mmu_context.h 8.2 KB
Newer Older
H
H. Peter Anvin 已提交
1 2
#ifndef _ASM_X86_MMU_CONTEXT_H
#define _ASM_X86_MMU_CONTEXT_H
J
Jeremy Fitzhardinge 已提交
3 4

#include <asm/desc.h>
A
Arun Sharma 已提交
5
#include <linux/atomic.h>
6
#include <linux/mm_types.h>
7
#include <linux/pkeys.h>
8 9 10

#include <trace/events/tlb.h>

J
Jeremy Fitzhardinge 已提交
11 12 13
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#include <asm/paravirt.h>
14
#include <asm/mpx.h>
J
Jeremy Fitzhardinge 已提交
15 16 17 18 19 20 21
#ifndef CONFIG_PARAVIRT
static inline void paravirt_activate_mm(struct mm_struct *prev,
					struct mm_struct *next)
{
}
#endif	/* !CONFIG_PARAVIRT */

22
#ifdef CONFIG_PERF_EVENTS
23 24
extern struct static_key rdpmc_always_available;

25 26
static inline void load_mm_cr4(struct mm_struct *mm)
{
27
	if (static_key_false(&rdpmc_always_available) ||
28
	    atomic_read(&mm->context.perf_rdpmc_allowed))
29 30 31 32 33 34 35 36
		cr4_set_bits(X86_CR4_PCE);
	else
		cr4_clear_bits(X86_CR4_PCE);
}
#else
static inline void load_mm_cr4(struct mm_struct *mm) {}
#endif

37
#ifdef CONFIG_MODIFY_LDT_SYSCALL
38 39 40 41 42 43 44 45 46 47 48 49
/*
 * ldt_structs can be allocated, used, and freed, but they are never
 * modified while live.
 */
struct ldt_struct {
	/*
	 * Xen requires page-aligned LDTs with special permissions.  This is
	 * needed to prevent us from installing evil descriptors such as
	 * call gates.  On native, we could merge the ldt_struct and LDT
	 * allocations, but it's not worth trying to optimize.
	 */
	struct desc_struct *entries;
50
	unsigned int nr_entries;
51 52
};

53 54 55
/*
 * Used for LDT copy/destruction.
 */
56 57
int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
void destroy_context_ldt(struct mm_struct *mm);
58
#else	/* CONFIG_MODIFY_LDT_SYSCALL */
59 60
static inline int init_new_context_ldt(struct task_struct *tsk,
				       struct mm_struct *mm)
61 62 63
{
	return 0;
}
64
static inline void destroy_context_ldt(struct mm_struct *mm) {}
65 66
#endif

67 68
static inline void load_mm_ldt(struct mm_struct *mm)
{
69
#ifdef CONFIG_MODIFY_LDT_SYSCALL
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
	struct ldt_struct *ldt;

	/* lockless_dereference synchronizes with smp_store_release */
	ldt = lockless_dereference(mm->context.ldt);

	/*
	 * Any change to mm->context.ldt is followed by an IPI to all
	 * CPUs with the mm active.  The LDT will not be freed until
	 * after the IPI is handled by all such CPUs.  This means that,
	 * if the ldt_struct changes before we return, the values we see
	 * will be safe, and the new values will be loaded before we run
	 * any user code.
	 *
	 * NB: don't try to convert this to use RCU without extreme care.
	 * We would still need IRQs off, because we don't want to change
	 * the local LDT after an IPI loaded a newer value than the one
	 * that we can see.
	 */

	if (unlikely(ldt))
90
		set_ldt(ldt->entries, ldt->nr_entries);
91 92
	else
		clear_LDT();
93 94 95
#else
	clear_LDT();
#endif
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
}

static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
{
#ifdef CONFIG_MODIFY_LDT_SYSCALL
	/*
	 * Load the LDT if either the old or new mm had an LDT.
	 *
	 * An mm will never go from having an LDT to not having an LDT.  Two
	 * mms never share an LDT, so we don't gain anything by checking to
	 * see whether the LDT changed.  There's also no guarantee that
	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
	 * then prev->context.ldt will also be non-NULL.
	 *
	 * If we really cared, we could optimize the case where prev == next
	 * and we're exiting lazy mode.  Most of the time, if this happens,
	 * we don't actually need to reload LDTR, but modify_ldt() is mostly
	 * used by legacy code and emulators where we don't need this level of
	 * performance.
	 *
	 * This uses | instead of || because it generates better code.
	 */
	if (unlikely((unsigned long)prev->context.ldt |
		     (unsigned long)next->context.ldt))
		load_mm_ldt(next);
#endif
122 123 124 125

	DEBUG_LOCKS_WARN_ON(preemptible());
}

B
Brian Gerst 已提交
126 127
static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
{
128 129
	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
		this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
B
Brian Gerst 已提交
130 131
}

132 133 134
static inline int init_new_context(struct task_struct *tsk,
				   struct mm_struct *mm)
{
135 136 137 138 139 140 141 142
	#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
		/* pkey 0 is the default and always allocated */
		mm->context.pkey_allocation_map = 0x1;
		/* -1 means unallocated or invalid */
		mm->context.execute_only_pkey = -1;
	}
	#endif
143
	init_new_context_ldt(tsk, mm);
144

145 146 147 148 149 150 151
	return 0;
}
static inline void destroy_context(struct mm_struct *mm)
{
	destroy_context_ldt(mm);
}

152 153
extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
		      struct task_struct *tsk);
B
Brian Gerst 已提交
154

155 156 157
extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
			       struct task_struct *tsk);
#define switch_mm_irqs_off switch_mm_irqs_off
J
Jeremy Fitzhardinge 已提交
158 159 160 161 162 163 164

#define activate_mm(prev, next)			\
do {						\
	paravirt_activate_mm((prev), (next));	\
	switch_mm((prev), (next), NULL);	\
} while (0);

B
Brian Gerst 已提交
165 166 167
#ifdef CONFIG_X86_32
#define deactivate_mm(tsk, mm)			\
do {						\
168
	lazy_load_gs(0);			\
B
Brian Gerst 已提交
169 170 171 172 173 174 175 176
} while (0)
#else
#define deactivate_mm(tsk, mm)			\
do {						\
	load_gs_index(0);			\
	loadsegment(fs, 0);			\
} while (0)
#endif
J
Jeremy Fitzhardinge 已提交
177

178 179 180 181 182 183 184 185 186 187 188
static inline void arch_dup_mmap(struct mm_struct *oldmm,
				 struct mm_struct *mm)
{
	paravirt_arch_dup_mmap(oldmm, mm);
}

static inline void arch_exit_mmap(struct mm_struct *mm)
{
	paravirt_arch_exit_mmap(mm);
}

189 190 191
#ifdef CONFIG_X86_64
static inline bool is_64bit_mm(struct mm_struct *mm)
{
192
	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
193 194 195 196 197 198 199 200 201
		!(mm->context.ia32_compat == TIF_IA32);
}
#else
static inline bool is_64bit_mm(struct mm_struct *mm)
{
	return false;
}
#endif

202 203 204 205 206 207
static inline void arch_bprm_mm_init(struct mm_struct *mm,
		struct vm_area_struct *vma)
{
	mpx_mm_init(mm);
}

208 209 210
static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
			      unsigned long start, unsigned long end)
{
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
	/*
	 * mpx_notify_unmap() goes and reads a rarely-hot
	 * cacheline in the mm_struct.  That can be expensive
	 * enough to be seen in profiles.
	 *
	 * The mpx_notify_unmap() call and its contents have been
	 * observed to affect munmap() performance on hardware
	 * where MPX is not present.
	 *
	 * The unlikely() optimizes for the fast case: no MPX
	 * in the CPU, or no MPX use in the process.  Even if
	 * we get this wrong (in the unlikely event that MPX
	 * is widely enabled on some system) the overhead of
	 * MPX itself (reading bounds tables) is expected to
	 * overwhelm the overhead of getting this unlikely()
	 * consistently wrong.
	 */
	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
		mpx_notify_unmap(mm, vma, start, end);
230 231
}

232
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
233 234 235 236
static inline int vma_pkey(struct vm_area_struct *vma)
{
	unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
				      VM_PKEY_BIT2 | VM_PKEY_BIT3;
237 238 239 240 241 242 243

	return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
}
#else
static inline int vma_pkey(struct vm_area_struct *vma)
{
	return 0;
244
}
245
#endif
246

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
/*
 * We only want to enforce protection keys on the current process
 * because we effectively have no access to PKRU for other
 * processes or any way to tell *which * PKRU in a threaded
 * process we could use.
 *
 * So do not enforce things if the VMA is not from the current
 * mm, or if we are in a kernel thread.
 */
static inline bool vma_is_foreign(struct vm_area_struct *vma)
{
	if (!current->mm)
		return true;
	/*
	 * Should PKRU be enforced on the access to this VMA?  If
	 * the VMA is from another process, then PKRU has no
	 * relevance and should not be enforced.
	 */
	if (current->mm != vma->vm_mm)
		return true;

	return false;
}

271
static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
272
		bool write, bool execute, bool foreign)
273
{
274 275 276
	/* pkeys never affect instruction fetches */
	if (execute)
		return true;
277
	/* allow access if the VMA is not one from this process */
278
	if (foreign || vma_is_foreign(vma))
279 280 281 282
		return true;
	return __pkru_allows_pkey(vma_pkey(vma), write);
}

283 284 285

/*
 * This can be used from process context to figure out what the value of
286
 * CR3 is without needing to do a (slow) __read_cr3().
287 288 289 290 291 292 293 294 295 296 297
 *
 * It's intended to be used for code like KVM that sneakily changes CR3
 * and needs to restore it.  It needs to be used very carefully.
 */
static inline unsigned long __get_current_cr3_fast(void)
{
	unsigned long cr3 = __pa(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd);

	/* For now, be very restrictive about when this can be called. */
	VM_WARN_ON(in_nmi() || !in_atomic());

298
	VM_BUG_ON(cr3 != __read_cr3());
299 300 301
	return cr3;
}

H
H. Peter Anvin 已提交
302
#endif /* _ASM_X86_MMU_CONTEXT_H */