig);
		stripe_index = do_div(stripe_nr, map->num_stripes);
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		if (unplug_page || (rw & (REQ_WRITE | REQ_DISCARD)))
2931
			num_stripes = map->num_stripes;
2932
		else if (mirror_num)
2933
			stripe_index = mirror_num - 1;
2934 2935 2936 2937 2938
		else {
			stripe_index = find_live_mirror(map, 0,
					    map->num_stripes,
					    current->pid % map->num_stripes);
		}
2939

2940
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2941
		if (rw & (REQ_WRITE | REQ_DISCARD))
2942
			num_stripes = map->num_stripes;
2943 2944
		else if (mirror_num)
			stripe_index = mirror_num - 1;
2945

C
Chris Mason 已提交
2946 2947 2948 2949 2950 2951
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;

		stripe_index = do_div(stripe_nr, factor);
		stripe_index *= map->sub_stripes;

2952
		if (unplug_page || (rw & REQ_WRITE))
2953
			num_stripes = map->sub_stripes;
2954 2955 2956 2957
		else if (rw & REQ_DISCARD)
			num_stripes = min_t(u64, map->sub_stripes *
					    (stripe_nr_end - stripe_nr_orig),
					    map->num_stripes);
C
Chris Mason 已提交
2958 2959
		else if (mirror_num)
			stripe_index += mirror_num - 1;
2960 2961 2962 2963 2964
		else {
			stripe_index = find_live_mirror(map, stripe_index,
					      map->sub_stripes, stripe_index +
					      current->pid % map->sub_stripes);
		}
2965 2966 2967 2968 2969 2970 2971 2972
	} else {
		/*
		 * after this do_div call, stripe_nr is the number of stripes
		 * on this device we have to walk to find the data, and
		 * stripe_index is the number of our device in the stripe array
		 */
		stripe_index = do_div(stripe_nr, map->num_stripes);
	}
2973
	BUG_ON(stripe_index >= map->num_stripes);
2974

2975 2976
	if (rw & REQ_DISCARD) {
		for (i = 0; i < num_stripes; i++) {
2977 2978 2979 2980
			multi->stripes[i].physical =
				map->stripes[stripe_index].physical +
				stripe_offset + stripe_nr * map->stripe_len;
			multi->stripes[i].dev = map->stripes[stripe_index].dev;
2981 2982 2983

			if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
				u64 stripes;
2984
				u32 last_stripe = 0;
2985 2986
				int j;

2987 2988 2989 2990
				div_u64_rem(stripe_nr_end - 1,
					    map->num_stripes,
					    &last_stripe);

2991
				for (j = 0; j < map->num_stripes; j++) {
2992 2993 2994 2995 2996
					u32 test;

					div_u64_rem(stripe_nr_end - 1 - j,
						    map->num_stripes, &test);
					if (test == stripe_index)
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
						break;
				}
				stripes = stripe_nr_end - 1 - j;
				do_div(stripes, map->num_stripes);
				multi->stripes[i].length = map->stripe_len *
					(stripes - stripe_nr + 1);

				if (i == 0) {
					multi->stripes[i].length -=
						stripe_offset;
					stripe_offset = 0;
				}
				if (stripe_index == last_stripe)
					multi->stripes[i].length -=
						stripe_end_offset;
			} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
				u64 stripes;
				int j;
				int factor = map->num_stripes /
					     map->sub_stripes;
3017 3018 3019 3020
				u32 last_stripe = 0;

				div_u64_rem(stripe_nr_end - 1,
					    factor, &last_stripe);
3021 3022 3023
				last_stripe *= map->sub_stripes;

				for (j = 0; j < factor; j++) {
3024 3025 3026 3027 3028 3029
					u32 test;

					div_u64_rem(stripe_nr_end - 1 - j,
						    factor, &test);

					if (test ==
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
					    stripe_index / map->sub_stripes)
						break;
				}
				stripes = stripe_nr_end - 1 - j;
				do_div(stripes, factor);
				multi->stripes[i].length = map->stripe_len *
					(stripes - stripe_nr + 1);

				if (i < map->sub_stripes) {
					multi->stripes[i].length -=
						stripe_offset;
					if (i == map->sub_stripes - 1)
						stripe_offset = 0;
				}
				if (stripe_index >= last_stripe &&
				    stripe_index <= (last_stripe +
						     map->sub_stripes - 1)) {
					multi->stripes[i].length -=
						stripe_end_offset;
				}
			} else
				multi->stripes[i].length = *length;

			stripe_index++;
			if (stripe_index == map->num_stripes) {
				/* This could only happen for RAID0/10 */
				stripe_index = 0;
				stripe_nr++;
			}
		}
	} else {
		for (i = 0; i < num_stripes; i++) {
			if (unplug_page) {
				struct btrfs_device *device;
				struct backing_dev_info *bdi;

				device = map->stripes[stripe_index].dev;
				if (device->bdev) {
					bdi = blk_get_backing_dev_info(device->
								       bdev);
					if (bdi->unplug_io_fn)
						bdi->unplug_io_fn(bdi,
								  unplug_page);
				}
			} else {
				multi->stripes[i].physical =
					map->stripes[stripe_index].physical +
					stripe_offset +
					stripe_nr * map->stripe_len;
				multi->stripes[i].dev =
					map->stripes[stripe_index].dev;
			}
			stripe_index++;
3083
		}
3084
	}
3085 3086 3087
	if (multi_ret) {
		*multi_ret = multi;
		multi->num_stripes = num_stripes;
3088
		multi->max_errors = max_errors;
3089
	}
3090
out:
3091 3092 3093 3094
	free_extent_map(em);
	return 0;
}

3095 3096 3097 3098 3099 3100 3101 3102
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
		      u64 logical, u64 *length,
		      struct btrfs_multi_bio **multi_ret, int mirror_num)
{
	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
				 mirror_num, NULL);
}

Y
Yan Zheng 已提交
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
		     u64 chunk_start, u64 physical, u64 devid,
		     u64 **logical, int *naddrs, int *stripe_len)
{
	struct extent_map_tree *em_tree = &map_tree->map_tree;
	struct extent_map *em;
	struct map_lookup *map;
	u64 *buf;
	u64 bytenr;
	u64 length;
	u64 stripe_nr;
	int i, j, nr = 0;

3116
	read_lock(&em_tree->lock);
Y
Yan Zheng 已提交
3117
	em = lookup_extent_mapping(em_tree, chunk_start, 1);
3118
	read_unlock(&em_tree->lock);
Y
Yan Zheng 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148

	BUG_ON(!em || em->start != chunk_start);
	map = (struct map_lookup *)em->bdev;

	length = em->len;
	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		do_div(length, map->num_stripes / map->sub_stripes);
	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
		do_div(length, map->num_stripes);

	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
	BUG_ON(!buf);

	for (i = 0; i < map->num_stripes; i++) {
		if (devid && map->stripes[i].dev->devid != devid)
			continue;
		if (map->stripes[i].physical > physical ||
		    map->stripes[i].physical + length <= physical)
			continue;

		stripe_nr = physical - map->stripes[i].physical;
		do_div(stripe_nr, map->stripe_len);

		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripe_nr = stripe_nr * map->num_stripes + i;
			do_div(stripe_nr, map->sub_stripes);
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
			stripe_nr = stripe_nr * map->num_stripes + i;
		}
		bytenr = chunk_start + stripe_nr * map->stripe_len;
3149
		WARN_ON(nr >= map->num_stripes);
Y
Yan Zheng 已提交
3150 3151 3152 3153
		for (j = 0; j < nr; j++) {
			if (buf[j] == bytenr)
				break;
		}
3154 3155
		if (j == nr) {
			WARN_ON(nr >= map->num_stripes);
Y
Yan Zheng 已提交
3156
			buf[nr++] = bytenr;
3157
		}
Y
Yan Zheng 已提交
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	}

	*logical = buf;
	*naddrs = nr;
	*stripe_len = map->stripe_len;

	free_extent_map(em);
	return 0;
}

3168 3169 3170 3171 3172 3173 3174 3175
int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
		      u64 logical, struct page *page)
{
	u64 length = PAGE_CACHE_SIZE;
	return __btrfs_map_block(map_tree, READ, logical, &length,
				 NULL, 0, page);
}

3176 3177
static void end_bio_multi_stripe(struct bio *bio, int err)
{
3178
	struct btrfs_multi_bio *multi = bio->bi_private;
3179
	int is_orig_bio = 0;
3180 3181

	if (err)
3182
		atomic_inc(&multi->error);
3183

3184 3185 3186
	if (bio == multi->orig_bio)
		is_orig_bio = 1;

3187
	if (atomic_dec_and_test(&multi->stripes_pending)) {
3188 3189 3190 3191
		if (!is_orig_bio) {
			bio_put(bio);
			bio = multi->orig_bio;
		}
3192 3193
		bio->bi_private = multi->private;
		bio->bi_end_io = multi->end_io;
3194 3195 3196
		/* only send an error to the higher layers if it is
		 * beyond the tolerance of the multi-bio
		 */
3197
		if (atomic_read(&multi->error) > multi->max_errors) {
3198
			err = -EIO;
3199 3200 3201 3202 3203 3204
		} else if (err) {
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
			set_bit(BIO_UPTODATE, &bio->bi_flags);
3205
			err = 0;
3206
		}
3207 3208 3209
		kfree(multi);

		bio_endio(bio, err);
3210
	} else if (!is_orig_bio) {
3211 3212 3213 3214
		bio_put(bio);
	}
}

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
struct async_sched {
	struct bio *bio;
	int rw;
	struct btrfs_fs_info *info;
	struct btrfs_work work;
};

/*
 * see run_scheduled_bios for a description of why bios are collected for
 * async submit.
 *
 * This will add one bio to the pending list for a device and make sure
 * the work struct is scheduled.
 */
3229
static noinline int schedule_bio(struct btrfs_root *root,
3230 3231
				 struct btrfs_device *device,
				 int rw, struct bio *bio)
3232 3233
{
	int should_queue = 1;
3234
	struct btrfs_pending_bios *pending_bios;
3235 3236

	/* don't bother with additional async steps for reads, right now */
3237
	if (!(rw & REQ_WRITE)) {
3238
		bio_get(bio);
3239
		submit_bio(rw, bio);
3240
		bio_put(bio);
3241 3242 3243 3244
		return 0;
	}

	/*
3245
	 * nr_async_bios allows us to reliably return congestion to the
3246 3247 3248 3249
	 * higher layers.  Otherwise, the async bio makes it appear we have
	 * made progress against dirty pages when we've really just put it
	 * on a queue for later
	 */
3250
	atomic_inc(&root->fs_info->nr_async_bios);
3251
	WARN_ON(bio->bi_next);
3252 3253 3254 3255
	bio->bi_next = NULL;
	bio->bi_rw |= rw;

	spin_lock(&device->io_lock);
3256
	if (bio->bi_rw & REQ_SYNC)
3257 3258 3259
		pending_bios = &device->pending_sync_bios;
	else
		pending_bios = &device->pending_bios;
3260

3261 3262
	if (pending_bios->tail)
		pending_bios->tail->bi_next = bio;
3263

3264 3265 3266
	pending_bios->tail = bio;
	if (!pending_bios->head)
		pending_bios->head = bio;
3267 3268 3269 3270 3271 3272
	if (device->running_pending)
		should_queue = 0;

	spin_unlock(&device->io_lock);

	if (should_queue)
3273 3274
		btrfs_queue_worker(&root->fs_info->submit_workers,
				   &device->work);
3275 3276 3277
	return 0;
}

3278
int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3279
		  int mirror_num, int async_submit)
3280 3281 3282
{
	struct btrfs_mapping_tree *map_tree;
	struct btrfs_device *dev;
3283
	struct bio *first_bio = bio;
3284
	u64 logical = (u64)bio->bi_sector << 9;
3285 3286
	u64 length = 0;
	u64 map_length;
3287
	struct btrfs_multi_bio *multi = NULL;
3288
	int ret;
3289 3290
	int dev_nr = 0;
	int total_devs = 1;
3291

3292
	length = bio->bi_size;
3293 3294
	map_tree = &root->fs_info->mapping_tree;
	map_length = length;
3295

3296 3297
	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
			      mirror_num);
3298 3299 3300 3301
	BUG_ON(ret);

	total_devs = multi->num_stripes;
	if (map_length < length) {
3302 3303 3304 3305
		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
		       "len %llu\n", (unsigned long long)logical,
		       (unsigned long long)length,
		       (unsigned long long)map_length);
3306 3307 3308 3309
		BUG();
	}
	multi->end_io = first_bio->bi_end_io;
	multi->private = first_bio->bi_private;
3310
	multi->orig_bio = first_bio;
3311 3312
	atomic_set(&multi->stripes_pending, multi->num_stripes);

3313
	while (dev_nr < total_devs) {
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
		if (total_devs > 1) {
			if (dev_nr < total_devs - 1) {
				bio = bio_clone(first_bio, GFP_NOFS);
				BUG_ON(!bio);
			} else {
				bio = first_bio;
			}
			bio->bi_private = multi;
			bio->bi_end_io = end_bio_multi_stripe;
		}
3324 3325
		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
		dev = multi->stripes[dev_nr].dev;
3326
		if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3327
			bio->bi_bdev = dev->bdev;
3328 3329 3330 3331
			if (async_submit)
				schedule_bio(root, dev, rw, bio);
			else
				submit_bio(rw, bio);
3332 3333 3334 3335 3336
		} else {
			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
			bio->bi_sector = logical >> 9;
			bio_endio(bio, -EIO);
		}
3337 3338
		dev_nr++;
	}
3339 3340
	if (total_devs == 1)
		kfree(multi);
3341 3342 3343
	return 0;
}

3344
struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
Y
Yan Zheng 已提交
3345
				       u8 *uuid, u8 *fsid)
3346
{
Y
Yan Zheng 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	struct btrfs_device *device;
	struct btrfs_fs_devices *cur_devices;

	cur_devices = root->fs_info->fs_devices;
	while (cur_devices) {
		if (!fsid ||
		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
			device = __find_device(&cur_devices->devices,
					       devid, uuid);
			if (device)
				return device;
		}
		cur_devices = cur_devices->seed;
	}
	return NULL;
3362 3363
}

3364 3365 3366 3367 3368 3369 3370
static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;
	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;

	device = kzalloc(sizeof(*device), GFP_NOFS);
3371 3372
	if (!device)
		return NULL;
3373 3374 3375 3376
	list_add(&device->dev_list,
		 &fs_devices->devices);
	device->dev_root = root->fs_info->dev_root;
	device->devid = devid;
3377
	device->work.func = pending_bios_fn;
Y
Yan Zheng 已提交
3378
	device->fs_devices = fs_devices;
3379
	device->missing = 1;
3380
	fs_devices->num_devices++;
3381
	fs_devices->missing_devices++;
3382
	spin_lock_init(&device->io_lock);
3383
	INIT_LIST_HEAD(&device->dev_alloc_list);
3384 3385 3386 3387
	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
	return device;
}

3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
			  struct extent_buffer *leaf,
			  struct btrfs_chunk *chunk)
{
	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
3398
	u8 uuid[BTRFS_UUID_SIZE];
3399
	int num_stripes;
3400
	int ret;
3401
	int i;
3402

3403 3404
	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
3405

3406
	read_lock(&map_tree->map_tree.lock);
3407
	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3408
	read_unlock(&map_tree->map_tree.lock);
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

	em = alloc_extent_map(GFP_NOFS);
	if (!em)
		return -ENOMEM;
3421 3422
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3423 3424 3425 3426 3427 3428 3429 3430 3431
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

	em->bdev = (struct block_device *)map;
	em->start = logical;
	em->len = length;
	em->block_start = 0;
3432
	em->block_len = em->len;
3433

3434 3435 3436 3437 3438 3439
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
3440
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3441 3442 3443 3444
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3445 3446 3447
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
Y
Yan Zheng 已提交
3448 3449
		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
							NULL);
3450
		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3451 3452 3453 3454
			kfree(map);
			free_extent_map(em);
			return -EIO;
		}
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
		if (!map->stripes[i].dev) {
			map->stripes[i].dev =
				add_missing_dev(root, devid, uuid);
			if (!map->stripes[i].dev) {
				kfree(map);
				free_extent_map(em);
				return -EIO;
			}
		}
		map->stripes[i].dev->in_fs_metadata = 1;
3465 3466
	}

3467
	write_lock(&map_tree->map_tree.lock);
3468
	ret = add_extent_mapping(&map_tree->map_tree, em);
3469
	write_unlock(&map_tree->map_tree.lock);
3470
	BUG_ON(ret);
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	free_extent_map(em);

	return 0;
}

static int fill_device_from_item(struct extent_buffer *leaf,
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
3483 3484
	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->total_bytes = device->disk_total_bytes;
3485 3486 3487 3488 3489 3490 3491
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);

	ptr = (unsigned long)btrfs_device_uuid(dev_item);
3492
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3493 3494 3495 3496

	return 0;
}

Y
Yan Zheng 已提交
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
{
	struct btrfs_fs_devices *fs_devices;
	int ret;

	mutex_lock(&uuid_mutex);

	fs_devices = root->fs_info->fs_devices->seed;
	while (fs_devices) {
		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
			ret = 0;
			goto out;
		}
		fs_devices = fs_devices->seed;
	}

	fs_devices = find_fsid(fsid);
	if (!fs_devices) {
		ret = -ENOENT;
		goto out;
	}
Y
Yan Zheng 已提交
3518 3519 3520 3521

	fs_devices = clone_fs_devices(fs_devices);
	if (IS_ERR(fs_devices)) {
		ret = PTR_ERR(fs_devices);
Y
Yan Zheng 已提交
3522 3523 3524
		goto out;
	}

3525
	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3526
				   root->fs_info->bdev_holder);
Y
Yan Zheng 已提交
3527 3528 3529 3530 3531
	if (ret)
		goto out;

	if (!fs_devices->seeding) {
		__btrfs_close_devices(fs_devices);
Y
Yan Zheng 已提交
3532
		free_fs_devices(fs_devices);
Y
Yan Zheng 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
		ret = -EINVAL;
		goto out;
	}

	fs_devices->seed = root->fs_info->fs_devices->seed;
	root->fs_info->fs_devices->seed = fs_devices;
out:
	mutex_unlock(&uuid_mutex);
	return ret;
}

3544
static int read_one_dev(struct btrfs_root *root,
3545 3546 3547 3548 3549 3550
			struct extent_buffer *leaf,
			struct btrfs_dev_item *dev_item)
{
	struct btrfs_device *device;
	u64 devid;
	int ret;
Y
Yan Zheng 已提交
3551
	u8 fs_uuid[BTRFS_UUID_SIZE];
3552 3553
	u8 dev_uuid[BTRFS_UUID_SIZE];

3554
	devid = btrfs_device_id(leaf, dev_item);
3555 3556 3557
	read_extent_buffer(leaf, dev_uuid,
			   (unsigned long)btrfs_device_uuid(dev_item),
			   BTRFS_UUID_SIZE);
Y
Yan Zheng 已提交
3558 3559 3560 3561 3562 3563
	read_extent_buffer(leaf, fs_uuid,
			   (unsigned long)btrfs_device_fsid(dev_item),
			   BTRFS_UUID_SIZE);

	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
		ret = open_seed_devices(root, fs_uuid);
Y
Yan Zheng 已提交
3564
		if (ret && !btrfs_test_opt(root, DEGRADED))
Y
Yan Zheng 已提交
3565 3566 3567 3568 3569
			return ret;
	}

	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
	if (!device || !device->bdev) {
Y
Yan Zheng 已提交
3570
		if (!btrfs_test_opt(root, DEGRADED))
Y
Yan Zheng 已提交
3571 3572 3573
			return -EIO;

		if (!device) {
3574 3575
			printk(KERN_WARNING "warning devid %llu missing\n",
			       (unsigned long long)devid);
Y
Yan Zheng 已提交
3576 3577 3578
			device = add_missing_dev(root, devid, dev_uuid);
			if (!device)
				return -ENOMEM;
3579 3580 3581 3582 3583 3584 3585 3586 3587
		} else if (!device->missing) {
			/*
			 * this happens when a device that was properly setup
			 * in the device info lists suddenly goes bad.
			 * device->bdev is NULL, and so we have to set
			 * device->missing to one here
			 */
			root->fs_info->fs_devices->missing_devices++;
			device->missing = 1;
Y
Yan Zheng 已提交
3588 3589 3590 3591 3592 3593 3594 3595
		}
	}

	if (device->fs_devices != root->fs_info->fs_devices) {
		BUG_ON(device->writeable);
		if (device->generation !=
		    btrfs_device_generation(leaf, dev_item))
			return -EINVAL;
3596
	}
3597 3598 3599

	fill_device_from_item(leaf, dev_item, device);
	device->dev_root = root->fs_info->dev_root;
3600
	device->in_fs_metadata = 1;
Y
Yan Zheng 已提交
3601 3602
	if (device->writeable)
		device->fs_devices->total_rw_bytes += device->total_bytes;
3603 3604 3605 3606
	ret = 0;
	return ret;
}

3607 3608 3609 3610 3611 3612 3613 3614 3615
int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
{
	struct btrfs_dev_item *dev_item;

	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
						     dev_item);
	return read_one_dev(root, buf, dev_item);
}

Y
Yan Zheng 已提交
3616
int btrfs_read_sys_array(struct btrfs_root *root)
3617 3618
{
	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3619
	struct extent_buffer *sb;
3620 3621
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
3622 3623 3624
	u8 *ptr;
	unsigned long sb_ptr;
	int ret = 0;
3625 3626 3627 3628
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
3629
	struct btrfs_key key;
3630

Y
Yan Zheng 已提交
3631
	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3632 3633 3634 3635
					  BTRFS_SUPER_INFO_SIZE);
	if (!sb)
		return -ENOMEM;
	btrfs_set_buffer_uptodate(sb);
3636 3637
	btrfs_set_buffer_lockdep_class(sb, 0);

3638
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

3649
		len = sizeof(*disk_key); ptr += len;
3650 3651 3652
		sb_ptr += len;
		cur += len;

3653
		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3654
			chunk = (struct btrfs_chunk *)sb_ptr;
3655
			ret = read_one_chunk(root, &key, sb, chunk);
3656 3657
			if (ret)
				break;
3658 3659 3660
			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
			len = btrfs_chunk_item_size(num_stripes);
		} else {
3661 3662
			ret = -EIO;
			break;
3663 3664 3665 3666 3667
		}
		ptr += len;
		sb_ptr += len;
		cur += len;
	}
3668
	free_extent_buffer(sb);
3669
	return ret;
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
}

int btrfs_read_chunk_tree(struct btrfs_root *root)
{
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;

	root = root->fs_info->chunk_root;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	/* first we search for all of the device items, and then we
	 * read in all of the chunk items.  This way we can create chunk
	 * mappings that reference all of the devices that are afound
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
again:
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3696 3697
	if (ret < 0)
		goto error;
3698
	while (1) {
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
				break;
			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
				struct btrfs_dev_item *dev_item;
				dev_item = btrfs_item_ptr(leaf, slot,
						  struct btrfs_dev_item);
3717
				ret = read_one_dev(root, leaf, dev_item);
Y
Yan Zheng 已提交
3718 3719
				if (ret)
					goto error;
3720 3721 3722 3723 3724
			}
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
			ret = read_one_chunk(root, &found_key, leaf, chunk);
Y
Yan Zheng 已提交
3725 3726
			if (ret)
				goto error;
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
		}
		path->slots[0]++;
	}
	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
		key.objectid = 0;
		btrfs_release_path(root, path);
		goto again;
	}
	ret = 0;
error:
Y
Yan Zheng 已提交
3737
	btrfs_free_path(path);
3738 3739
	return ret;
}