migrate.c 52.0 KB
Newer Older
C
Christoph Lameter 已提交
1
/*
2
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
3 4 5 6 7 8 9 10 11
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
12
 * Christoph Lameter
C
Christoph Lameter 已提交
13 14 15
 */

#include <linux/migrate.h>
16
#include <linux/export.h>
C
Christoph Lameter 已提交
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
C
Christoph Lameter 已提交
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30 31
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/backing-dev.h>
34
#include <linux/compaction.h>
35
#include <linux/syscalls.h>
N
Naoya Horiguchi 已提交
36
#include <linux/hugetlb.h>
37
#include <linux/hugetlb_cgroup.h>
38
#include <linux/gfp.h>
39
#include <linux/balloon_compaction.h>
40
#include <linux/mmu_notifier.h>
41
#include <linux/page_idle.h>
42
#include <linux/page_owner.h>
C
Christoph Lameter 已提交
43

44 45
#include <asm/tlbflush.h>

46 47 48
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
49 50 51
#include "internal.h"

/*
52
 * migrate_prep() needs to be called before we start compiling a list of pages
53 54
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

69 70 71 72 73 74 75 76
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
bool isolate_movable_page(struct page *page, isolate_mode_t mode)
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
	 * so unconditionally grapping the lock ruins page's owner side.
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

	return true;

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
	return false;
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

152 153 154 155
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
156 157 158
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
159 160 161 162 163 164
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
165
	list_for_each_entry_safe(page, page2, l, lru) {
166 167 168 169
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
170
		list_del(&page->lru);
K
KOSAKI Motohiro 已提交
171
		dec_zone_page_state(page, NR_ISOLATED_ANON +
172
				page_is_file_cache(page));
173 174 175 176 177
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
178
		if (unlikely(__PageMovable(page))) {
179 180 181 182 183 184 185 186 187
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
188
			putback_lru_page(page);
189
		}
C
Christoph Lameter 已提交
190 191 192
	}
}

193 194 195
/*
 * Restore a potential migration pte to a working pte entry
 */
196 197
static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
				 unsigned long addr, void *old)
198 199 200 201 202 203 204
{
	struct mm_struct *mm = vma->vm_mm;
	swp_entry_t entry;
 	pmd_t *pmd;
	pte_t *ptep, pte;
 	spinlock_t *ptl;

N
Naoya Horiguchi 已提交
205 206 207 208
	if (unlikely(PageHuge(new))) {
		ptep = huge_pte_offset(mm, addr);
		if (!ptep)
			goto out;
209
		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
N
Naoya Horiguchi 已提交
210
	} else {
B
Bob Liu 已提交
211 212
		pmd = mm_find_pmd(mm, addr);
		if (!pmd)
N
Naoya Horiguchi 已提交
213
			goto out;
214

N
Naoya Horiguchi 已提交
215
		ptep = pte_offset_map(pmd, addr);
216

217 218 219 220
		/*
		 * Peek to check is_swap_pte() before taking ptlock?  No, we
		 * can race mremap's move_ptes(), which skips anon_vma lock.
		 */
N
Naoya Horiguchi 已提交
221 222 223

		ptl = pte_lockptr(mm, pmd);
	}
224 225 226 227

 	spin_lock(ptl);
	pte = *ptep;
	if (!is_swap_pte(pte))
228
		goto unlock;
229 230 231

	entry = pte_to_swp_entry(pte);

232 233 234
	if (!is_migration_entry(entry) ||
	    migration_entry_to_page(entry) != old)
		goto unlock;
235 236 237

	get_page(new);
	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
238 239
	if (pte_swp_soft_dirty(*ptep))
		pte = pte_mksoft_dirty(pte);
240 241

	/* Recheck VMA as permissions can change since migration started  */
242
	if (is_write_migration_entry(entry))
243 244
		pte = maybe_mkwrite(pte, vma);

A
Andi Kleen 已提交
245
#ifdef CONFIG_HUGETLB_PAGE
246
	if (PageHuge(new)) {
N
Naoya Horiguchi 已提交
247
		pte = pte_mkhuge(pte);
248 249
		pte = arch_make_huge_pte(pte, vma, new, 0);
	}
A
Andi Kleen 已提交
250
#endif
251
	flush_dcache_page(new);
252
	set_pte_at(mm, addr, ptep, pte);
253

N
Naoya Horiguchi 已提交
254 255 256 257
	if (PageHuge(new)) {
		if (PageAnon(new))
			hugepage_add_anon_rmap(new, vma, addr);
		else
258
			page_dup_rmap(new, true);
N
Naoya Horiguchi 已提交
259
	} else if (PageAnon(new))
260
		page_add_anon_rmap(new, vma, addr, false);
261 262 263
	else
		page_add_file_rmap(new);

264
	if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
265 266
		mlock_vma_page(new);

267
	/* No need to invalidate - it was non-present before */
268
	update_mmu_cache(vma, addr, ptep);
269
unlock:
270
	pte_unmap_unlock(ptep, ptl);
271 272
out:
	return SWAP_AGAIN;
273 274
}

275 276 277 278
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
279
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
280
{
281 282 283 284 285
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

286 287 288 289
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
290 291
}

292 293 294 295 296
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
297
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
298
				spinlock_t *ptl)
299
{
300
	pte_t pte;
301 302 303
	swp_entry_t entry;
	struct page *page;

304
	spin_lock(ptl);
305 306 307 308 309 310 311 312 313 314
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
315 316 317 318 319 320 321 322 323
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
324 325 326 327 328 329 330 331
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

332 333 334 335 336 337 338 339
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

340 341
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
342
{
343
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
344 345 346
	__migration_entry_wait(mm, pte, ptl);
}

347 348
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
349 350
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
351 352 353 354
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
355
	if (mode != MIGRATE_ASYNC) {
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
391
							enum migrate_mode mode)
392 393 394 395 396
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
397
/*
398
 * Replace the page in the mapping.
399 400 401 402
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
403
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
404
 */
405
int migrate_page_move_mapping(struct address_space *mapping,
406
		struct page *newpage, struct page *page,
407 408
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
409
{
410 411
	struct zone *oldzone, *newzone;
	int dirty;
412
	int expected_count = 1 + extra_count;
413
	void **pslot;
C
Christoph Lameter 已提交
414

415
	if (!mapping) {
416
		/* Anonymous page without mapping */
417
		if (page_count(page) != expected_count)
418
			return -EAGAIN;
419 420 421 422 423

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
424
			__SetPageSwapBacked(newpage);
425

426
		return MIGRATEPAGE_SUCCESS;
427 428
	}

429 430 431
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

N
Nick Piggin 已提交
432
	spin_lock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
433

434 435
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
C
Christoph Lameter 已提交
436

437
	expected_count += 1 + page_has_private(page);
N
Nick Piggin 已提交
438
	if (page_count(page) != expected_count ||
439
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
440
		spin_unlock_irq(&mapping->tree_lock);
441
		return -EAGAIN;
C
Christoph Lameter 已提交
442 443
	}

444
	if (!page_ref_freeze(page, expected_count)) {
N
Nick Piggin 已提交
445
		spin_unlock_irq(&mapping->tree_lock);
N
Nick Piggin 已提交
446 447 448
		return -EAGAIN;
	}

449 450 451 452 453 454 455
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
456 457
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
458
		page_ref_unfreeze(page, expected_count);
459 460 461 462
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
463
	/*
464 465
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
466
	 */
467 468 469
	newpage->index = page->index;
	newpage->mapping = page->mapping;
	if (PageSwapBacked(page))
470
		__SetPageSwapBacked(newpage);
471

472
	get_page(newpage);	/* add cache reference */
C
Christoph Lameter 已提交
473 474 475 476 477
	if (PageSwapCache(page)) {
		SetPageSwapCache(newpage);
		set_page_private(newpage, page_private(page));
	}

478 479 480 481 482 483 484
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

485 486 487
	radix_tree_replace_slot(pslot, newpage);

	/*
488 489
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
490 491
	 * We know this isn't the last reference.
	 */
492
	page_ref_unfreeze(page, expected_count - 1);
493

494 495 496
	spin_unlock(&mapping->tree_lock);
	/* Leave irq disabled to prevent preemption while updating stats */

497 498 499 500 501 502 503 504 505 506
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
	 * are mapped to swap space.
	 */
507 508 509 510 511 512 513 514 515 516 517
	if (newzone != oldzone) {
		__dec_zone_state(oldzone, NR_FILE_PAGES);
		__inc_zone_state(newzone, NR_FILE_PAGES);
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
			__dec_zone_state(oldzone, NR_SHMEM);
			__inc_zone_state(newzone, NR_SHMEM);
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
			__dec_zone_state(oldzone, NR_FILE_DIRTY);
			__inc_zone_state(newzone, NR_FILE_DIRTY);
		}
518
	}
519
	local_irq_enable();
C
Christoph Lameter 已提交
520

521
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
522
}
523
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
524

N
Naoya Horiguchi 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
542
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Naoya Horiguchi 已提交
543 544 545 546
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

547
	if (!page_ref_freeze(page, expected_count)) {
N
Naoya Horiguchi 已提交
548 549 550 551
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

552 553
	newpage->index = page->index;
	newpage->mapping = page->mapping;
554

N
Naoya Horiguchi 已提交
555 556 557 558
	get_page(newpage);

	radix_tree_replace_slot(pslot, newpage);

559
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
560 561

	spin_unlock_irq(&mapping->tree_lock);
562

563
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
564 565
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
614 615 616
/*
 * Copy the page to its new location
 */
N
Naoya Horiguchi 已提交
617
void migrate_page_copy(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
618
{
619 620
	int cpupid;

621
	if (PageHuge(page) || PageTransHuge(page))
N
Naoya Horiguchi 已提交
622 623 624
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);
C
Christoph Lameter 已提交
625 626 627 628 629 630 631

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
632
	if (TestClearPageActive(page)) {
633
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
634
		SetPageActive(newpage);
635 636
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
637 638 639 640 641
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

642 643 644
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
645

646 647 648 649 650
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

651 652 653 654 655 656 657
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

658
	ksm_migrate_page(newpage, page);
659 660 661 662
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
663 664
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
665 666 667 668 669 670 671 672 673
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
674 675

	copy_page_owner(page, newpage);
676 677

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
678
}
679
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
680

681 682 683 684
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
685
/*
686
 * Common logic to directly migrate a single LRU page suitable for
687
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
688 689 690
 *
 * Pages are locked upon entry and exit.
 */
691
int migrate_page(struct address_space *mapping,
692 693
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
694 695 696 697 698
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

699
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
700

701
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
702 703 704
		return rc;

	migrate_page_copy(newpage, page);
705
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
706 707 708
}
EXPORT_SYMBOL(migrate_page);

709
#ifdef CONFIG_BLOCK
710 711 712 713 714
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
715
int buffer_migrate_page(struct address_space *mapping,
716
		struct page *newpage, struct page *page, enum migrate_mode mode)
717 718 719 720 721
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
722
		return migrate_page(mapping, newpage, page, mode);
723 724 725

	head = page_buffers(page);

726
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
727

728
	if (rc != MIGRATEPAGE_SUCCESS)
729 730
		return rc;

731 732 733 734 735
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
736 737
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

	migrate_page_copy(newpage, page);

	bh = head;
	do {
		unlock_buffer(bh);
 		put_bh(bh);
		bh = bh->b_this_page;

	} while (bh != head);

764
	return MIGRATEPAGE_SUCCESS;
765 766
}
EXPORT_SYMBOL(buffer_migrate_page);
767
#endif
768

769 770 771 772
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
773
{
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

791
	/*
792 793 794 795 796 797
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
798
	 */
799
	remove_migration_ptes(page, page, false);
800

801
	rc = mapping->a_ops->writepage(page, &wbc);
802

803 804 805 806
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
807
	return (rc < 0) ? -EIO : -EAGAIN;
808 809 810 811 812 813
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
814
	struct page *newpage, struct page *page, enum migrate_mode mode)
815
{
816
	if (PageDirty(page)) {
817 818
		/* Only writeback pages in full synchronous migration */
		if (mode != MIGRATE_SYNC)
819
			return -EBUSY;
820
		return writeout(mapping, page);
821
	}
822 823 824 825 826

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
827
	if (page_has_private(page) &&
828 829 830
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

831
	return migrate_page(mapping, newpage, page, mode);
832 833
}

834 835 836 837 838 839
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
840 841 842
 *
 * Return value:
 *   < 0 - error code
843
 *  MIGRATEPAGE_SUCCESS - success
844
 */
845
static int move_to_new_page(struct page *newpage, struct page *page,
846
				enum migrate_mode mode)
847 848
{
	struct address_space *mapping;
849 850
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
851

852 853
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
854 855

	mapping = page_mapping(page);
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
874
		/*
875 876
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
877
		 */
878 879 880 881 882 883 884 885 886 887 888 889
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
890

891 892 893 894 895
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
912
			page->mapping = NULL;
913
	}
914
out:
915 916 917
	return rc;
}

918
static int __unmap_and_move(struct page *page, struct page *newpage,
919
				int force, enum migrate_mode mode)
920
{
921
	int rc = -EAGAIN;
922
	int page_was_mapped = 0;
923
	struct anon_vma *anon_vma = NULL;
924
	bool is_lru = !__PageMovable(page);
925

N
Nick Piggin 已提交
926
	if (!trylock_page(page)) {
927
		if (!force || mode == MIGRATE_ASYNC)
928
			goto out;
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
944
			goto out;
945

946 947 948 949
		lock_page(page);
	}

	if (PageWriteback(page)) {
950
		/*
951
		 * Only in the case of a full synchronous migration is it
952 953 954
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
955
		 */
956
		if (mode != MIGRATE_SYNC) {
957
			rc = -EBUSY;
958
			goto out_unlock;
959 960
		}
		if (!force)
961
			goto out_unlock;
962 963
		wait_on_page_writeback(page);
	}
964

965
	/*
966 967
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
968
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
969
	 * of migration. File cache pages are no problem because of page_lock()
970 971
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
972 973 974 975 976 977
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
978
	 */
979
	if (PageAnon(page) && !PageKsm(page))
980
		anon_vma = page_get_anon_vma(page);
981

982 983 984 985 986 987 988 989 990 991 992
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

993 994 995 996 997
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

998
	/*
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1009
	 */
1010
	if (!page->mapping) {
1011
		VM_BUG_ON_PAGE(PageAnon(page), page);
1012
		if (page_has_private(page)) {
1013
			try_to_free_buffers(page);
1014
			goto out_unlock_both;
1015
		}
1016 1017
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1018 1019
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1020
		try_to_unmap(page,
1021
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1022 1023
		page_was_mapped = 1;
	}
1024

1025
	if (!page_mapped(page))
1026
		rc = move_to_new_page(newpage, page, mode);
1027

1028 1029
	if (page_was_mapped)
		remove_migration_ptes(page,
1030
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1031

1032 1033 1034
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1035
	/* Drop an anon_vma reference if we took one */
1036
	if (anon_vma)
1037
		put_anon_vma(anon_vma);
1038
	unlock_page(page);
1039
out:
1040 1041 1042 1043 1044 1045 1046
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
	 * list in here.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1047
		if (unlikely(__PageMovable(newpage)))
1048 1049 1050 1051 1052
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1053 1054
	return rc;
}
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1066 1067 1068 1069
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1070 1071 1072
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1073 1074
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1075
{
1076
	int rc = MIGRATEPAGE_SUCCESS;
1077
	int *result = NULL;
1078
	struct page *newpage;
1079

1080
	newpage = get_new_page(page, private, &result);
1081 1082 1083 1084 1085
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1086 1087
		ClearPageActive(page);
		ClearPageUnevictable(page);
1088 1089 1090 1091 1092 1093
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1094 1095 1096 1097
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1098 1099 1100
		goto out;
	}

1101 1102 1103 1104 1105
	if (unlikely(PageTransHuge(page))) {
		lock_page(page);
		rc = split_huge_page(page);
		unlock_page(page);
		if (rc)
1106
			goto out;
1107
	}
1108

1109
	rc = __unmap_and_move(page, newpage, force, mode);
1110
	if (rc == MIGRATEPAGE_SUCCESS)
1111
		set_page_owner_migrate_reason(newpage, reason);
1112

1113
out:
1114
	if (rc != -EAGAIN) {
1115 1116 1117 1118 1119 1120 1121
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
K
KOSAKI Motohiro 已提交
1122
		dec_zone_page_state(page, NR_ISOLATED_ANON +
1123
				page_is_file_cache(page));
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1134
			/*
1135 1136 1137
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1138
			 */
1139 1140
			if (!test_set_page_hwpoison(page))
				num_poisoned_pages_inc();
1141 1142
		}
	} else {
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1158 1159 1160 1161
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1162
	}
1163

1164 1165 1166 1167 1168 1169
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
1170 1171 1172
	return rc;
}

N
Naoya Horiguchi 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1192 1193
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1194
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1195
{
1196
	int rc = -EAGAIN;
N
Naoya Horiguchi 已提交
1197
	int *result = NULL;
1198
	int page_was_mapped = 0;
1199
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1200 1201
	struct anon_vma *anon_vma = NULL;

1202 1203 1204 1205 1206 1207 1208
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1209
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1210
		putback_active_hugepage(hpage);
1211
		return -ENOSYS;
1212
	}
1213

1214
	new_hpage = get_new_page(hpage, private, &result);
N
Naoya Horiguchi 已提交
1215 1216 1217 1218
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1219
		if (!force || mode != MIGRATE_SYNC)
N
Naoya Horiguchi 已提交
1220 1221 1222 1223
			goto out;
		lock_page(hpage);
	}

1224 1225
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1226

1227 1228 1229
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1230 1231 1232 1233 1234
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1235 1236

	if (!page_mapped(hpage))
1237
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1238

1239 1240
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1241
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1242

1243 1244 1245
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1246
	if (anon_vma)
1247
		put_anon_vma(anon_vma);
1248

1249
	if (rc == MIGRATEPAGE_SUCCESS) {
1250
		hugetlb_cgroup_migrate(hpage, new_hpage);
1251
		put_new_page = NULL;
1252
		set_page_owner_migrate_reason(new_hpage, reason);
1253
	}
1254

N
Naoya Horiguchi 已提交
1255
	unlock_page(hpage);
1256
out:
1257 1258
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1259 1260 1261 1262 1263 1264

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1265
	if (put_new_page)
1266 1267
		put_new_page(new_hpage, private);
	else
1268
		putback_active_hugepage(new_hpage);
1269

N
Naoya Horiguchi 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

C
Christoph Lameter 已提交
1279
/*
1280 1281
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1282
 *
1283 1284 1285
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1286 1287
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1288 1289 1290 1291
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1292
 *
1293 1294
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1295
 * The caller should call putback_movable_pages() to return pages to the LRU
1296
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1297
 *
1298
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1299
 */
1300
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1301 1302
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1303
{
1304
	int retry = 1;
C
Christoph Lameter 已提交
1305
	int nr_failed = 0;
1306
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1316 1317
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1318

1319 1320
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1321

1322 1323
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1324
						put_new_page, private, page,
1325
						pass > 2, mode, reason);
1326
			else
1327
				rc = unmap_and_move(get_new_page, put_new_page,
1328 1329
						private, page, pass > 2, mode,
						reason);
1330

1331
			switch(rc) {
1332
			case -ENOMEM:
1333
				nr_failed++;
1334
				goto out;
1335
			case -EAGAIN:
1336
				retry++;
1337
				break;
1338
			case MIGRATEPAGE_SUCCESS:
1339
				nr_succeeded++;
1340 1341
				break;
			default:
1342 1343 1344 1345 1346 1347
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1348
				nr_failed++;
1349
				break;
1350
			}
C
Christoph Lameter 已提交
1351 1352
		}
	}
1353 1354
	nr_failed += retry;
	rc = nr_failed;
1355
out:
1356 1357 1358 1359
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1360 1361
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1362 1363 1364
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1365
	return rc;
C
Christoph Lameter 已提交
1366
}
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1392 1393 1394 1395
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
	else
1396
		return __alloc_pages_node(pm->node,
1397
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1398 1399 1400 1401 1402 1403
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1404
 * The pm array ends with node = MAX_NUMNODES.
1405
 */
1406 1407 1408
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1425
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1426 1427
			goto set_status;

1428 1429 1430
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, pp->addr,
				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1431 1432 1433 1434 1435

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		err = -ENOENT;
		if (!page)
			goto set_status;

		pp->page = page;
		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1454
		if (PageHuge(page)) {
1455 1456
			if (PageHead(page))
				isolate_huge_page(page, &pagelist);
1457 1458 1459
			goto put_and_set;
		}

1460
		err = isolate_lru_page(page);
1461
		if (!err) {
1462
			list_add_tail(&page->lru, &pagelist);
1463 1464 1465
			inc_zone_page_state(page, NR_ISOLATED_ANON +
					    page_is_file_cache(page));
		}
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1477
	err = 0;
1478
	if (!list_empty(&pagelist)) {
1479
		err = migrate_pages(&pagelist, new_page_node, NULL,
1480
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1481
		if (err)
1482
			putback_movable_pages(&pagelist);
1483
	}
1484 1485 1486 1487 1488

	up_read(&mm->mmap_sem);
	return err;
}

1489 1490 1491 1492
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1493
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1494 1495 1496 1497 1498
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1499 1500 1501 1502
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1503

1504 1505 1506
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1507
		goto out;
1508 1509 1510

	migrate_prep();

1511
	/*
1512 1513
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1514
	 */
1515
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1516

1517 1518 1519 1520
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1521

1522 1523 1524 1525 1526 1527
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1528 1529
			int node;

1530 1531 1532 1533 1534 1535
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1536 1537 1538
				goto out_pm;

			err = -ENODEV;
1539 1540 1541
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1542
			if (!node_state(node, N_MEMORY))
1543 1544 1545 1546 1547 1548
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1560 1561

		/* Return status information */
1562 1563
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1564
				err = -EFAULT;
1565 1566 1567 1568
				goto out_pm;
			}
	}
	err = 0;
1569 1570

out_pm:
1571
	free_page((unsigned long)pm);
1572 1573 1574 1575
out:
	return err;
}

1576
/*
1577
 * Determine the nodes of an array of pages and store it in an array of status.
1578
 */
1579 1580
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1581
{
1582 1583
	unsigned long i;

1584 1585
	down_read(&mm->mmap_sem);

1586
	for (i = 0; i < nr_pages; i++) {
1587
		unsigned long addr = (unsigned long)(*pages);
1588 1589
		struct vm_area_struct *vma;
		struct page *page;
1590
		int err = -EFAULT;
1591 1592

		vma = find_vma(mm, addr);
1593
		if (!vma || addr < vma->vm_start)
1594 1595
			goto set_status;

1596 1597
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1598 1599 1600 1601 1602

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1603
		err = page ? page_to_nid(page) : -ENOENT;
1604
set_status:
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1626 1627
	while (nr_pages) {
		unsigned long chunk_nr;
1628

1629 1630 1631 1632 1633 1634
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1635 1636 1637

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1638 1639
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1640

1641 1642 1643 1644 1645
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1646 1647 1648 1649 1650 1651
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1652 1653 1654 1655
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1656
{
1657
	const struct cred *cred = current_cred(), *tcred;
1658 1659
	struct task_struct *task;
	struct mm_struct *mm;
1660
	int err;
1661
	nodemask_t task_nodes;
1662 1663 1664 1665 1666 1667 1668 1669 1670

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1671
	rcu_read_lock();
1672
	task = pid ? find_task_by_vpid(pid) : current;
1673
	if (!task) {
1674
		rcu_read_unlock();
1675 1676
		return -ESRCH;
	}
1677
	get_task_struct(task);
1678 1679 1680 1681 1682 1683 1684

	/*
	 * Check if this process has the right to modify the specified
	 * process. The right exists if the process has administrative
	 * capabilities, superuser privileges or the same
	 * userid as the target process.
	 */
1685
	tcred = __task_cred(task);
1686 1687
	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1688
	    !capable(CAP_SYS_NICE)) {
1689
		rcu_read_unlock();
1690
		err = -EPERM;
1691
		goto out;
1692
	}
1693
	rcu_read_unlock();
1694

1695 1696
 	err = security_task_movememory(task);
 	if (err)
1697
		goto out;
1698

1699 1700 1701 1702
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1703 1704 1705 1706 1707 1708 1709 1710
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1711 1712 1713

	mmput(mm);
	return err;
1714 1715 1716 1717

out:
	put_task_struct(task);
	return err;
1718 1719
}

1720 1721 1722 1723 1724 1725
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1726
				   unsigned long nr_migrate_pages)
1727 1728 1729 1730 1731 1732 1733 1734
{
	int z;
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

1735
		if (!zone_reclaimable(zone))
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

1756
	newpage = __alloc_pages_node(nid,
1757 1758 1759
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1760
					 ~__GFP_RECLAIM, 0);
1761

1762 1763 1764
	return newpage;
}

1765 1766 1767 1768 1769 1770 1771 1772
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1773
/* Returns true if the node is migrate rate-limited after the update */
1774 1775
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1776
{
1777 1778 1779 1780 1781 1782
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1783
		spin_lock(&pgdat->numabalancing_migrate_lock);
1784 1785 1786
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1787
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1788
	}
1789 1790 1791
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1792
		return true;
1793
	}
1794 1795 1796 1797 1798 1799 1800 1801 1802

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1803 1804
}

1805
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1806
{
1807
	int page_lru;
1808

1809
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1810

1811
	/* Avoid migrating to a node that is nearly full */
1812 1813
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1814

1815 1816
	if (isolate_lru_page(page))
		return 0;
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1828 1829
	}

1830 1831 1832 1833
	page_lru = page_is_file_cache(page);
	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
				hpage_nr_pages(page));

1834
	/*
1835 1836 1837
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1838 1839
	 */
	put_page(page);
1840
	return 1;
1841 1842
}

1843 1844 1845 1846 1847 1848
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1849 1850 1851 1852 1853
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1854 1855
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1856 1857
{
	pg_data_t *pgdat = NODE_DATA(node);
1858
	int isolated;
1859 1860 1861 1862
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1863 1864
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1865
	 */
1866 1867
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1868 1869 1870 1871 1872 1873 1874
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1875
	if (numamigrate_update_ratelimit(pgdat, 1))
1876 1877 1878 1879 1880 1881 1882
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1883
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1884 1885
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1886
	if (nr_remaining) {
1887 1888 1889 1890 1891 1892
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
			dec_zone_page_state(page, NR_ISOLATED_ANON +
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1893 1894 1895
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1896 1897
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1898 1899 1900 1901

out:
	put_page(page);
	return 0;
1902
}
1903
#endif /* CONFIG_NUMA_BALANCING */
1904

1905
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1906 1907 1908 1909
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1910 1911 1912 1913 1914 1915
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1916
	spinlock_t *ptl;
1917 1918 1919 1920
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
1921 1922
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1923
	pmd_t orig_entry;
1924 1925 1926 1927 1928 1929

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1930
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1931 1932 1933
		goto out_dropref;

	new_page = alloc_pages_node(node,
1934
		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1935
		HPAGE_PMD_ORDER);
1936 1937
	if (!new_page)
		goto out_fail;
1938
	prep_transhuge_page(new_page);
1939

1940
	isolated = numamigrate_isolate_page(pgdat, page);
1941
	if (!isolated) {
1942
		put_page(new_page);
1943
		goto out_fail;
1944
	}
1945 1946 1947 1948
	/*
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
	 */
1949 1950 1951
	if (mm_tlb_flush_pending(mm))
		flush_tlb_range(vma, mmun_start, mmun_end);

1952
	/* Prepare a page as a migration target */
1953
	__SetPageLocked(new_page);
1954
	__SetPageSwapBacked(new_page);
1955 1956 1957 1958 1959 1960 1961 1962

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
1963
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1964
	ptl = pmd_lock(mm, pmd);
1965 1966
	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
fail_putback:
1967
		spin_unlock(ptl);
1968
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

1979 1980
		/* Retake the callers reference and putback on LRU */
		get_page(page);
1981
		putback_lru_page(page);
1982 1983
		mod_zone_page_state(page_zone(page),
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1984 1985

		goto out_unlock;
1986 1987
	}

1988
	orig_entry = *pmd;
1989 1990
	entry = mk_pmd(new_page, vma->vm_page_prot);
	entry = pmd_mkhuge(entry);
1991
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1992

1993 1994 1995 1996 1997 1998 1999
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
2000
	flush_cache_range(vma, mmun_start, mmun_end);
2001
	page_add_anon_rmap(new_page, vma, mmun_start, true);
2002
	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2003
	set_pmd_at(mm, mmun_start, pmd, entry);
2004
	update_mmu_cache_pmd(vma, address, &entry);
2005 2006

	if (page_count(page) != 2) {
2007
		set_pmd_at(mm, mmun_start, pmd, orig_entry);
2008
		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2009
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2010
		update_mmu_cache_pmd(vma, address, &entry);
2011
		page_remove_rmap(new_page, true);
2012 2013 2014
		goto fail_putback;
	}

2015
	mlock_migrate_page(new_page, page);
2016
	page_remove_rmap(page, true);
2017
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2018

2019
	spin_unlock(ptl);
2020
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2021

2022 2023 2024 2025
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

	mod_zone_page_state(page_zone(page),
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2039 2040
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2041
out_dropref:
2042 2043
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2044
		entry = pmd_modify(entry, vma->vm_page_prot);
2045
		set_pmd_at(mm, mmun_start, pmd, entry);
2046 2047 2048
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2049

2050
out_unlock:
2051
	unlock_page(page);
2052 2053 2054
	put_page(page);
	return 0;
}
2055 2056 2057
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */