slub.c 126.8 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212 213
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
214
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
215
#else
216 217 218
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
219
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220

221
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
222 223
#endif

224
static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 226
{
#ifdef CONFIG_SLUB_STATS
227
	__this_cpu_inc(s->cpu_slab->stat[si]);
228 229 230
#endif
}

C
Christoph Lameter 已提交
231 232 233 234 235 236 237 238 239
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
240
/* Verify that a pointer has an address that is valid within a slab page */
241 242 243 244 245
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

246
	if (!object)
247 248
		return 1;

249
	base = page_address(page);
250
	if (object < base || object >= base + page->objects * s->size ||
251 252 253 254 255 256 257
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

258 259 260 261 262
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

263 264 265 266 267
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

268 269 270 271 272 273 274 275 276 277 278 279
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

280 281 282 283 284 285
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
286 287
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 289 290 291 292 293 294 295
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

296 297 298 299 300 301 302 303
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304
		return s->object_size;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

320 321 322 323 324
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

325
static inline struct kmem_cache_order_objects oo_make(int order,
326
		unsigned long size, int reserved)
327 328
{
	struct kmem_cache_order_objects x = {
329
		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 331 332 333 334 335 336
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
337
	return x.x >> OO_SHIFT;
338 339 340 341
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
342
	return x.x & OO_MASK;
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

358 359 360 361 362 363 364
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
365 366
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367
	if (s->flags & __CMPXCHG_DOUBLE) {
368
		if (cmpxchg_double(&page->freelist, &page->counters,
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
		if (page->freelist == freelist_old && page->counters == counters_old) {
			page->freelist = freelist_new;
			page->counters = counters_new;
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

395 396 397 398 399
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
400 401
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
402
	if (s->flags & __CMPXCHG_DOUBLE) {
403
		if (cmpxchg_double(&page->freelist, &page->counters,
404 405 406 407 408 409
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
410 411 412
		unsigned long flags;

		local_irq_save(flags);
413
		slab_lock(page);
414 415 416
		if (page->freelist == freelist_old && page->counters == counters_old) {
			page->freelist = freelist_new;
			page->counters = counters_new;
417
			slab_unlock(page);
418
			local_irq_restore(flags);
419 420
			return 1;
		}
421
		slab_unlock(page);
422
		local_irq_restore(flags);
423 424 425 426 427 428 429 430 431 432 433 434
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

C
Christoph Lameter 已提交
435
#ifdef CONFIG_SLUB_DEBUG
436 437 438
/*
 * Determine a map of object in use on a page.
 *
439
 * Node listlock must be held to guarantee that the page does
440 441 442 443 444 445 446 447 448 449 450
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
451 452 453
/*
 * Debug settings:
 */
454 455 456
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
457
static int slub_debug;
458
#endif
C
Christoph Lameter 已提交
459 460

static char *slub_debug_slabs;
461
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
462

C
Christoph Lameter 已提交
463 464 465 466 467
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
468 469
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
486
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
487
{
A
Akinobu Mita 已提交
488
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
489 490

	if (addr) {
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
509 510
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
511
		p->pid = current->pid;
C
Christoph Lameter 已提交
512 513 514 515 516 517 518
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
519 520 521
	if (!(s->flags & SLAB_STORE_USER))
		return;

522 523
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
524 525 526 527 528 529 530
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

531
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
532
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
533 534 535 536 537 538 539 540 541 542
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
543 544 545 546 547 548 549 550 551 552 553 554 555
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
556 557
	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
		page, page->objects, page->inuse, page->freelist, page->flags);
558 559 560 561 562 563 564 565 566 567 568 569 570

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
571
	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
572 573
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
574

575
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
C
Christoph Lameter 已提交
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
590 591
{
	unsigned int off;	/* Offset of last byte */
592
	u8 *addr = page_address(page);
593 594 595 596 597 598 599 600 601

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
602
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
603

604
	print_section("Object ", p, min_t(unsigned long, s->object_size,
605
				PAGE_SIZE));
C
Christoph Lameter 已提交
606
	if (s->flags & SLAB_RED_ZONE)
607 608
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
609 610 611 612 613 614

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

615
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
616 617 618 619
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
620
		print_section("Padding ", p + off, s->size - off);
621 622

	dump_stack();
C
Christoph Lameter 已提交
623 624 625 626 627
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
628
	slab_bug(s, "%s", reason);
629
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
630 631
}

632
static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
C
Christoph Lameter 已提交
633 634 635 636
{
	va_list args;
	char buf[100];

637 638
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
639
	va_end(args);
640
	slab_bug(s, "%s", buf);
641
	print_page_info(page);
C
Christoph Lameter 已提交
642 643 644
	dump_stack();
}

645
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
646 647 648 649
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
650 651
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
652 653 654
	}

	if (s->flags & SLAB_RED_ZONE)
655
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
656 657
}

658 659 660 661 662 663 664 665 666
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
667
			u8 *start, unsigned int value, unsigned int bytes)
668 669 670 671
{
	u8 *fault;
	u8 *end;

672
	fault = memchr_inv(start, value, bytes);
673 674 675 676 677 678 679 680 681 682 683 684 685 686
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
687 688 689 690 691 692 693 694 695
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
696
 *
C
Christoph Lameter 已提交
697 698 699
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
700
 * object + s->object_size
C
Christoph Lameter 已提交
701
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
702
 * 	Padding is extended by another word if Redzoning is enabled and
703
 * 	object_size == inuse.
C
Christoph Lameter 已提交
704
 *
C
Christoph Lameter 已提交
705 706 707 708
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
709 710
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
711 712
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
713
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
714
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
715 716 717
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
718 719
 *
 * object + s->size
C
Christoph Lameter 已提交
720
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
721
 *
722
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
723
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

742 743
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
744 745
}

746
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
747 748
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
749 750 751 752 753
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
754 755 756 757

	if (!(s->flags & SLAB_POISON))
		return 1;

758
	start = page_address(page);
759
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
760 761
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
762 763 764
	if (!remainder)
		return 1;

765
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
766 767 768 769 770 771
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
772
	print_section("Padding ", end - remainder, remainder);
773

E
Eric Dumazet 已提交
774
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
775
	return 0;
C
Christoph Lameter 已提交
776 777 778
}

static int check_object(struct kmem_cache *s, struct page *page,
779
					void *object, u8 val)
C
Christoph Lameter 已提交
780 781
{
	u8 *p = object;
782
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
783 784

	if (s->flags & SLAB_RED_ZONE) {
785
		if (!check_bytes_and_report(s, page, object, "Redzone",
786
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
787 788
			return 0;
	} else {
789
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
790
			check_bytes_and_report(s, page, p, "Alignment padding",
791
				endobject, POISON_INUSE, s->inuse - s->object_size);
I
Ingo Molnar 已提交
792
		}
C
Christoph Lameter 已提交
793 794 795
	}

	if (s->flags & SLAB_POISON) {
796
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
797
			(!check_bytes_and_report(s, page, p, "Poison", p,
798
					POISON_FREE, s->object_size - 1) ||
799
			 !check_bytes_and_report(s, page, p, "Poison",
800
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
801 802 803 804 805 806 807
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

808
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
809 810 811 812 813 814 815 816 817 818
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
819
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
820
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
821
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
822
		 */
823
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
824 825 826 827 828 829 830
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
831 832
	int maxobj;

C
Christoph Lameter 已提交
833 834 835
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
836
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
837 838
		return 0;
	}
839

840
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
841 842 843 844 845 846
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
847
		slab_err(s, page, "inuse %u > max %u",
848
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
849 850 851 852 853 854 855 856
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
857 858
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
859 860 861 862
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
863
	void *fp;
C
Christoph Lameter 已提交
864
	void *object = NULL;
865
	unsigned long max_objects;
C
Christoph Lameter 已提交
866

867
	fp = page->freelist;
868
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
869 870 871 872 873 874
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
875
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
876 877
				break;
			} else {
878
				slab_err(s, page, "Freepointer corrupt");
879
				page->freelist = NULL;
880
				page->inuse = page->objects;
881
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
882 883 884 885 886 887 888 889 890
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

891
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
892 893
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
894 895 896 897 898 899 900

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
901
	if (page->inuse != page->objects - nr) {
902
		slab_err(s, page, "Wrong object count. Counter is %d but "
903 904
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
905
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
906 907 908 909
	}
	return search == NULL;
}

910 911
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
912 913 914 915 916 917 918 919 920
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
921
			print_section("Object ", (void *)object, s->object_size);
C
Christoph Lameter 已提交
922 923 924 925 926

		dump_stack();
	}
}

927 928 929 930
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
931 932 933 934 935 936 937 938 939 940
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

941 942
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
943
	flags &= gfp_allowed_mask;
944 945 946
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

947
	return should_failslab(s->object_size, flags, s->flags);
948 949 950 951
}

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
{
952
	flags &= gfp_allowed_mask;
953
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
954
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
955 956 957 958 959 960
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

961 962 963 964 965 966 967 968 969 970
	/*
	 * Trouble is that we may no longer disable interupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
971 972
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
973 974 975
		local_irq_restore(flags);
	}
#endif
976
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
977
		debug_check_no_obj_freed(x, s->object_size);
978 979
}

980
/*
C
Christoph Lameter 已提交
981
 * Tracking of fully allocated slabs for debugging purposes.
982 983
 *
 * list_lock must be held.
984
 */
985 986
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
987
{
988 989 990
	if (!(s->flags & SLAB_STORE_USER))
		return;

991 992 993
	list_add(&page->lru, &n->full);
}

994 995 996
/*
 * list_lock must be held.
 */
997 998 999 1000 1001 1002 1003 1004
static void remove_full(struct kmem_cache *s, struct page *page)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	list_del(&page->lru);
}

1005 1006 1007 1008 1009 1010 1011 1012
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1013 1014 1015 1016 1017
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1018
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1019 1020 1021 1022 1023 1024 1025 1026 1027
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1028
	if (likely(n)) {
1029
		atomic_long_inc(&n->nr_slabs);
1030 1031
		atomic_long_add(objects, &n->total_objects);
	}
1032
}
1033
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1034 1035 1036 1037
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1038
	atomic_long_sub(objects, &n->total_objects);
1039 1040 1041
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1042 1043 1044 1045 1046 1047
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1048
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1049 1050 1051
	init_tracking(s, object);
}

1052
static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1053
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1054 1055 1056 1057 1058 1059
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1060
		goto bad;
C
Christoph Lameter 已提交
1061 1062
	}

1063
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1064 1065
		goto bad;

C
Christoph Lameter 已提交
1066 1067 1068 1069
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1070
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1071
	return 1;
C
Christoph Lameter 已提交
1072

C
Christoph Lameter 已提交
1073 1074 1075 1076 1077
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1078
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1079
		 */
1080
		slab_fix(s, "Marking all objects used");
1081
		page->inuse = page->objects;
1082
		page->freelist = NULL;
C
Christoph Lameter 已提交
1083 1084 1085 1086
	}
	return 0;
}

1087 1088 1089
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1090
{
1091
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1092

1093
	spin_lock_irqsave(&n->list_lock, *flags);
1094 1095
	slab_lock(page);

C
Christoph Lameter 已提交
1096 1097 1098 1099
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1100
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1101 1102 1103 1104
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1105
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1106 1107 1108
		goto fail;
	}

1109
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1110
		goto out;
C
Christoph Lameter 已提交
1111

1112
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1113
		if (!PageSlab(page)) {
1114 1115
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1116
		} else if (!page->slab_cache) {
C
Christoph Lameter 已提交
1117
			printk(KERN_ERR
1118
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
1119
						object);
1120
			dump_stack();
P
Pekka Enberg 已提交
1121
		} else
1122 1123
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1124 1125
		goto fail;
	}
C
Christoph Lameter 已提交
1126 1127 1128 1129

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1130
	init_object(s, object, SLUB_RED_INACTIVE);
1131
out:
1132
	slab_unlock(page);
1133 1134 1135 1136 1137
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1138

C
Christoph Lameter 已提交
1139
fail:
1140 1141
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1142
	slab_fix(s, "Object at 0x%p not freed", object);
1143
	return NULL;
C
Christoph Lameter 已提交
1144 1145
}

C
Christoph Lameter 已提交
1146 1147
static int __init setup_slub_debug(char *str)
{
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1162 1163 1164 1165 1166 1167 1168 1169 1170
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1181
	for (; *str && *str != ','; str++) {
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1198 1199 1200
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1201 1202
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1203
				"unknown. skipped\n", *str);
1204
		}
C
Christoph Lameter 已提交
1205 1206
	}

1207
check_slabs:
C
Christoph Lameter 已提交
1208 1209
	if (*str == ',')
		slub_debug_slabs = str + 1;
1210
out:
C
Christoph Lameter 已提交
1211 1212 1213 1214 1215
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1216
static unsigned long kmem_cache_flags(unsigned long object_size,
1217
	unsigned long flags, const char *name,
1218
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1219 1220
{
	/*
1221
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1222
	 */
1223 1224
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1225
		flags |= slub_debug;
1226 1227

	return flags;
C
Christoph Lameter 已提交
1228 1229
}
#else
C
Christoph Lameter 已提交
1230 1231
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1232

C
Christoph Lameter 已提交
1233
static inline int alloc_debug_processing(struct kmem_cache *s,
1234
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1235

1236 1237 1238
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1239 1240 1241 1242

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1243
			void *object, u8 val) { return 1; }
1244 1245
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1246
static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1247
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1248
	unsigned long flags, const char *name,
1249
	void (*ctor)(void *))
1250 1251 1252
{
	return flags;
}
C
Christoph Lameter 已提交
1253
#define slub_debug 0
1254

1255 1256
#define disable_higher_order_debug 0

1257 1258
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1259 1260
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1261 1262 1263 1264
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1276 1277 1278 1279
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1280 1281 1282 1283 1284
		void *object)
{
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
		flags & gfp_allowed_mask);
}
1285

1286 1287 1288 1289
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
}
1290

1291
#endif /* CONFIG_SLUB_DEBUG */
1292

C
Christoph Lameter 已提交
1293 1294 1295
/*
 * Slab allocation and freeing
 */
1296 1297 1298 1299 1300
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1301 1302
	flags |= __GFP_NOTRACK;

1303
	if (node == NUMA_NO_NODE)
1304 1305
		return alloc_pages(flags, order);
	else
1306
		return alloc_pages_exact_node(node, flags, order);
1307 1308
}

C
Christoph Lameter 已提交
1309 1310
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1311
	struct page *page;
1312
	struct kmem_cache_order_objects oo = s->oo;
1313
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1314

1315 1316 1317 1318 1319
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1320
	flags |= s->allocflags;
1321

1322 1323 1324 1325 1326 1327 1328
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1329 1330 1331 1332 1333 1334 1335
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
C
Christoph Lameter 已提交
1336

1337 1338
		if (page)
			stat(s, ORDER_FALLBACK);
1339
	}
V
Vegard Nossum 已提交
1340

1341
	if (kmemcheck_enabled && page
1342
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1355 1356
	}

1357 1358 1359 1360 1361
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1362
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1363 1364 1365
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1366
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1367 1368 1369 1370 1371 1372 1373

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1374
	setup_object_debug(s, page, object);
1375
	if (unlikely(s->ctor))
1376
		s->ctor(object);
C
Christoph Lameter 已提交
1377 1378 1379 1380 1381 1382 1383 1384
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1385
	int order;
C
Christoph Lameter 已提交
1386

C
Christoph Lameter 已提交
1387
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1388

C
Christoph Lameter 已提交
1389 1390
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1391 1392 1393
	if (!page)
		goto out;

G
Glauber Costa 已提交
1394
	order = compound_order(page);
1395
	inc_slabs_node(s, page_to_nid(page), page->objects);
G
Glauber Costa 已提交
1396
	memcg_bind_pages(s, order);
1397
	page->slab_cache = s;
1398
	__SetPageSlab(page);
1399 1400
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1401 1402 1403 1404

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1405
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1406 1407

	last = start;
1408
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1409 1410 1411 1412 1413
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1414
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1415 1416

	page->freelist = start;
1417
	page->inuse = page->objects;
1418
	page->frozen = 1;
C
Christoph Lameter 已提交
1419 1420 1421 1422 1423 1424
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1425 1426
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1427

1428
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1429 1430 1431
		void *p;

		slab_pad_check(s, page);
1432 1433
		for_each_object(p, s, page_address(page),
						page->objects)
1434
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1435 1436
	}

1437
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1438

C
Christoph Lameter 已提交
1439 1440 1441
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1442
		-pages);
C
Christoph Lameter 已提交
1443

1444
	__ClearPageSlabPfmemalloc(page);
1445
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1446 1447

	memcg_release_pages(s, order);
1448
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1449 1450
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1451
	__free_memcg_kmem_pages(page, order);
C
Christoph Lameter 已提交
1452 1453
}

1454 1455 1456
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1457 1458 1459 1460
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1461 1462 1463 1464 1465
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1466
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1467 1468 1469 1470 1471
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1486 1487 1488 1489 1490 1491 1492 1493

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1494
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1495 1496 1497 1498
	free_slab(s, page);
}

/*
1499 1500 1501
 * Management of partially allocated slabs.
 *
 * list_lock must be held.
C
Christoph Lameter 已提交
1502
 */
1503
static inline void add_partial(struct kmem_cache_node *n,
1504
				struct page *page, int tail)
C
Christoph Lameter 已提交
1505
{
C
Christoph Lameter 已提交
1506
	n->nr_partial++;
1507
	if (tail == DEACTIVATE_TO_TAIL)
1508 1509 1510
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1511 1512
}

1513 1514 1515 1516
/*
 * list_lock must be held.
 */
static inline void remove_partial(struct kmem_cache_node *n,
1517 1518 1519 1520 1521 1522
					struct page *page)
{
	list_del(&page->lru);
	n->nr_partial--;
}

C
Christoph Lameter 已提交
1523
/*
1524 1525
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1526
 *
1527 1528
 * Returns a list of objects or NULL if it fails.
 *
1529
 * Must hold list_lock since we modify the partial list.
C
Christoph Lameter 已提交
1530
 */
1531
static inline void *acquire_slab(struct kmem_cache *s,
1532
		struct kmem_cache_node *n, struct page *page,
1533
		int mode, int *objects)
C
Christoph Lameter 已提交
1534
{
1535 1536 1537 1538 1539 1540 1541 1542 1543
	void *freelist;
	unsigned long counters;
	struct page new;

	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1544 1545 1546
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1547
	*objects = new.objects - new.inuse;
1548
	if (mode) {
1549
		new.inuse = page->objects;
1550 1551 1552 1553
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1554

1555 1556
	VM_BUG_ON(new.frozen);
	new.frozen = 1;
1557

1558
	if (!__cmpxchg_double_slab(s, page,
1559
			freelist, counters,
1560
			new.freelist, new.counters,
1561 1562
			"acquire_slab"))
		return NULL;
1563 1564

	remove_partial(n, page);
1565
	WARN_ON(!freelist);
1566
	return freelist;
C
Christoph Lameter 已提交
1567 1568
}

1569
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1570
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1571

C
Christoph Lameter 已提交
1572
/*
C
Christoph Lameter 已提交
1573
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1574
 */
1575 1576
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1577
{
1578 1579
	struct page *page, *page2;
	void *object = NULL;
1580 1581
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1582 1583 1584 1585

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1586 1587
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1588 1589 1590 1591 1592
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1593
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1594
		void *t;
1595

1596 1597 1598
		if (!pfmemalloc_match(page, flags))
			continue;

1599
		t = acquire_slab(s, n, page, object == NULL, &objects);
1600 1601 1602
		if (!t)
			break;

1603
		available += objects;
1604
		if (!object) {
1605 1606 1607 1608
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1609
			put_cpu_partial(s, page, 0);
1610
			stat(s, CPU_PARTIAL_NODE);
1611
		}
1612 1613
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1614 1615
			break;

1616
	}
C
Christoph Lameter 已提交
1617
	spin_unlock(&n->list_lock);
1618
	return object;
C
Christoph Lameter 已提交
1619 1620 1621
}

/*
C
Christoph Lameter 已提交
1622
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1623
 */
1624
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1625
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1626 1627 1628
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1629
	struct zoneref *z;
1630 1631
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1632
	void *object;
1633
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1634 1635

	/*
C
Christoph Lameter 已提交
1636 1637 1638 1639
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1640
	 *
C
Christoph Lameter 已提交
1641 1642 1643 1644
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1645
	 *
C
Christoph Lameter 已提交
1646
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1647 1648 1649 1650 1651
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1652
	 */
1653 1654
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1655 1656
		return NULL;

1657 1658
	do {
		cpuset_mems_cookie = get_mems_allowed();
1659
		zonelist = node_zonelist(slab_node(), flags);
1660 1661 1662 1663 1664 1665 1666
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1667
				object = get_partial_node(s, n, c, flags);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
				if (object) {
					/*
					 * Return the object even if
					 * put_mems_allowed indicated that
					 * the cpuset mems_allowed was
					 * updated in parallel. It's a
					 * harmless race between the alloc
					 * and the cpuset update.
					 */
					put_mems_allowed(cpuset_mems_cookie);
					return object;
				}
1680
			}
C
Christoph Lameter 已提交
1681
		}
1682
	} while (!put_mems_allowed(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1683 1684 1685 1686 1687 1688 1689
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1690
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1691
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1692
{
1693
	void *object;
1694
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1695

1696
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1697 1698
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1699

1700
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1701 1702
}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1759
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1760 1761
}

1762
static void init_kmem_cache_cpus(struct kmem_cache *s)
1763 1764 1765 1766 1767 1768
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1769

C
Christoph Lameter 已提交
1770 1771 1772
/*
 * Remove the cpu slab
 */
1773
static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
C
Christoph Lameter 已提交
1774
{
1775 1776 1777 1778 1779
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1780
	int tail = DEACTIVATE_TO_HEAD;
1781 1782 1783 1784
	struct page new;
	struct page old;

	if (page->freelist) {
1785
		stat(s, DEACTIVATE_REMOTE_FREES);
1786
		tail = DEACTIVATE_TO_TAIL;
1787 1788
	}

1789
	/*
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
			VM_BUG_ON(!new.frozen);

1809
		} while (!__cmpxchg_double_slab(s, page,
1810 1811 1812 1813 1814 1815 1816
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1817
	/*
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1830
	 */
1831
redo:
1832

1833 1834 1835
	old.freelist = page->freelist;
	old.counters = page->counters;
	VM_BUG_ON(!old.frozen);
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1848
	if (!new.inuse && n->nr_partial > s->min_partial)
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1881

1882 1883 1884 1885 1886
			remove_full(s, page);

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1887
			stat(s, tail);
1888 1889

		} else if (m == M_FULL) {
1890

1891 1892 1893 1894 1895 1896 1897
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1898
	if (!__cmpxchg_double_slab(s, page,
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1911
	}
C
Christoph Lameter 已提交
1912 1913
}

1914 1915 1916
/*
 * Unfreeze all the cpu partial slabs.
 *
1917 1918 1919
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1920
 */
1921 1922
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1923
{
1924
#ifdef CONFIG_SLUB_CPU_PARTIAL
1925
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1926
	struct page *page, *discard_page = NULL;
1927 1928 1929 1930 1931 1932

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1933 1934 1935 1936 1937 1938 1939 1940 1941

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
			VM_BUG_ON(!old.frozen);

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1954
		} while (!__cmpxchg_double_slab(s, page,
1955 1956 1957 1958
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1959
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1960 1961
			page->next = discard_page;
			discard_page = page;
1962 1963 1964
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1965 1966 1967 1968 1969
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1970 1971 1972 1973 1974 1975 1976 1977 1978

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1979
#endif
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
1991
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1992
{
1993
#ifdef CONFIG_SLUB_CPU_PARTIAL
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2013
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2014
				local_irq_restore(flags);
2015
				oldpage = NULL;
2016 2017
				pobjects = 0;
				pages = 0;
2018
				stat(s, CPU_PARTIAL_DRAIN);
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2029
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2030
#endif
2031 2032
}

2033
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2034
{
2035
	stat(s, CPUSLAB_FLUSH);
2036 2037 2038 2039 2040
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2041 2042 2043 2044
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2045
 *
C
Christoph Lameter 已提交
2046 2047
 * Called from IPI handler with interrupts disabled.
 */
2048
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2049
{
2050
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2051

2052 2053 2054 2055
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2056
		unfreeze_partials(s, c);
2057
	}
C
Christoph Lameter 已提交
2058 2059 2060 2061 2062 2063
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2064
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2065 2066
}

2067 2068 2069 2070 2071
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2072
	return c->page || c->partial;
2073 2074
}

C
Christoph Lameter 已提交
2075 2076
static void flush_all(struct kmem_cache *s)
{
2077
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2078 2079
}

2080 2081 2082 2083
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2084
static inline int node_match(struct page *page, int node)
2085 2086
{
#ifdef CONFIG_NUMA
2087
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2088 2089 2090 2091 2092
		return 0;
#endif
	return 1;
}

P
Pekka Enberg 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2112 2113 2114 2115 2116 2117 2118 2119 2120
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

P
Pekka Enberg 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2130
		"default order: %d, min order: %d\n", s->name, s->object_size,
P
Pekka Enberg 已提交
2131 2132
		s->size, oo_order(s->oo), oo_order(s->min));

2133
	if (oo_order(s->min) > get_order(s->object_size))
2134 2135 2136
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

P
Pekka Enberg 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2146 2147 2148
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2149 2150 2151 2152 2153 2154 2155

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2156 2157 2158
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2159
	void *freelist;
2160 2161
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2162

2163
	freelist = get_partial(s, flags, node, c);
2164

2165 2166 2167 2168
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2169 2170 2171 2172 2173 2174 2175 2176 2177
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2178
		freelist = page->freelist;
2179 2180 2181 2182 2183 2184
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2185
		freelist = NULL;
2186

2187
	return freelist;
2188 2189
}

2190 2191 2192 2193 2194 2195 2196 2197
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2198 2199 2200 2201 2202 2203 2204
/*
 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
 * or deactivate the page.
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2205 2206
 *
 * This function must be called with interrupt disabled.
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2217

2218 2219 2220 2221 2222 2223
		new.counters = counters;
		VM_BUG_ON(!new.frozen);

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2224
	} while (!__cmpxchg_double_slab(s, page,
2225 2226 2227 2228 2229 2230 2231
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2232
/*
2233 2234 2235 2236 2237 2238
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2239
 *
2240 2241 2242
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2243
 *
2244
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2245 2246
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2247
 */
2248 2249
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2250
{
2251
	void *freelist;
2252
	struct page *page;
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2264

2265 2266
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2267
		goto new_slab;
2268
redo:
2269

2270
	if (unlikely(!node_match(page, node))) {
2271
		stat(s, ALLOC_NODE_MISMATCH);
2272
		deactivate_slab(s, page, c->freelist);
2273 2274
		c->page = NULL;
		c->freelist = NULL;
2275 2276
		goto new_slab;
	}
C
Christoph Lameter 已提交
2277

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2290
	/* must check again c->freelist in case of cpu migration or IRQ */
2291 2292
	freelist = c->freelist;
	if (freelist)
2293
		goto load_freelist;
2294

2295
	stat(s, ALLOC_SLOWPATH);
2296

2297
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2298

2299
	if (!freelist) {
2300 2301
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2302
		goto new_slab;
2303
	}
C
Christoph Lameter 已提交
2304

2305
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2306

2307
load_freelist:
2308 2309 2310 2311 2312 2313
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
	VM_BUG_ON(!c->page->frozen);
2314
	c->freelist = get_freepointer(s, freelist);
2315 2316
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2317
	return freelist;
C
Christoph Lameter 已提交
2318 2319

new_slab:
2320

2321
	if (c->partial) {
2322 2323
		page = c->page = c->partial;
		c->partial = page->next;
2324 2325 2326
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2327 2328
	}

2329
	freelist = new_slab_objects(s, gfpflags, node, &c);
2330

2331 2332 2333
	if (unlikely(!freelist)) {
		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(s, gfpflags, node);
2334

2335 2336
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2337
	}
2338

2339
	page = c->page;
2340
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2341
		goto load_freelist;
2342

2343
	/* Only entered in the debug case */
2344
	if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2345
		goto new_slab;	/* Slab failed checks. Next slab needed */
2346

2347
	deactivate_slab(s, page, get_freepointer(s, freelist));
2348 2349
	c->page = NULL;
	c->freelist = NULL;
2350
	local_irq_restore(flags);
2351
	return freelist;
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2364
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2365
		gfp_t gfpflags, int node, unsigned long addr)
2366 2367
{
	void **object;
2368
	struct kmem_cache_cpu *c;
2369
	struct page *page;
2370
	unsigned long tid;
2371

2372
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2373
		return NULL;
2374

2375
	s = memcg_kmem_get_cache(s, gfpflags);
2376 2377 2378 2379 2380 2381
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2382 2383 2384 2385 2386
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2387
	 */
2388
	preempt_disable();
2389
	c = __this_cpu_ptr(s->cpu_slab);
2390 2391 2392 2393 2394 2395 2396 2397

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2398
	preempt_enable();
2399

2400
	object = c->freelist;
2401
	page = c->page;
2402
	if (unlikely(!object || !page || !node_match(page, node)))
2403
		object = __slab_alloc(s, gfpflags, node, addr, c);
2404 2405

	else {
2406 2407
		void *next_object = get_freepointer_safe(s, object);

2408
		/*
L
Lucas De Marchi 已提交
2409
		 * The cmpxchg will only match if there was no additional
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
		 * operation and if we are on the right processor.
		 *
		 * The cmpxchg does the following atomically (without lock semantics!)
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
		 * Since this is without lock semantics the protection is only against
		 * code executing on this cpu *not* from access by other cpus.
		 */
2420
		if (unlikely(!this_cpu_cmpxchg_double(
2421 2422
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2423
				next_object, next_tid(tid)))) {
2424 2425 2426 2427

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2428
		prefetch_freepointer(s, next_object);
2429
		stat(s, ALLOC_FASTPATH);
2430
	}
2431

2432
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2433
		memset(object, 0, s->object_size);
2434

2435
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2436

2437
	return object;
C
Christoph Lameter 已提交
2438 2439
}

2440 2441 2442 2443 2444 2445
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2446 2447
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2448
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2449

2450
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2451 2452

	return ret;
C
Christoph Lameter 已提交
2453 2454 2455
}
EXPORT_SYMBOL(kmem_cache_alloc);

2456
#ifdef CONFIG_TRACING
2457 2458
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2459
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2460 2461 2462 2463 2464 2465
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);

void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
E
Eduard - Gabriel Munteanu 已提交
2466
{
2467 2468 2469
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2470
}
2471
EXPORT_SYMBOL(kmalloc_order_trace);
E
Eduard - Gabriel Munteanu 已提交
2472 2473
#endif

C
Christoph Lameter 已提交
2474 2475 2476
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2477
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2478

2479
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2480
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2481 2482

	return ret;
C
Christoph Lameter 已提交
2483 2484 2485
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2486
#ifdef CONFIG_TRACING
2487
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2488
				    gfp_t gfpflags,
2489
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2490
{
2491
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2492 2493 2494 2495

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2496
}
2497
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2498
#endif
2499
#endif
E
Eduard - Gabriel Munteanu 已提交
2500

C
Christoph Lameter 已提交
2501
/*
2502 2503
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2504
 *
2505 2506 2507
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2508
 */
2509
static void __slab_free(struct kmem_cache *s, struct page *page,
2510
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2511 2512 2513
{
	void *prior;
	void **object = (void *)x;
2514 2515 2516 2517
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2518
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2519

2520
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2521

2522 2523
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2524
		return;
C
Christoph Lameter 已提交
2525

2526
	do {
2527 2528 2529 2530
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2531 2532 2533 2534 2535 2536
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2537
		if ((!new.inuse || !prior) && !was_frozen) {
2538

2539
			if (kmem_cache_has_cpu_partial(s) && !prior)
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560

				/*
				 * Slab was on no list before and will be partially empty
				 * We can defer the list move and instead freeze it.
				 */
				new.frozen = 1;

			else { /* Needs to be taken off a list */

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2561
		}
C
Christoph Lameter 已提交
2562

2563 2564 2565 2566
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2567

2568
	if (likely(!n)) {
2569 2570 2571 2572 2573

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2574
		if (new.frozen && !was_frozen) {
2575
			put_cpu_partial(s, page, 1);
2576 2577
			stat(s, CPU_PARTIAL_FREE);
		}
2578
		/*
2579 2580 2581 2582 2583
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2584
                return;
2585
        }
C
Christoph Lameter 已提交
2586

2587 2588 2589
	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
		goto slab_empty;

C
Christoph Lameter 已提交
2590
	/*
2591 2592
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2593
	 */
2594 2595 2596
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
			remove_full(s, page);
2597 2598
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2599
	}
2600
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2601 2602 2603
	return;

slab_empty:
2604
	if (prior) {
C
Christoph Lameter 已提交
2605
		/*
2606
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2607
		 */
2608
		remove_partial(n, page);
2609
		stat(s, FREE_REMOVE_PARTIAL);
2610 2611 2612
	} else
		/* Slab must be on the full list */
		remove_full(s, page);
2613

2614
	spin_unlock_irqrestore(&n->list_lock, flags);
2615
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2616 2617 2618
	discard_slab(s, page);
}

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2630
static __always_inline void slab_free(struct kmem_cache *s,
2631
			struct page *page, void *x, unsigned long addr)
2632 2633
{
	void **object = (void *)x;
2634
	struct kmem_cache_cpu *c;
2635
	unsigned long tid;
2636

2637 2638
	slab_free_hook(s, x);

2639 2640 2641 2642 2643 2644 2645
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2646
	preempt_disable();
2647
	c = __this_cpu_ptr(s->cpu_slab);
2648

2649
	tid = c->tid;
2650
	preempt_enable();
2651

2652
	if (likely(page == c->page)) {
2653
		set_freepointer(s, object, c->freelist);
2654

2655
		if (unlikely(!this_cpu_cmpxchg_double(
2656 2657 2658 2659 2660 2661 2662
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2663
		stat(s, FREE_FASTPATH);
2664
	} else
2665
		__slab_free(s, page, x, addr);
2666 2667 2668

}

C
Christoph Lameter 已提交
2669 2670
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2671 2672
	s = cache_from_obj(s, x);
	if (!s)
2673
		return;
2674
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2675
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2676 2677 2678 2679
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2680 2681 2682 2683
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2684 2685 2686 2687
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2688
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2699
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2700
static int slub_min_objects;
C
Christoph Lameter 已提交
2701 2702 2703

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2704
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2705 2706 2707 2708 2709 2710
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2711 2712 2713 2714
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2715
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2716 2717 2718 2719 2720 2721
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2722
 *
C
Christoph Lameter 已提交
2723 2724 2725 2726
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2727
 *
C
Christoph Lameter 已提交
2728 2729 2730 2731
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2732
 */
2733
static inline int slab_order(int size, int min_objects,
2734
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2735 2736 2737
{
	int order;
	int rem;
2738
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2739

2740
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2741
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2742

2743
	for (order = max(min_order,
2744 2745
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2746

2747
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2748

2749
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2750 2751
			continue;

2752
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2753

2754
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2755 2756 2757
			break;

	}
C
Christoph Lameter 已提交
2758

C
Christoph Lameter 已提交
2759 2760 2761
	return order;
}

2762
static inline int calculate_order(int size, int reserved)
2763 2764 2765 2766
{
	int order;
	int min_objects;
	int fraction;
2767
	int max_objects;
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2778 2779
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2780
	max_objects = order_objects(slub_max_order, size, reserved);
2781 2782
	min_objects = min(min_objects, max_objects);

2783
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2784
		fraction = 16;
2785 2786
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2787
					slub_max_order, fraction, reserved);
2788 2789 2790 2791
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2792
		min_objects--;
2793 2794 2795 2796 2797 2798
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2799
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2800 2801 2802 2803 2804 2805
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2806
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2807
	if (order < MAX_ORDER)
2808 2809 2810 2811
		return order;
	return -ENOSYS;
}

2812
static void
2813
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2814 2815 2816 2817
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2818
#ifdef CONFIG_SLUB_DEBUG
2819
	atomic_long_set(&n->nr_slabs, 0);
2820
	atomic_long_set(&n->total_objects, 0);
2821
	INIT_LIST_HEAD(&n->full);
2822
#endif
C
Christoph Lameter 已提交
2823 2824
}

2825
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2826
{
2827
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2828
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2829

2830
	/*
2831 2832
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2833
	 */
2834 2835
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2836 2837 2838 2839 2840

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2841

2842
	return 1;
2843 2844
}

2845 2846
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2847 2848 2849 2850 2851
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2852 2853
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2854
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2855
 */
2856
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2857 2858 2859 2860
{
	struct page *page;
	struct kmem_cache_node *n;

2861
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2862

2863
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2864 2865

	BUG_ON(!page);
2866 2867 2868 2869 2870 2871 2872
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2873 2874
	n = page->freelist;
	BUG_ON(!n);
2875
	page->freelist = get_freepointer(kmem_cache_node, n);
2876
	page->inuse = 1;
2877
	page->frozen = 0;
2878
	kmem_cache_node->node[node] = n;
2879
#ifdef CONFIG_SLUB_DEBUG
2880
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2881
	init_tracking(kmem_cache_node, n);
2882
#endif
2883
	init_kmem_cache_node(n);
2884
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2885

2886
	add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2887 2888 2889 2890 2891 2892
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2893
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2894
		struct kmem_cache_node *n = s->node[node];
2895

2896
		if (n)
2897 2898
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2899 2900 2901 2902
		s->node[node] = NULL;
	}
}

2903
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2904 2905 2906
{
	int node;

C
Christoph Lameter 已提交
2907
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2908 2909
		struct kmem_cache_node *n;

2910
		if (slab_state == DOWN) {
2911
			early_kmem_cache_node_alloc(node);
2912 2913
			continue;
		}
2914
		n = kmem_cache_alloc_node(kmem_cache_node,
2915
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2916

2917 2918 2919
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2920
		}
2921

C
Christoph Lameter 已提交
2922
		s->node[node] = n;
2923
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2924 2925 2926 2927
	}
	return 1;
}

2928
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2929 2930 2931 2932 2933 2934 2935 2936
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2937 2938 2939 2940
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2941
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2942 2943
{
	unsigned long flags = s->flags;
2944
	unsigned long size = s->object_size;
2945
	int order;
C
Christoph Lameter 已提交
2946

2947 2948 2949 2950 2951 2952 2953 2954
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2955 2956 2957 2958 2959 2960
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2961
			!s->ctor)
C
Christoph Lameter 已提交
2962 2963 2964 2965 2966 2967
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2968
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2969
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2970
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2971
	 */
2972
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2973
		size += sizeof(void *);
C
Christoph Lameter 已提交
2974
#endif
C
Christoph Lameter 已提交
2975 2976

	/*
C
Christoph Lameter 已提交
2977 2978
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2979 2980 2981 2982
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2983
		s->ctor)) {
C
Christoph Lameter 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2996
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2997 2998 2999 3000 3001 3002 3003
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3004
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3005 3006 3007 3008
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3009
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3010 3011 3012
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3013
#endif
C
Christoph Lameter 已提交
3014

C
Christoph Lameter 已提交
3015 3016 3017 3018 3019
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3020
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3021
	s->size = size;
3022 3023 3024
	if (forced_order >= 0)
		order = forced_order;
	else
3025
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3026

3027
	if (order < 0)
C
Christoph Lameter 已提交
3028 3029
		return 0;

3030
	s->allocflags = 0;
3031
	if (order)
3032 3033 3034
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3035
		s->allocflags |= GFP_DMA;
3036 3037 3038 3039

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3040 3041 3042
	/*
	 * Determine the number of objects per slab
	 */
3043 3044
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3045 3046
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3047

3048
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3049 3050
}

3051
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3052
{
3053
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3054
	s->reserved = 0;
C
Christoph Lameter 已提交
3055

3056 3057
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3058

3059
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3060
		goto error;
3061 3062 3063 3064 3065
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3066
		if (get_order(s->size) > get_order(s->object_size)) {
3067 3068 3069 3070 3071 3072
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3073

3074 3075
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3076 3077 3078 3079 3080
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3081 3082 3083 3084
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3100
	 * B) The number of objects in cpu partial slabs to extract from the
3101 3102 3103
	 *    per node list when we run out of per cpu objects. We only fetch 50%
	 *    to keep some capacity around for frees.
	 */
3104
	if (!kmem_cache_has_cpu_partial(s))
3105 3106
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3107 3108 3109 3110 3111 3112 3113 3114
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3115
#ifdef CONFIG_NUMA
3116
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3117
#endif
3118
	if (!init_kmem_cache_nodes(s))
3119
		goto error;
C
Christoph Lameter 已提交
3120

3121
	if (alloc_kmem_cache_cpus(s))
3122
		return 0;
3123

3124
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3125 3126 3127 3128
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3129
			s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
C
Christoph Lameter 已提交
3130
			s->offset, flags);
3131
	return -EINVAL;
C
Christoph Lameter 已提交
3132 3133
}

3134 3135 3136 3137 3138 3139
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3140 3141
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3142 3143
	if (!map)
		return;
3144
	slab_err(s, page, text, s->name);
3145 3146
	slab_lock(page);

3147
	get_map(s, page, map);
3148 3149 3150 3151 3152 3153 3154 3155 3156
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3157
	kfree(map);
3158 3159 3160
#endif
}

C
Christoph Lameter 已提交
3161
/*
C
Christoph Lameter 已提交
3162
 * Attempt to free all partial slabs on a node.
3163 3164
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3165
 */
C
Christoph Lameter 已提交
3166
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3167 3168 3169
{
	struct page *page, *h;

3170
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3171
		if (!page->inuse) {
3172
			remove_partial(n, page);
C
Christoph Lameter 已提交
3173
			discard_slab(s, page);
3174 3175
		} else {
			list_slab_objects(s, page,
3176
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3177
		}
3178
	}
C
Christoph Lameter 已提交
3179 3180 3181
}

/*
C
Christoph Lameter 已提交
3182
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3183
 */
3184
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3185 3186 3187 3188 3189
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3190
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3191 3192
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3193 3194
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3195 3196
			return 1;
	}
3197
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3198 3199 3200 3201
	free_kmem_cache_nodes(s);
	return 0;
}

3202
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3203
{
3204
	int rc = kmem_cache_close(s);
3205

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	if (!rc) {
		/*
		 * We do the same lock strategy around sysfs_slab_add, see
		 * __kmem_cache_create. Because this is pretty much the last
		 * operation we do and the lock will be released shortly after
		 * that in slab_common.c, we could just move sysfs_slab_remove
		 * to a later point in common code. We should do that when we
		 * have a common sysfs framework for all allocators.
		 */
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3216
		sysfs_slab_remove(s);
3217 3218
		mutex_lock(&slab_mutex);
	}
3219 3220

	return rc;
C
Christoph Lameter 已提交
3221 3222 3223 3224 3225 3226 3227 3228
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3229
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3230 3231 3232 3233 3234 3235 3236 3237

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3238
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3239
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3240 3241 3242 3243 3244 3245 3246 3247

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3248
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3265
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3266
	void *ret;
C
Christoph Lameter 已提交
3267

3268
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3269
		return kmalloc_large(size, flags);
3270

3271
	s = kmalloc_slab(size, flags);
3272 3273

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3274 3275
		return s;

3276
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3277

3278
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3279 3280

	return ret;
C
Christoph Lameter 已提交
3281 3282 3283
}
EXPORT_SYMBOL(__kmalloc);

3284
#ifdef CONFIG_NUMA
3285 3286
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3287
	struct page *page;
3288
	void *ptr = NULL;
3289

3290
	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3291
	page = alloc_pages_node(node, flags, get_order(size));
3292
	if (page)
3293 3294
		ptr = page_address(page);

3295
	kmalloc_large_node_hook(ptr, size, flags);
3296
	return ptr;
3297 3298
}

C
Christoph Lameter 已提交
3299 3300
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3301
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3302
	void *ret;
C
Christoph Lameter 已提交
3303

3304
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3305 3306
		ret = kmalloc_large_node(size, flags, node);

3307 3308 3309
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3310 3311 3312

		return ret;
	}
3313

3314
	s = kmalloc_slab(size, flags);
3315 3316

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3317 3318
		return s;

3319
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3320

3321
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3322 3323

	return ret;
C
Christoph Lameter 已提交
3324 3325 3326 3327 3328 3329
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3330
	struct page *page;
C
Christoph Lameter 已提交
3331

3332
	if (unlikely(object == ZERO_SIZE_PTR))
3333 3334
		return 0;

3335 3336
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3337 3338
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3339
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3340
	}
C
Christoph Lameter 已提交
3341

3342
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3343
}
K
Kirill A. Shutemov 已提交
3344
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3345

3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
#ifdef CONFIG_SLUB_DEBUG
bool verify_mem_not_deleted(const void *x)
{
	struct page *page;
	void *object = (void *)x;
	unsigned long flags;
	bool rv;

	if (unlikely(ZERO_OR_NULL_PTR(x)))
		return false;

	local_irq_save(flags);

	page = virt_to_head_page(x);
	if (unlikely(!PageSlab(page))) {
		/* maybe it was from stack? */
		rv = true;
		goto out_unlock;
	}

	slab_lock(page);
3367 3368
	if (on_freelist(page->slab_cache, page, object)) {
		object_err(page->slab_cache, page, object, "Object is on free-list");
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		rv = false;
	} else {
		rv = true;
	}
	slab_unlock(page);

out_unlock:
	local_irq_restore(flags);
	return rv;
}
EXPORT_SYMBOL(verify_mem_not_deleted);
#endif

C
Christoph Lameter 已提交
3382 3383 3384
void kfree(const void *x)
{
	struct page *page;
3385
	void *object = (void *)x;
C
Christoph Lameter 已提交
3386

3387 3388
	trace_kfree(_RET_IP_, x);

3389
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3390 3391
		return;

3392
	page = virt_to_head_page(x);
3393
	if (unlikely(!PageSlab(page))) {
3394
		BUG_ON(!PageCompound(page));
3395
		kfree_hook(x);
3396
		__free_memcg_kmem_pages(page, compound_order(page));
3397 3398
		return;
	}
3399
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3400 3401 3402
}
EXPORT_SYMBOL(kfree);

3403
/*
C
Christoph Lameter 已提交
3404 3405 3406 3407 3408 3409 3410 3411
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3412 3413 3414 3415 3416 3417 3418 3419
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3420
	int objects = oo_objects(s->max);
3421
	struct list_head *slabs_by_inuse =
3422
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3423 3424 3425 3426 3427 3428
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3429
	for_each_node_state(node, N_NORMAL_MEMORY) {
3430 3431 3432 3433 3434
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3435
		for (i = 0; i < objects; i++)
3436 3437 3438 3439 3440
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3441
		 * Build lists indexed by the items in use in each slab.
3442
		 *
C
Christoph Lameter 已提交
3443 3444
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3445 3446
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3447 3448 3449
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3450 3451 3452
		}

		/*
C
Christoph Lameter 已提交
3453 3454
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3455
		 */
3456
		for (i = objects - 1; i > 0; i--)
3457 3458 3459
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3460 3461 3462 3463

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3464 3465 3466 3467 3468 3469 3470
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

3471 3472 3473 3474
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3475
	mutex_lock(&slab_mutex);
3476 3477
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3478
	mutex_unlock(&slab_mutex);
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3490
	offline_node = marg->status_change_nid_normal;
3491 3492 3493 3494 3495 3496 3497 3498

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3499
	mutex_lock(&slab_mutex);
3500 3501 3502 3503 3504 3505
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3506
			 * and offline_pages() function shouldn't call this
3507 3508
			 * callback. So, we must fail.
			 */
3509
			BUG_ON(slabs_node(s, offline_node));
3510 3511

			s->node[offline_node] = NULL;
3512
			kmem_cache_free(kmem_cache_node, n);
3513 3514
		}
	}
3515
	mutex_unlock(&slab_mutex);
3516 3517 3518 3519 3520 3521 3522
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3523
	int nid = marg->status_change_nid_normal;
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3534
	 * We are bringing a node online. No memory is available yet. We must
3535 3536 3537
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3538
	mutex_lock(&slab_mutex);
3539 3540 3541 3542 3543 3544
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3545
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3546 3547 3548 3549
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3550
		init_kmem_cache_node(n);
3551 3552 3553
		s->node[nid] = n;
	}
out:
3554
	mutex_unlock(&slab_mutex);
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3578 3579 3580 3581
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3582 3583 3584
	return ret;
}

3585 3586 3587 3588
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3589

C
Christoph Lameter 已提交
3590 3591 3592 3593
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3594 3595
/*
 * Used for early kmem_cache structures that were allocated using
3596 3597
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3598 3599
 */

3600
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3601 3602
{
	int node;
3603
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3604

3605
	memcpy(s, static_cache, kmem_cache->object_size);
3606

3607 3608 3609 3610 3611 3612
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3613 3614 3615 3616 3617 3618
	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3619
				p->slab_cache = s;
3620

L
Li Zefan 已提交
3621
#ifdef CONFIG_SLUB_DEBUG
3622
			list_for_each_entry(p, &n->full, lru)
3623
				p->slab_cache = s;
3624 3625 3626
#endif
		}
	}
3627 3628
	list_add(&s->list, &slab_caches);
	return s;
3629 3630
}

C
Christoph Lameter 已提交
3631 3632
void __init kmem_cache_init(void)
{
3633 3634
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3635

3636 3637 3638
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3639 3640
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3641

3642 3643
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3644

3645
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3646 3647 3648 3649

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3650 3651 3652 3653
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3654

3655
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3656

3657 3658 3659 3660 3661
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3662
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3663 3664

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3665
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3666 3667 3668

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3669
#endif
C
Christoph Lameter 已提交
3670

I
Ingo Molnar 已提交
3671
	printk(KERN_INFO
3672
		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3673
		" CPUs=%d, Nodes=%d\n",
3674
		cache_line_size(),
C
Christoph Lameter 已提交
3675 3676 3677 3678
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3679 3680 3681 3682
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3683 3684 3685 3686 3687 3688 3689 3690
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3691
	if (s->ctor)
C
Christoph Lameter 已提交
3692 3693
		return 1;

3694 3695 3696 3697 3698 3699
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3700 3701 3702
	return 0;
}

3703
static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3704
		size_t align, unsigned long flags, const char *name,
3705
		void (*ctor)(void *))
C
Christoph Lameter 已提交
3706
{
3707
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3708 3709 3710 3711

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3712
	if (ctor)
C
Christoph Lameter 已提交
3713 3714 3715 3716 3717
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3718
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3719

3720
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3721 3722 3723 3724 3725 3726
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3727
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3728 3729 3730 3731 3732
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3733
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3734 3735 3736 3737 3738
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

3739 3740 3741
		if (!cache_match_memcg(s, memcg))
			continue;

C
Christoph Lameter 已提交
3742 3743 3744 3745 3746
		return s;
	}
	return NULL;
}

3747 3748 3749
struct kmem_cache *
__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
		   size_t align, unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3750 3751 3752
{
	struct kmem_cache *s;

3753
	s = find_mergeable(memcg, size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3754 3755 3756 3757 3758 3759
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3760
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3761
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3762

3763 3764
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3765
			s = NULL;
3766
		}
3767
	}
C
Christoph Lameter 已提交
3768

3769 3770
	return s;
}
P
Pekka Enberg 已提交
3771

3772
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3773
{
3774 3775 3776 3777 3778
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3779

3780 3781 3782 3783
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3784
	memcg_propagate_slab_attrs(s);
3785 3786 3787
	mutex_unlock(&slab_mutex);
	err = sysfs_slab_add(s);
	mutex_lock(&slab_mutex);
3788

3789 3790
	if (err)
		kmem_cache_close(s);
3791

3792
	return err;
C
Christoph Lameter 已提交
3793 3794 3795 3796
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3797 3798
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3799
 */
3800
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3801 3802 3803
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3804 3805
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3806 3807 3808

	switch (action) {
	case CPU_UP_CANCELED:
3809
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3810
	case CPU_DEAD:
3811
	case CPU_DEAD_FROZEN:
3812
		mutex_lock(&slab_mutex);
3813 3814 3815 3816 3817
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3818
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3819 3820 3821 3822 3823 3824 3825
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3826
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3827
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3828
};
C
Christoph Lameter 已提交
3829 3830 3831

#endif

3832
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3833
{
3834
	struct kmem_cache *s;
3835
	void *ret;
3836

3837
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3838 3839
		return kmalloc_large(size, gfpflags);

3840
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3841

3842
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3843
		return s;
C
Christoph Lameter 已提交
3844

3845
	ret = slab_alloc(s, gfpflags, caller);
3846

L
Lucas De Marchi 已提交
3847
	/* Honor the call site pointer we received. */
3848
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3849 3850

	return ret;
C
Christoph Lameter 已提交
3851 3852
}

3853
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3854
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3855
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3856
{
3857
	struct kmem_cache *s;
3858
	void *ret;
3859

3860
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3861 3862 3863 3864 3865 3866 3867 3868
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3869

3870
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3871

3872
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3873
		return s;
C
Christoph Lameter 已提交
3874

3875
	ret = slab_alloc_node(s, gfpflags, node, caller);
3876

L
Lucas De Marchi 已提交
3877
	/* Honor the call site pointer we received. */
3878
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3879 3880

	return ret;
C
Christoph Lameter 已提交
3881
}
3882
#endif
C
Christoph Lameter 已提交
3883

3884
#ifdef CONFIG_SYSFS
3885 3886 3887 3888 3889 3890 3891 3892 3893
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3894
#endif
3895

3896
#ifdef CONFIG_SLUB_DEBUG
3897 3898
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3899 3900
{
	void *p;
3901
	void *addr = page_address(page);
3902 3903 3904 3905 3906 3907

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3908
	bitmap_zero(map, page->objects);
3909

3910 3911 3912 3913 3914
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3915 3916
	}

3917
	for_each_object(p, s, addr, page->objects)
3918
		if (!test_bit(slab_index(p, s, addr), map))
3919
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3920 3921 3922 3923
				return 0;
	return 1;
}

3924 3925
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3926
{
3927 3928 3929
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3930 3931
}

3932 3933
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3934 3935 3936 3937 3938 3939 3940 3941
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3942
		validate_slab_slab(s, page, map);
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3953
		validate_slab_slab(s, page, map);
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3966
static long validate_slab_cache(struct kmem_cache *s)
3967 3968 3969
{
	int node;
	unsigned long count = 0;
3970
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3971 3972 3973 3974
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3975 3976

	flush_all(s);
C
Christoph Lameter 已提交
3977
	for_each_node_state(node, N_NORMAL_MEMORY) {
3978 3979
		struct kmem_cache_node *n = get_node(s, node);

3980
		count += validate_slab_node(s, n, map);
3981
	}
3982
	kfree(map);
3983 3984
	return count;
}
3985
/*
C
Christoph Lameter 已提交
3986
 * Generate lists of code addresses where slabcache objects are allocated
3987 3988 3989 3990 3991
 * and freed.
 */

struct location {
	unsigned long count;
3992
	unsigned long addr;
3993 3994 3995 3996 3997
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3998
	DECLARE_BITMAP(cpus, NR_CPUS);
3999
	nodemask_t nodes;
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4015
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4016 4017 4018 4019 4020 4021
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4022
	l = (void *)__get_free_pages(flags, order);
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4036
				const struct track *track)
4037 4038 4039
{
	long start, end, pos;
	struct location *l;
4040
	unsigned long caddr;
4041
	unsigned long age = jiffies - track->when;
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4073 4074
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4075 4076
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4077 4078 4079
			return 1;
		}

4080
		if (track->addr < caddr)
4081 4082 4083 4084 4085 4086
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4087
	 * Not found. Insert new tracking element.
4088
	 */
4089
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4090 4091 4092 4093 4094 4095 4096 4097
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4098 4099 4100 4101 4102 4103
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4104 4105
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4106 4107
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4108 4109 4110 4111
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4112
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4113
		unsigned long *map)
4114
{
4115
	void *addr = page_address(page);
4116 4117
	void *p;

4118
	bitmap_zero(map, page->objects);
4119
	get_map(s, page, map);
4120

4121
	for_each_object(p, s, addr, page->objects)
4122 4123
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4124 4125 4126 4127 4128
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4129
	int len = 0;
4130
	unsigned long i;
4131
	struct loc_track t = { 0, 0, NULL };
4132
	int node;
E
Eric Dumazet 已提交
4133 4134
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4135

E
Eric Dumazet 已提交
4136 4137 4138
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4139
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4140
	}
4141 4142 4143
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4144
	for_each_node_state(node, N_NORMAL_MEMORY) {
4145 4146 4147 4148
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4149
		if (!atomic_long_read(&n->nr_slabs))
4150 4151 4152 4153
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4154
			process_slab(&t, s, page, alloc, map);
4155
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4156
			process_slab(&t, s, page, alloc, map);
4157 4158 4159 4160
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4161
		struct location *l = &t.loc[i];
4162

H
Hugh Dickins 已提交
4163
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4164
			break;
4165
		len += sprintf(buf + len, "%7ld ", l->count);
4166 4167

		if (l->addr)
J
Joe Perches 已提交
4168
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4169
		else
4170
			len += sprintf(buf + len, "<not-available>");
4171 4172

		if (l->sum_time != l->min_time) {
4173
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4174 4175 4176
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4177
		} else
4178
			len += sprintf(buf + len, " age=%ld",
4179 4180 4181
				l->min_time);

		if (l->min_pid != l->max_pid)
4182
			len += sprintf(buf + len, " pid=%ld-%ld",
4183 4184
				l->min_pid, l->max_pid);
		else
4185
			len += sprintf(buf + len, " pid=%ld",
4186 4187
				l->min_pid);

R
Rusty Russell 已提交
4188 4189
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4190 4191 4192
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4193
						 to_cpumask(l->cpus));
4194 4195
		}

4196
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4197 4198 4199
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4200 4201 4202
					l->nodes);
		}

4203
		len += sprintf(buf + len, "\n");
4204 4205 4206
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4207
	kfree(map);
4208
	if (!t.count)
4209 4210
		len += sprintf(buf, "No data\n");
	return len;
4211
}
4212
#endif
4213

4214 4215 4216 4217 4218
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4219
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4276
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4277
enum slab_stat_type {
4278 4279 4280 4281 4282
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4283 4284
};

4285
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4286 4287 4288
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4289
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4290

4291 4292
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4293 4294 4295 4296 4297 4298 4299 4300
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4301 4302
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4303 4304
	per_cpu = nodes + nr_node_ids;

4305 4306
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4307

4308
		for_each_possible_cpu(cpu) {
4309
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4310
			int node;
4311
			struct page *page;
4312

4313
			page = ACCESS_ONCE(c->page);
4314 4315
			if (!page)
				continue;
4316

4317 4318 4319 4320 4321 4322 4323
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4324

4325 4326 4327 4328
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4329 4330
			if (page) {
				x = page->pobjects;
4331 4332
				total += x;
				nodes[node] += x;
4333
			}
4334

4335
			per_cpu[node]++;
C
Christoph Lameter 已提交
4336 4337 4338
		}
	}

4339
	lock_memory_hotplug();
4340
#ifdef CONFIG_SLUB_DEBUG
4341 4342 4343 4344 4345 4346 4347 4348 4349
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_TOTAL)
			x = atomic_long_read(&n->total_objects);
		else if (flags & SO_OBJECTS)
			x = atomic_long_read(&n->total_objects) -
				count_partial(n, count_free);
C
Christoph Lameter 已提交
4350 4351

			else
4352
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4353 4354 4355 4356
			total += x;
			nodes[node] += x;
		}

4357 4358 4359
	} else
#endif
	if (flags & SO_PARTIAL) {
4360 4361
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4362

4363 4364 4365 4366
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4367
			else
4368
				x = n->nr_partial;
C
Christoph Lameter 已提交
4369 4370 4371 4372 4373 4374
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4375
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4376 4377 4378 4379
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4380
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4381 4382 4383 4384
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4385
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4386 4387 4388 4389
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4390
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4391 4392
		struct kmem_cache_node *n = get_node(s, node);

4393 4394 4395
		if (!n)
			continue;

4396
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4397 4398 4399 4400
			return 1;
	}
	return 0;
}
4401
#endif
C
Christoph Lameter 已提交
4402 4403

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4404
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4405 4406 4407 4408 4409 4410 4411 4412

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4413 4414
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4415 4416 4417

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4418
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4434
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4435 4436 4437 4438 4439
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4440
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4441 4442 4443
}
SLAB_ATTR_RO(objs_per_slab);

4444 4445 4446
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4447 4448 4449 4450 4451 4452
	unsigned long order;
	int err;

	err = strict_strtoul(buf, 10, &order);
	if (err)
		return err;
4453 4454 4455 4456 4457 4458 4459 4460

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4461 4462
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4463
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4464
}
4465
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4466

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

	err = strict_strtoul(buf, 10, &min);
	if (err)
		return err;

4482
	set_min_partial(s, min);
4483 4484 4485 4486
	return length;
}
SLAB_ATTR(min_partial);

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

	err = strict_strtoul(buf, 10, &objects);
	if (err)
		return err;
4501
	if (objects && !kmem_cache_has_cpu_partial(s))
4502
		return -EINVAL;
4503 4504 4505 4506 4507 4508 4509

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4510 4511
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4512 4513 4514
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4526
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4527 4528 4529 4530 4531
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4532
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4533 4534 4535 4536 4537
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4538
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4539 4540 4541
}
SLAB_ATTR_RO(objects);

4542 4543 4544 4545 4546 4547
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4614 4615 4616 4617 4618 4619
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4620
#ifdef CONFIG_SLUB_DEBUG
4621 4622 4623 4624 4625 4626
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4627 4628 4629 4630 4631 4632
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4642 4643
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4644
		s->flags |= SLAB_DEBUG_FREE;
4645
	}
C
Christoph Lameter 已提交
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4659 4660
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4661
		s->flags |= SLAB_TRACE;
4662
	}
C
Christoph Lameter 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4679 4680
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4681
		s->flags |= SLAB_RED_ZONE;
4682
	}
4683
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4700 4701
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4702
		s->flags |= SLAB_POISON;
4703
	}
4704
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4721 4722
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4723
		s->flags |= SLAB_STORE_USER;
4724
	}
4725
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4726 4727 4728 4729
	return length;
}
SLAB_ATTR(store_user);

4730 4731 4732 4733 4734 4735 4736 4737
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4738 4739 4740 4741 4742 4743 4744 4745
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4746 4747
}
SLAB_ATTR(validate);
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4781
#endif
4782

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4802
#ifdef CONFIG_NUMA
4803
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4804
{
4805
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4806 4807
}

4808
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4809 4810
				const char *buf, size_t length)
{
4811 4812 4813 4814 4815 4816 4817
	unsigned long ratio;
	int err;

	err = strict_strtoul(buf, 10, &ratio);
	if (err)
		return err;

4818
	if (ratio <= 100)
4819
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4820 4821 4822

	return length;
}
4823
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4824 4825
#endif

4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4838
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4839 4840 4841 4842 4843 4844 4845

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4846
#ifdef CONFIG_SMP
4847 4848
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4849
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4850
	}
4851
#endif
4852 4853 4854 4855
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4856 4857 4858 4859 4860
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4861
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4862 4863
}

4864 4865 4866 4867 4868
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4889
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4890 4891 4892 4893 4894 4895 4896
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4897
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4898
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4899 4900
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4901 4902
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4903 4904
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4905 4906
#endif

P
Pekka Enberg 已提交
4907
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4908 4909 4910 4911
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4912
	&min_partial_attr.attr,
4913
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4914
	&objects_attr.attr,
4915
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4916 4917 4918 4919 4920 4921 4922 4923
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4924
	&shrink_attr.attr,
4925
	&reserved_attr.attr,
4926
	&slabs_cpu_partial_attr.attr,
4927
#ifdef CONFIG_SLUB_DEBUG
4928 4929 4930 4931
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4932 4933 4934
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4935
	&validate_attr.attr,
4936 4937
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4938
#endif
C
Christoph Lameter 已提交
4939 4940 4941 4942
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4943
	&remote_node_defrag_ratio_attr.attr,
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4956
	&alloc_node_mismatch_attr.attr,
4957 4958 4959 4960 4961 4962 4963
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4964
	&deactivate_bypass_attr.attr,
4965
	&order_fallback_attr.attr,
4966 4967
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4968 4969
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4970 4971
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4972
#endif
4973 4974 4975 4976
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5018 5019 5020
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
5021

5022 5023 5024 5025
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5043 5044 5045 5046 5047 5048 5049 5050
		for_each_memcg_cache_index(i) {
			struct kmem_cache *c = cache_from_memcg(s, i);
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5051 5052 5053
	return err;
}

5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;

	if (!is_root_cache(s))
		return;

	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
	if (!s->max_attr_size)
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

		attr->show(s->memcg_params->root_cache, buf);
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5107
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5125
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5126 5127 5128
	.filter = uevent_filter,
};

5129
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5130 5131 5132 5133

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5134 5135
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5158 5159
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5160 5161 5162
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5163 5164 5165 5166 5167 5168

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
		p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
#endif

C
Christoph Lameter 已提交
5169 5170 5171 5172 5173 5174 5175 5176
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5177
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5178 5179 5180 5181 5182 5183 5184

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5185
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5186 5187 5188 5189 5190 5191 5192 5193 5194
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5195
	s->kobj.kset = slab_kset;
5196 5197 5198
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5199
		return err;
5200
	}
C
Christoph Lameter 已提交
5201 5202

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5203 5204 5205
	if (err) {
		kobject_del(&s->kobj);
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5206
		return err;
5207
	}
C
Christoph Lameter 已提交
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
5219
	if (slab_state < FULL)
5220 5221 5222 5223 5224 5225
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

C
Christoph Lameter 已提交
5226 5227
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5228
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5229 5230 5231 5232
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5233
 * available lest we lose that information.
C
Christoph Lameter 已提交
5234 5235 5236 5237 5238 5239 5240
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5241
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5242 5243 5244 5245 5246

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5247
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5248 5249 5250
		/*
		 * If we have a leftover link then remove it.
		 */
5251 5252
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5268
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5269 5270
	int err;

5271
	mutex_lock(&slab_mutex);
5272

5273
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5274
	if (!slab_kset) {
5275
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5276 5277 5278 5279
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5280
	slab_state = FULL;
5281

5282
	list_for_each_entry(s, &slab_caches, list) {
5283
		err = sysfs_slab_add(s);
5284 5285 5286
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5287
	}
C
Christoph Lameter 已提交
5288 5289 5290 5291 5292 5293

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5294 5295
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5296
					" %s to sysfs\n", al->name);
C
Christoph Lameter 已提交
5297 5298 5299
		kfree(al);
	}

5300
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5301 5302 5303 5304 5305
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5306
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5307 5308 5309 5310

/*
 * The /proc/slabinfo ABI
 */
5311
#ifdef CONFIG_SLABINFO
5312
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5313 5314
{
	unsigned long nr_slabs = 0;
5315 5316
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5317 5318 5319 5320 5321 5322 5323 5324
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

5325 5326
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5327
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5328 5329
	}

5330 5331 5332 5333 5334 5335
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5336 5337
}

5338
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5339 5340 5341
{
}

5342 5343
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5344
{
5345
	return -EIO;
5346
}
5347
#endif /* CONFIG_SLABINFO */