starfire.c 65.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
/*
	Written 1998-2000 by Donald Becker.

5
	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
L
Linus Torvalds 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
	send all bug reports to me, and not to Donald Becker, as this code
	has been heavily modified from Donald's original version.

	This software may be used and distributed according to the terms of
	the GNU General Public License (GPL), incorporated herein by reference.
	Drivers based on or derived from this code fall under the GPL and must
	retain the authorship, copyright and license notice.  This file is not
	a complete program and may only be used when the entire operating
	system is licensed under the GPL.

	The information below comes from Donald Becker's original driver:

	The author may be reached as becker@scyld.com, or C/O
	Scyld Computing Corporation
	410 Severn Ave., Suite 210
	Annapolis MD 21403

	Support and updates available at
	http://www.scyld.com/network/starfire.html

	-----------------------------------------------------------

	Linux kernel-specific changes:

	LK1.1.1 (jgarzik):
	- Use PCI driver interface
	- Fix MOD_xxx races
	- softnet fixups

	LK1.1.2 (jgarzik):
	- Merge Becker version 0.15

	LK1.1.3 (Andrew Morton)
	- Timer cleanups

	LK1.1.4 (jgarzik):
	- Merge Becker version 1.03

	LK1.2.1 (Ion Badulescu <ionut@cs.columbia.edu>)
	- Support hardware Rx/Tx checksumming
	- Use the GFP firmware taken from Adaptec's Netware driver

	LK1.2.2 (Ion Badulescu)
	- Backported to 2.2.x

	LK1.2.3 (Ion Badulescu)
	- Fix the flaky mdio interface
	- More compat clean-ups

	LK1.2.4 (Ion Badulescu)
	- More 2.2.x initialization fixes

	LK1.2.5 (Ion Badulescu)
	- Several fixes from Manfred Spraul

	LK1.2.6 (Ion Badulescu)
	- Fixed ifup/ifdown/ifup problem in 2.4.x

	LK1.2.7 (Ion Badulescu)
	- Removed unused code
	- Made more functions static and __init

	LK1.2.8 (Ion Badulescu)
	- Quell bogus error messages, inform about the Tx threshold
	- Removed #ifdef CONFIG_PCI, this driver is PCI only

	LK1.2.9 (Ion Badulescu)
	- Merged Jeff Garzik's changes from 2.4.4-pre5
	- Added 2.2.x compatibility stuff required by the above changes

	LK1.2.9a (Ion Badulescu)
	- More updates from Jeff Garzik

	LK1.3.0 (Ion Badulescu)
	- Merged zerocopy support

	LK1.3.1 (Ion Badulescu)
	- Added ethtool support
	- Added GPIO (media change) interrupt support

	LK1.3.2 (Ion Badulescu)
	- Fixed 2.2.x compatibility issues introduced in 1.3.1
	- Fixed ethtool ioctl returning uninitialized memory

	LK1.3.3 (Ion Badulescu)
	- Initialize the TxMode register properly
	- Don't dereference dev->priv after freeing it

	LK1.3.4 (Ion Badulescu)
	- Fixed initialization timing problems
	- Fixed interrupt mask definitions

	LK1.3.5 (jgarzik)
	- ethtool NWAY_RST, GLINK, [GS]MSGLVL support

	LK1.3.6:
	- Sparc64 support and fixes (Ion Badulescu)
	- Better stats and error handling (Ion Badulescu)
	- Use new pci_set_mwi() PCI API function (jgarzik)

	LK1.3.7 (Ion Badulescu)
	- minimal implementation of tx_timeout()
	- correctly shutdown the Rx/Tx engines in netdev_close()
	- added calls to netif_carrier_on/off
	(patch from Stefan Rompf <srompf@isg.de>)
	- VLAN support

	LK1.3.8 (Ion Badulescu)
	- adjust DMA burst size on sparc64
	- 64-bit support
	- reworked zerocopy support for 64-bit buffers
	- working and usable interrupt mitigation/latency
	- reduced Tx interrupt frequency for lower interrupt overhead

	LK1.3.9 (Ion Badulescu)
	- bugfix for mcast filter
	- enable the right kind of Tx interrupts (TxDMADone, not TxDone)

	LK1.4.0 (Ion Badulescu)
	- NAPI support

	LK1.4.1 (Ion Badulescu)
	- flush PCI posting buffers after disabling Rx interrupts
	- put the chip to a D3 slumber on driver unload
	- added config option to enable/disable NAPI

132 133 134 135
	LK1.4.2 (Ion Badulescu)
	- finally added firmware (GPL'ed by Adaptec)
	- removed compatibility code for 2.2.x

136 137 138 139
	LK1.4.2.1 (Ion Badulescu)
	- fixed 32/64 bit issues on i386 + CONFIG_HIGHMEM
	- added 32-bit padding to outgoing skb's, removed previous workaround

140 141 142
TODO:	- fix forced speed/duplexing code (broken a long time ago, when
	somebody converted the driver to use the generic MII code)
	- fix VLAN support
L
Linus Torvalds 已提交
143 144 145
*/

#define DRV_NAME	"starfire"
146 147
#define DRV_VERSION	"1.03+LK1.4.2.1"
#define DRV_RELDATE	"October 3, 2005"
L
Linus Torvalds 已提交
148 149 150 151 152 153 154 155 156 157

#include <linux/config.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/delay.h>
158 159 160 161
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
L
Linus Torvalds 已提交
162 163 164 165
#include <asm/processor.h>		/* Processor type for cache alignment. */
#include <asm/uaccess.h>
#include <asm/io.h>

166
#include "starfire_firmware.h"
L
Linus Torvalds 已提交
167 168 169 170 171
/*
 * The current frame processor firmware fails to checksum a fragment
 * of length 1. If and when this is fixed, the #define below can be removed.
 */
#define HAS_BROKEN_FIRMWARE
172 173 174 175 176 177 178 179

/*
 * If using the broken firmware, data must be padded to the next 32-bit boundary.
 */
#ifdef HAS_BROKEN_FIRMWARE
#define PADDING_MASK 3
#endif

L
Linus Torvalds 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
/*
 * Define this if using the driver with the zero-copy patch
 */
#define ZEROCOPY

#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
#define VLAN_SUPPORT
#endif

#ifndef CONFIG_ADAPTEC_STARFIRE_NAPI
#undef HAVE_NETDEV_POLL
#endif

/* The user-configurable values.
   These may be modified when a driver module is loaded.*/

/* Used for tuning interrupt latency vs. overhead. */
static int intr_latency;
static int small_frames;

static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
static int max_interrupt_work = 20;
static int mtu;
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
   The Starfire has a 512 element hash table based on the Ethernet CRC. */
static int multicast_filter_limit = 512;
/* Whether to do TCP/UDP checksums in hardware */
static int enable_hw_cksum = 1;

#define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
/*
 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
 * Setting to > 1518 effectively disables this feature.
 *
 * NOTE:
 * The ia64 doesn't allow for unaligned loads even of integers being
 * misaligned on a 2 byte boundary. Thus always force copying of
 * packets as the starfire doesn't allow for misaligned DMAs ;-(
 * 23/10/2000 - Jes
 *
 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
 * at least, having unaligned frames leads to a rather serious performance
 * penalty. -Ion
 */
#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
static int rx_copybreak = PKT_BUF_SZ;
#else
static int rx_copybreak /* = 0 */;
#endif

/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
#ifdef __sparc__
#define DMA_BURST_SIZE 64
#else
#define DMA_BURST_SIZE 128
#endif

/* Used to pass the media type, etc.
   Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
   The media type is usually passed in 'options[]'.
   These variables are deprecated, use ethtool instead. -Ion
*/
#define MAX_UNITS 8		/* More are supported, limit only on options */
static int options[MAX_UNITS] = {0, };
static int full_duplex[MAX_UNITS] = {0, };

/* Operational parameters that are set at compile time. */

/* The "native" ring sizes are either 256 or 2048.
   However in some modes a descriptor may be marked to wrap the ring earlier.
*/
#define RX_RING_SIZE	256
#define TX_RING_SIZE	32
/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
#define DONE_Q_SIZE	1024
/* All queues must be aligned on a 256-byte boundary */
#define QUEUE_ALIGN	256

#if RX_RING_SIZE > 256
#define RX_Q_ENTRIES Rx2048QEntries
#else
#define RX_Q_ENTRIES Rx256QEntries
#endif

/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT	(2 * HZ)

/*
 * This SUCKS.
 * We need a much better method to determine if dma_addr_t is 64-bit.
 */
272
#if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
L
Linus Torvalds 已提交
273 274
/* 64-bit dma_addr_t */
#define ADDR_64BITS	/* This chip uses 64 bit addresses. */
275
#define netdrv_addr_t u64
L
Linus Torvalds 已提交
276 277 278 279 280 281 282 283
#define cpu_to_dma(x) cpu_to_le64(x)
#define dma_to_cpu(x) le64_to_cpu(x)
#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
#define RX_DESC_ADDR_SIZE RxDescAddr64bit
#else  /* 32-bit dma_addr_t */
284
#define netdrv_addr_t u32
L
Linus Torvalds 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298
#define cpu_to_dma(x) cpu_to_le32(x)
#define dma_to_cpu(x) le32_to_cpu(x)
#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
#define RX_DESC_ADDR_SIZE RxDescAddr32bit
#endif

#define skb_first_frag_len(skb)	skb_headlen(skb)
#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)

#ifdef HAVE_NETDEV_POLL
#define init_poll(dev) \
299
do { \
L
Linus Torvalds 已提交
300
	dev->poll = &netdev_poll; \
301 302
	dev->weight = max_interrupt_work; \
} while (0)
L
Linus Torvalds 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315
#define netdev_rx(dev, ioaddr) \
do { \
	u32 intr_enable; \
	if (netif_rx_schedule_prep(dev)) { \
		__netif_rx_schedule(dev); \
		intr_enable = readl(ioaddr + IntrEnable); \
		intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
		writel(intr_enable, ioaddr + IntrEnable); \
		readl(ioaddr + IntrEnable); /* flush PCI posting buffers */ \
	} else { \
		/* Paranoia check */ \
		intr_enable = readl(ioaddr + IntrEnable); \
		if (intr_enable & (IntrRxDone | IntrRxEmpty)) { \
316
			printk(KERN_INFO "%s: interrupt while in polling mode!\n", dev->name); \
L
Linus Torvalds 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
			intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
			writel(intr_enable, ioaddr + IntrEnable); \
		} \
	} \
} while (0)
#define netdev_receive_skb(skb) netif_receive_skb(skb)
#define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_receive_skb(skb, vlgrp, vlid)
static int	netdev_poll(struct net_device *dev, int *budget);
#else  /* not HAVE_NETDEV_POLL */
#define init_poll(dev)
#define netdev_receive_skb(skb) netif_rx(skb)
#define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_rx(skb, vlgrp, vlid)
#define netdev_rx(dev, ioaddr) \
do { \
	int quota = np->dirty_rx + RX_RING_SIZE - np->cur_rx; \
	__netdev_rx(dev, &quota);\
} while (0)
#endif /* not HAVE_NETDEV_POLL */
/* end of compatibility code */


/* These identify the driver base version and may not be removed. */
static char version[] __devinitdata =
KERN_INFO "starfire.c:v1.03 7/26/2000  Written by Donald Becker <becker@scyld.com>\n"
KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";

MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
MODULE_LICENSE("GPL");
346
MODULE_VERSION(DRV_VERSION);
L
Linus Torvalds 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

module_param(max_interrupt_work, int, 0);
module_param(mtu, int, 0);
module_param(debug, int, 0);
module_param(rx_copybreak, int, 0);
module_param(intr_latency, int, 0);
module_param(small_frames, int, 0);
module_param_array(options, int, NULL, 0);
module_param_array(full_duplex, int, NULL, 0);
module_param(enable_hw_cksum, int, 0);
MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
MODULE_PARM_DESC(mtu, "MTU (all boards)");
MODULE_PARM_DESC(debug, "Debug level (0-6)");
MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");

/*
				Theory of Operation

I. Board Compatibility

This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.

II. Board-specific settings

III. Driver operation

IIIa. Ring buffers

The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
ring sizes are set fixed by the hardware, but may optionally be wrapped
earlier by the END bit in the descriptor.
This driver uses that hardware queue size for the Rx ring, where a large
number of entries has no ill effect beyond increases the potential backlog.
The Tx ring is wrapped with the END bit, since a large hardware Tx queue
disables the queue layer priority ordering and we have no mechanism to
utilize the hardware two-level priority queue.  When modifying the
RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
levels.

IIIb/c. Transmit/Receive Structure

See the Adaptec manual for the many possible structures, and options for
each structure.  There are far too many to document all of them here.

For transmit this driver uses type 0/1 transmit descriptors (depending
on the 32/64 bitness of the architecture), and relies on automatic
minimum-length padding.  It does not use the completion queue
consumer index, but instead checks for non-zero status entries.

401
For receive this driver uses type 2/3 receive descriptors.  The driver
L
Linus Torvalds 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
allocates full frame size skbuffs for the Rx ring buffers, so all frames
should fit in a single descriptor.  The driver does not use the completion
queue consumer index, but instead checks for non-zero status entries.

When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
is allocated and the frame is copied to the new skbuff.  When the incoming
frame is larger, the skbuff is passed directly up the protocol stack.
Buffers consumed this way are replaced by newly allocated skbuffs in a later
phase of receive.

A notable aspect of operation is that unaligned buffers are not permitted by
the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
isn't longword aligned, which may cause problems on some machine
e.g. Alphas and IA64. For these architectures, the driver is forced to copy
the frame into a new skbuff unconditionally. Copied frames are put into the
skbuff at an offset of "+2", thus 16-byte aligning the IP header.

IIId. Synchronization

The driver runs as two independent, single-threaded flows of control.  One
is the send-packet routine, which enforces single-threaded use by the
dev->tbusy flag.  The other thread is the interrupt handler, which is single
threaded by the hardware and interrupt handling software.

The send packet thread has partial control over the Tx ring and the netif_queue
status. If the number of free Tx slots in the ring falls below a certain number
(currently hardcoded to 4), it signals the upper layer to stop the queue.

The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
number of free Tx slow is above the threshold, it signals the upper layer to
restart the queue.

IV. Notes

IVb. References

The Adaptec Starfire manuals, available only from Adaptec.
http://www.scyld.com/expert/100mbps.html
http://www.scyld.com/expert/NWay.html

IVc. Errata

- StopOnPerr is broken, don't enable
- Hardware ethernet padding exposes random data, perform software padding
  instead (unverified -- works correctly for all the hardware I have)

*/

452

L
Linus Torvalds 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

enum chip_capability_flags {CanHaveMII=1, };

enum chipset {
	CH_6915 = 0,
};

static struct pci_device_id starfire_pci_tbl[] = {
	{ 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
	{ 0, }
};
MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);

/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
static struct chip_info {
	const char *name;
	int drv_flags;
} netdrv_tbl[] __devinitdata = {
	{ "Adaptec Starfire 6915", CanHaveMII },
};


/* Offsets to the device registers.
   Unlike software-only systems, device drivers interact with complex hardware.
   It's not useful to define symbolic names for every register bit in the
   device.  The name can only partially document the semantics and make
   the driver longer and more difficult to read.
   In general, only the important configuration values or bits changed
   multiple times should be defined symbolically.
*/
enum register_offsets {
	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
	TxThreshold=0x500B0,
	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
	TxMode=0x55000, VlanType=0x55064,
	PerfFilterTable=0x56000, HashTable=0x56100,
	TxGfpMem=0x58000, RxGfpMem=0x5a000,
};

/*
 * Bits in the interrupt status/mask registers.
 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
 * enables all the interrupt sources that are or'ed into those status bits.
 */
enum intr_status_bits {
	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
	IntrTxGfp=0x02, IntrPCIPad=0x01,
	/* not quite bits */
	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
};

/* Bits in the RxFilterMode register. */
enum rx_mode_bits {
	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
	WakeupOnGFP=0x0800,
};

/* Bits in the TxMode register */
enum tx_mode_bits {
	MiiSoftReset=0x8000, MIILoopback=0x4000,
	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
};

/* Bits in the TxDescCtrl register. */
enum tx_ctrl_bits {
	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
	TxDescSpace128=0x30, TxDescSpace256=0x40,
	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
	TxDescType3=0x03, TxDescType4=0x04,
	TxNoDMACompletion=0x08,
	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
	TxDMABurstSizeShift=8,
};

/* Bits in the RxDescQCtrl register. */
enum rx_ctrl_bits {
	RxBufferLenShift=16, RxMinDescrThreshShift=0,
	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
	Rx2048QEntries=0x4000, Rx256QEntries=0,
	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
	RxDescSpace4=0x000, RxDescSpace8=0x100,
	RxDescSpace16=0x200, RxDescSpace32=0x300,
	RxDescSpace64=0x400, RxDescSpace128=0x500,
	RxConsumerWrEn=0x80,
};

/* Bits in the RxDMACtrl register. */
enum rx_dmactrl_bits {
	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
	RxChecksumRejectTCPOnly=0x01000000,
	RxCompletionQ2Enable=0x800000,
	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
	RxDMAQ2NonIP=0x400000,
	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
	RxBurstSizeShift=0,
};

/* Bits in the RxCompletionAddr register */
enum rx_compl_bits {
	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
	RxComplProducerWrEn=0x40,
	RxComplType0=0x00, RxComplType1=0x10,
	RxComplType2=0x20, RxComplType3=0x30,
	RxComplThreshShift=0,
};

/* Bits in the TxCompletionAddr register */
enum tx_compl_bits {
	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
	TxComplProducerWrEn=0x40,
	TxComplIntrStatus=0x20,
	CommonQueueMode=0x10,
	TxComplThreshShift=0,
};

/* Bits in the GenCtrl register */
enum gen_ctrl_bits {
	RxEnable=0x05, TxEnable=0x0a,
	RxGFPEnable=0x10, TxGFPEnable=0x20,
};

/* Bits in the IntrTimerCtrl register */
enum intr_ctrl_bits {
	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
	IntrLatencyMask=0x1f,
};

/* The Rx and Tx buffer descriptors. */
struct starfire_rx_desc {
	dma_addr_t rxaddr;
};
enum rx_desc_bits {
	RxDescValid=1, RxDescEndRing=2,
};

/* Completion queue entry. */
struct short_rx_done_desc {
	u32 status;			/* Low 16 bits is length. */
};
struct basic_rx_done_desc {
	u32 status;			/* Low 16 bits is length. */
	u16 vlanid;
	u16 status2;
};
struct csum_rx_done_desc {
	u32 status;			/* Low 16 bits is length. */
	u16 csum;			/* Partial checksum */
	u16 status2;
};
struct full_rx_done_desc {
	u32 status;			/* Low 16 bits is length. */
	u16 status3;
	u16 status2;
	u16 vlanid;
	u16 csum;			/* partial checksum */
	u32 timestamp;
};
/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
#ifdef VLAN_SUPPORT
typedef struct full_rx_done_desc rx_done_desc;
#define RxComplType RxComplType3
#else  /* not VLAN_SUPPORT */
typedef struct csum_rx_done_desc rx_done_desc;
#define RxComplType RxComplType2
#endif /* not VLAN_SUPPORT */

enum rx_done_bits {
	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
};

/* Type 1 Tx descriptor. */
struct starfire_tx_desc_1 {
	u32 status;			/* Upper bits are status, lower 16 length. */
	u32 addr;
};

/* Type 2 Tx descriptor. */
struct starfire_tx_desc_2 {
	u32 status;			/* Upper bits are status, lower 16 length. */
	u32 reserved;
	u64 addr;
};

#ifdef ADDR_64BITS
typedef struct starfire_tx_desc_2 starfire_tx_desc;
#define TX_DESC_TYPE TxDescType2
#else  /* not ADDR_64BITS */
typedef struct starfire_tx_desc_1 starfire_tx_desc;
#define TX_DESC_TYPE TxDescType1
#endif /* not ADDR_64BITS */
#define TX_DESC_SPACING TxDescSpaceUnlim

enum tx_desc_bits {
	TxDescID=0xB0000000,
	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
};
struct tx_done_desc {
	u32 status;			/* timestamp, index. */
#if 0
	u32 intrstatus;			/* interrupt status */
#endif
};

struct rx_ring_info {
	struct sk_buff *skb;
	dma_addr_t mapping;
};
struct tx_ring_info {
	struct sk_buff *skb;
	dma_addr_t mapping;
	unsigned int used_slots;
};

#define PHY_CNT		2
struct netdev_private {
	/* Descriptor rings first for alignment. */
	struct starfire_rx_desc *rx_ring;
	starfire_tx_desc *tx_ring;
	dma_addr_t rx_ring_dma;
	dma_addr_t tx_ring_dma;
	/* The addresses of rx/tx-in-place skbuffs. */
	struct rx_ring_info rx_info[RX_RING_SIZE];
	struct tx_ring_info tx_info[TX_RING_SIZE];
	/* Pointers to completion queues (full pages). */
	rx_done_desc *rx_done_q;
	dma_addr_t rx_done_q_dma;
	unsigned int rx_done;
	struct tx_done_desc *tx_done_q;
	dma_addr_t tx_done_q_dma;
	unsigned int tx_done;
	struct net_device_stats stats;
	struct pci_dev *pci_dev;
#ifdef VLAN_SUPPORT
	struct vlan_group *vlgrp;
#endif
	void *queue_mem;
	dma_addr_t queue_mem_dma;
	size_t queue_mem_size;

	/* Frequently used values: keep some adjacent for cache effect. */
	spinlock_t lock;
	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
	unsigned int cur_tx, dirty_tx, reap_tx;
	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
	/* These values keep track of the transceiver/media in use. */
	int speed100;			/* Set if speed == 100MBit. */
	u32 tx_mode;
	u32 intr_timer_ctrl;
	u8 tx_threshold;
	/* MII transceiver section. */
	struct mii_if_info mii_if;		/* MII lib hooks/info */
	int phy_cnt;			/* MII device addresses. */
	unsigned char phys[PHY_CNT];	/* MII device addresses. */
	void __iomem *base;
};


static int	mdio_read(struct net_device *dev, int phy_id, int location);
static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
static int	netdev_open(struct net_device *dev);
static void	check_duplex(struct net_device *dev);
static void	tx_timeout(struct net_device *dev);
static void	init_ring(struct net_device *dev);
static int	start_tx(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
static void	netdev_error(struct net_device *dev, int intr_status);
static int	__netdev_rx(struct net_device *dev, int *quota);
static void	refill_rx_ring(struct net_device *dev);
static void	netdev_error(struct net_device *dev, int intr_status);
static void	set_rx_mode(struct net_device *dev);
static struct net_device_stats *get_stats(struct net_device *dev);
static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int	netdev_close(struct net_device *dev);
static void	netdev_media_change(struct net_device *dev);
static struct ethtool_ops ethtool_ops;


#ifdef VLAN_SUPPORT
static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
{
        struct netdev_private *np = netdev_priv(dev);

        spin_lock(&np->lock);
	if (debug > 2)
		printk("%s: Setting vlgrp to %p\n", dev->name, grp);
        np->vlgrp = grp;
	set_rx_mode(dev);
        spin_unlock(&np->lock);
}

static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
{
	struct netdev_private *np = netdev_priv(dev);

	spin_lock(&np->lock);
	if (debug > 1)
		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
	set_rx_mode(dev);
	spin_unlock(&np->lock);
}

static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
{
	struct netdev_private *np = netdev_priv(dev);

	spin_lock(&np->lock);
	if (debug > 1)
		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
	if (np->vlgrp)
		np->vlgrp->vlan_devices[vid] = NULL;
	set_rx_mode(dev);
	spin_unlock(&np->lock);
}
#endif /* VLAN_SUPPORT */


static int __devinit starfire_init_one(struct pci_dev *pdev,
				       const struct pci_device_id *ent)
{
	struct netdev_private *np;
	int i, irq, option, chip_idx = ent->driver_data;
	struct net_device *dev;
	static int card_idx = -1;
	long ioaddr;
	void __iomem *base;
	int drv_flags, io_size;
	int boguscnt;

/* when built into the kernel, we only print version if device is found */
#ifndef MODULE
	static int printed_version;
	if (!printed_version++)
		printk(version);
#endif

	card_idx++;

	if (pci_enable_device (pdev))
		return -EIO;

	ioaddr = pci_resource_start(pdev, 0);
	io_size = pci_resource_len(pdev, 0);
	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
		printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
		return -ENODEV;
	}

	dev = alloc_etherdev(sizeof(*np));
	if (!dev) {
		printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
		return -ENOMEM;
	}
	SET_MODULE_OWNER(dev);
	SET_NETDEV_DEV(dev, &pdev->dev);

	irq = pdev->irq;

	if (pci_request_regions (pdev, DRV_NAME)) {
		printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
		goto err_out_free_netdev;
	}

	/* ioremap is borken in Linux-2.2.x/sparc64 */
	base = ioremap(ioaddr, io_size);
	if (!base) {
		printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
			card_idx, io_size, ioaddr);
		goto err_out_free_res;
	}

	pci_set_master(pdev);

	/* enable MWI -- it vastly improves Rx performance on sparc64 */
	pci_set_mwi(pdev);

#ifdef ZEROCOPY
	/* Starfire can do TCP/UDP checksumming */
	if (enable_hw_cksum)
867
		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
L
Linus Torvalds 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
#endif /* ZEROCOPY */
#ifdef VLAN_SUPPORT
	dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
	dev->vlan_rx_register = netdev_vlan_rx_register;
	dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
	dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
#endif /* VLAN_RX_KILL_VID */
#ifdef ADDR_64BITS
	dev->features |= NETIF_F_HIGHDMA;
#endif /* ADDR_64BITS */

	/* Serial EEPROM reads are hidden by the hardware. */
	for (i = 0; i < 6; i++)
		dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);

#if ! defined(final_version) /* Dump the EEPROM contents during development. */
	if (debug > 4)
		for (i = 0; i < 0x20; i++)
			printk("%2.2x%s",
			       (unsigned int)readb(base + EEPROMCtrl + i),
			       i % 16 != 15 ? " " : "\n");
#endif

	/* Issue soft reset */
	writel(MiiSoftReset, base + TxMode);
	udelay(1000);
	writel(0, base + TxMode);

	/* Reset the chip to erase previous misconfiguration. */
	writel(1, base + PCIDeviceConfig);
	boguscnt = 1000;
	while (--boguscnt > 0) {
		udelay(10);
		if ((readl(base + PCIDeviceConfig) & 1) == 0)
			break;
	}
	if (boguscnt == 0)
		printk("%s: chipset reset never completed!\n", dev->name);
	/* wait a little longer */
	udelay(1000);

	dev->base_addr = (unsigned long)base;
	dev->irq = irq;

	np = netdev_priv(dev);
	np->base = base;
	spin_lock_init(&np->lock);
	pci_set_drvdata(pdev, dev);

	np->pci_dev = pdev;

	np->mii_if.dev = dev;
	np->mii_if.mdio_read = mdio_read;
	np->mii_if.mdio_write = mdio_write;
	np->mii_if.phy_id_mask = 0x1f;
	np->mii_if.reg_num_mask = 0x1f;

	drv_flags = netdrv_tbl[chip_idx].drv_flags;

	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
	if (dev->mem_start)
		option = dev->mem_start;

	/* The lower four bits are the media type. */
	if (option & 0x200)
		np->mii_if.full_duplex = 1;

	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
		np->mii_if.full_duplex = 1;

	if (np->mii_if.full_duplex)
		np->mii_if.force_media = 1;
	else
		np->mii_if.force_media = 0;
	np->speed100 = 1;

	/* timer resolution is 128 * 0.8us */
	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
		Timer10X | EnableIntrMasking;

	if (small_frames > 0) {
		np->intr_timer_ctrl |= SmallFrameBypass;
		switch (small_frames) {
		case 1 ... 64:
			np->intr_timer_ctrl |= SmallFrame64;
			break;
		case 65 ... 128:
			np->intr_timer_ctrl |= SmallFrame128;
			break;
		case 129 ... 256:
			np->intr_timer_ctrl |= SmallFrame256;
			break;
		default:
			np->intr_timer_ctrl |= SmallFrame512;
			if (small_frames > 512)
				printk("Adjusting small_frames down to 512\n");
			break;
		}
	}

	/* The chip-specific entries in the device structure. */
	dev->open = &netdev_open;
	dev->hard_start_xmit = &start_tx;
971 972
	dev->tx_timeout = tx_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
L
Linus Torvalds 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	init_poll(dev);
	dev->stop = &netdev_close;
	dev->get_stats = &get_stats;
	dev->set_multicast_list = &set_rx_mode;
	dev->do_ioctl = &netdev_ioctl;
	SET_ETHTOOL_OPS(dev, &ethtool_ops);

	if (mtu)
		dev->mtu = mtu;

	if (register_netdev(dev))
		goto err_out_cleardev;

	printk(KERN_INFO "%s: %s at %p, ",
		   dev->name, netdrv_tbl[chip_idx].name, base);
	for (i = 0; i < 5; i++)
		printk("%2.2x:", dev->dev_addr[i]);
	printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);

	if (drv_flags & CanHaveMII) {
		int phy, phy_idx = 0;
		int mii_status;
		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
			mdelay(100);
			boguscnt = 1000;
			while (--boguscnt > 0)
				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
					break;
			if (boguscnt == 0) {
1003
				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
L
Linus Torvalds 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
				continue;
			}
			mii_status = mdio_read(dev, phy, MII_BMSR);
			if (mii_status != 0) {
				np->phys[phy_idx++] = phy;
				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
				printk(KERN_INFO "%s: MII PHY found at address %d, status "
					   "%#4.4x advertising %#4.4x.\n",
					   dev->name, phy, mii_status, np->mii_if.advertising);
				/* there can be only one PHY on-board */
				break;
			}
		}
		np->phy_cnt = phy_idx;
		if (np->phy_cnt > 0)
			np->mii_if.phy_id = np->phys[0];
		else
			memset(&np->mii_if, 0, sizeof(np->mii_if));
	}

	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
	return 0;

err_out_cleardev:
	pci_set_drvdata(pdev, NULL);
	iounmap(base);
err_out_free_res:
	pci_release_regions (pdev);
err_out_free_netdev:
	free_netdev(dev);
	return -ENODEV;
}


/* Read the MII Management Data I/O (MDIO) interfaces. */
static int mdio_read(struct net_device *dev, int phy_id, int location)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
	int result, boguscnt=1000;
	/* ??? Should we add a busy-wait here? */
	do
		result = readl(mdio_addr);
	while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
	if (boguscnt == 0)
		return 0;
	if ((result & 0xffff) == 0xffff)
		return 0;
	return result & 0xffff;
}


static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
	writel(value, mdio_addr);
	/* The busy-wait will occur before a read. */
}


static int netdev_open(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	int i, retval;
	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;

	/* Do we ever need to reset the chip??? */
1074

L
Linus Torvalds 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	retval = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev);
	if (retval)
		return retval;

	/* Disable the Rx and Tx, and reset the chip. */
	writel(0, ioaddr + GenCtrl);
	writel(1, ioaddr + PCIDeviceConfig);
	if (debug > 1)
		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
		       dev->name, dev->irq);

	/* Allocate the various queues. */
	if (np->queue_mem == 0) {
		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
		np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
		if (np->queue_mem == 0)
			return -ENOMEM;

		np->tx_done_q     = np->queue_mem;
		np->tx_done_q_dma = np->queue_mem_dma;
		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
	}

	/* Start with no carrier, it gets adjusted later */
	netif_carrier_off(dev);
	init_ring(dev);
	/* Set the size of the Rx buffers. */
	writel((np->rx_buf_sz << RxBufferLenShift) |
	       (0 << RxMinDescrThreshShift) |
	       RxPrefetchMode | RxVariableQ |
	       RX_Q_ENTRIES |
	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
	       RxDescSpace4,
	       ioaddr + RxDescQCtrl);

	/* Set up the Rx DMA controller. */
	writel(RxChecksumIgnore |
	       (0 << RxEarlyIntThreshShift) |
	       (6 << RxHighPrioThreshShift) |
	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
	       ioaddr + RxDMACtrl);

	/* Set Tx descriptor */
	writel((2 << TxHiPriFIFOThreshShift) |
	       (0 << TxPadLenShift) |
	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
	       TX_DESC_Q_ADDR_SIZE |
	       TX_DESC_SPACING | TX_DESC_TYPE,
	       ioaddr + TxDescCtrl);

	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
	writel(np->tx_ring_dma, ioaddr + TxRingPtr);

	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
	writel(np->rx_done_q_dma |
	       RxComplType |
	       (0 << RxComplThreshShift),
	       ioaddr + RxCompletionAddr);

	if (debug > 1)
		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);

	/* Fill both the Tx SA register and the Rx perfect filter. */
	for (i = 0; i < 6; i++)
		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
	/* The first entry is special because it bypasses the VLAN filter.
	   Don't use it. */
	writew(0, ioaddr + PerfFilterTable);
	writew(0, ioaddr + PerfFilterTable + 4);
	writew(0, ioaddr + PerfFilterTable + 8);
	for (i = 1; i < 16; i++) {
		u16 *eaddrs = (u16 *)dev->dev_addr;
		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
		writew(cpu_to_be16(eaddrs[2]), setup_frm); setup_frm += 4;
		writew(cpu_to_be16(eaddrs[1]), setup_frm); setup_frm += 4;
		writew(cpu_to_be16(eaddrs[0]), setup_frm); setup_frm += 8;
	}

	/* Initialize other registers. */
	/* Configure the PCI bus bursts and FIFO thresholds. */
	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
	udelay(1000);
	writel(np->tx_mode, ioaddr + TxMode);
	np->tx_threshold = 4;
	writel(np->tx_threshold, ioaddr + TxThreshold);

	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);

	netif_start_queue(dev);

	if (debug > 1)
		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
	set_rx_mode(dev);

	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
	check_duplex(dev);

	/* Enable GPIO interrupts on link change */
	writel(0x0f00ff00, ioaddr + GPIOCtrl);

	/* Set the interrupt mask */
	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
	       ioaddr + IntrEnable);
	/* Enable PCI interrupts. */
	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
	       ioaddr + PCIDeviceConfig);

#ifdef VLAN_SUPPORT
	/* Set VLAN type to 802.1q */
	writel(ETH_P_8021Q, ioaddr + VlanType);
#endif /* VLAN_SUPPORT */

	/* Load Rx/Tx firmware into the frame processors */
	for (i = 0; i < FIRMWARE_RX_SIZE * 2; i++)
		writel(firmware_rx[i], ioaddr + RxGfpMem + i * 4);
	for (i = 0; i < FIRMWARE_TX_SIZE * 2; i++)
		writel(firmware_tx[i], ioaddr + TxGfpMem + i * 4);
	if (enable_hw_cksum)
		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
	else
		/* Enable the Rx and Tx units only. */
		writel(TxEnable|RxEnable, ioaddr + GenCtrl);

	if (debug > 1)
		printk(KERN_DEBUG "%s: Done netdev_open().\n",
		       dev->name);

	return 0;
}


static void check_duplex(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	u16 reg0;
	int silly_count = 1000;

	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
	udelay(500);
	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
		/* do nothing */;
	if (!silly_count) {
		printk("%s: MII reset failed!\n", dev->name);
		return;
	}

	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);

	if (!np->mii_if.force_media) {
		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
	} else {
		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
		if (np->speed100)
			reg0 |= BMCR_SPEED100;
		if (np->mii_if.full_duplex)
			reg0 |= BMCR_FULLDPLX;
		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
		       dev->name,
		       np->speed100 ? "100" : "10",
		       np->mii_if.full_duplex ? "full" : "half");
	}
	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
}


static void tx_timeout(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	int old_debug;

	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));

	/* Perhaps we should reinitialize the hardware here. */

	/*
	 * Stop and restart the interface.
	 * Cheat and increase the debug level temporarily.
	 */
	old_debug = debug;
	debug = 2;
	netdev_close(dev);
	netdev_open(dev);
	debug = old_debug;

	/* Trigger an immediate transmit demand. */

	dev->trans_start = jiffies;
	np->stats.tx_errors++;
	netif_wake_queue(dev);
}


/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void init_ring(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int i;

	np->cur_rx = np->cur_tx = np->reap_tx = 0;
	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;

	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);

	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
		np->rx_info[i].skb = skb;
		if (skb == NULL)
			break;
1303
		np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
L
Linus Torvalds 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
		skb->dev = dev;			/* Mark as being used by this device. */
		/* Grrr, we cannot offset to correctly align the IP header. */
		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
	}
	writew(i - 1, np->base + RxDescQIdx);
	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);

	/* Clear the remainder of the Rx buffer ring. */
	for (  ; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].rxaddr = 0;
		np->rx_info[i].skb = NULL;
		np->rx_info[i].mapping = 0;
	}
	/* Mark the last entry as wrapping the ring. */
	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);

	/* Clear the completion rings. */
	for (i = 0; i < DONE_Q_SIZE; i++) {
		np->rx_done_q[i].status = 0;
		np->tx_done_q[i].status = 0;
	}

	for (i = 0; i < TX_RING_SIZE; i++)
		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));

	return;
}


static int start_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	unsigned int entry;
	u32 status;
	int i;

	/*
	 * be cautious here, wrapping the queue has weird semantics
	 * and we may not have enough slots even when it seems we do.
	 */
	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
		netif_stop_queue(dev);
		return 1;
	}

#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1350 1351 1352 1353
	if (skb->ip_summed == CHECKSUM_HW) {
		skb = skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK);
		if (skb == NULL)
			return NETDEV_TX_OK;
L
Linus Torvalds 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	}
#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */

	entry = np->cur_tx % TX_RING_SIZE;
	for (i = 0; i < skb_num_frags(skb); i++) {
		int wrap_ring = 0;
		status = TxDescID;

		if (i == 0) {
			np->tx_info[entry].skb = skb;
			status |= TxCRCEn;
			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
				status |= TxRingWrap;
				wrap_ring = 1;
			}
			if (np->reap_tx) {
				status |= TxDescIntr;
				np->reap_tx = 0;
			}
			if (skb->ip_summed == CHECKSUM_HW) {
				status |= TxCalTCP;
				np->stats.tx_compressed++;
			}
			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);

			np->tx_info[entry].mapping =
				pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
		} else {
			skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
			status |= this_frag->size;
			np->tx_info[entry].mapping =
				pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
		}

		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
		np->tx_ring[entry].status = cpu_to_le32(status);
		if (debug > 3)
			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
			       dev->name, np->cur_tx, np->dirty_tx,
			       entry, status);
		if (wrap_ring) {
			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
			np->cur_tx += np->tx_info[entry].used_slots;
			entry = 0;
		} else {
			np->tx_info[entry].used_slots = 1;
			np->cur_tx += np->tx_info[entry].used_slots;
			entry++;
		}
		/* scavenge the tx descriptors twice per TX_RING_SIZE */
		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
			np->reap_tx = 1;
	}

	/* Non-x86: explicitly flush descriptor cache lines here. */
	/* Ensure all descriptors are written back before the transmit is
	   initiated. - Jes */
	wmb();

	/* Update the producer index. */
	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);

	/* 4 is arbitrary, but should be ok */
	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
		netif_stop_queue(dev);

	dev->trans_start = jiffies;

	return 0;
}


/* The interrupt handler does all of the Rx thread work and cleans up
   after the Tx thread. */
static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
{
	struct net_device *dev = dev_instance;
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	int boguscnt = max_interrupt_work;
	int consumer;
	int tx_status;
	int handled = 0;

	do {
		u32 intr_status = readl(ioaddr + IntrClear);

		if (debug > 4)
			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
			       dev->name, intr_status);

		if (intr_status == 0 || intr_status == (u32) -1)
			break;

		handled = 1;

		if (intr_status & (IntrRxDone | IntrRxEmpty))
			netdev_rx(dev, ioaddr);

		/* Scavenge the skbuff list based on the Tx-done queue.
		   There are redundant checks here that may be cleaned up
		   after the driver has proven to be reliable. */
		consumer = readl(ioaddr + TxConsumerIdx);
		if (debug > 3)
			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
			       dev->name, consumer);

		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
			if (debug > 3)
				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
				       dev->name, np->dirty_tx, np->tx_done, tx_status);
			if ((tx_status & 0xe0000000) == 0xa0000000) {
				np->stats.tx_packets++;
			} else if ((tx_status & 0xe0000000) == 0x80000000) {
				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
				struct sk_buff *skb = np->tx_info[entry].skb;
				np->tx_info[entry].skb = NULL;
				pci_unmap_single(np->pci_dev,
						 np->tx_info[entry].mapping,
						 skb_first_frag_len(skb),
						 PCI_DMA_TODEVICE);
				np->tx_info[entry].mapping = 0;
				np->dirty_tx += np->tx_info[entry].used_slots;
				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
				{
					int i;
					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
						pci_unmap_single(np->pci_dev,
								 np->tx_info[entry].mapping,
								 skb_shinfo(skb)->frags[i].size,
								 PCI_DMA_TODEVICE);
						np->dirty_tx++;
						entry++;
					}
				}
1489

L
Linus Torvalds 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
				dev_kfree_skb_irq(skb);
			}
			np->tx_done_q[np->tx_done].status = 0;
			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
		}
		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);

		if (netif_queue_stopped(dev) &&
		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
			/* The ring is no longer full, wake the queue. */
			netif_wake_queue(dev);
		}

		/* Stats overflow */
		if (intr_status & IntrStatsMax)
			get_stats(dev);

		/* Media change interrupt. */
		if (intr_status & IntrLinkChange)
			netdev_media_change(dev);

		/* Abnormal error summary/uncommon events handlers. */
		if (intr_status & IntrAbnormalSummary)
			netdev_error(dev, intr_status);

		if (--boguscnt < 0) {
			if (debug > 1)
				printk(KERN_WARNING "%s: Too much work at interrupt, "
				       "status=%#8.8x.\n",
				       dev->name, intr_status);
			break;
		}
	} while (1);

	if (debug > 4)
		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
		       dev->name, (int) readl(ioaddr + IntrStatus));
	return IRQ_RETVAL(handled);
}


/* This routine is logically part of the interrupt/poll handler, but separated
   for clarity, code sharing between NAPI/non-NAPI, and better register allocation. */
static int __netdev_rx(struct net_device *dev, int *quota)
{
	struct netdev_private *np = netdev_priv(dev);
	u32 desc_status;
	int retcode = 0;

	/* If EOP is set on the next entry, it's a new packet. Send it up. */
	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
		struct sk_buff *skb;
		u16 pkt_len;
		int entry;
		rx_done_desc *desc = &np->rx_done_q[np->rx_done];

		if (debug > 4)
			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
		if (!(desc_status & RxOK)) {
1549
			/* There was an error. */
L
Linus Torvalds 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
			if (debug > 2)
				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
			np->stats.rx_errors++;
			if (desc_status & RxFIFOErr)
				np->stats.rx_fifo_errors++;
			goto next_rx;
		}

		if (*quota <= 0) {	/* out of rx quota */
			retcode = 1;
			goto out;
		}
		(*quota)--;

		pkt_len = desc_status;	/* Implicitly Truncate */
		entry = (desc_status >> 16) & 0x7ff;

		if (debug > 4)
			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
		/* Check if the packet is long enough to accept without copying
		   to a minimally-sized skbuff. */
		if (pkt_len < rx_copybreak
		    && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
			skb->dev = dev;
			skb_reserve(skb, 2);	/* 16 byte align the IP header */
			pci_dma_sync_single_for_cpu(np->pci_dev,
						    np->rx_info[entry].mapping,
						    pkt_len, PCI_DMA_FROMDEVICE);
1578
			eth_copy_and_sum(skb, np->rx_info[entry].skb->data, pkt_len, 0);
L
Linus Torvalds 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
			pci_dma_sync_single_for_device(np->pci_dev,
						       np->rx_info[entry].mapping,
						       pkt_len, PCI_DMA_FROMDEVICE);
			skb_put(skb, pkt_len);
		} else {
			pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
			skb = np->rx_info[entry].skb;
			skb_put(skb, pkt_len);
			np->rx_info[entry].skb = NULL;
			np->rx_info[entry].mapping = 0;
		}
#ifndef final_version			/* Remove after testing. */
		/* You will want this info for the initial debug. */
		if (debug > 5)
			printk(KERN_DEBUG "  Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:"
			       "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x.\n",
			       skb->data[0], skb->data[1], skb->data[2], skb->data[3],
			       skb->data[4], skb->data[5], skb->data[6], skb->data[7],
			       skb->data[8], skb->data[9], skb->data[10],
			       skb->data[11], skb->data[12], skb->data[13]);
#endif

		skb->protocol = eth_type_trans(skb, dev);
1602
#ifdef VLAN_SUPPORT
L
Linus Torvalds 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		if (debug > 4)
			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
#endif
		if (le16_to_cpu(desc->status2) & 0x0100) {
			skb->ip_summed = CHECKSUM_UNNECESSARY;
			np->stats.rx_compressed++;
		}
		/*
		 * This feature doesn't seem to be working, at least
		 * with the two firmware versions I have. If the GFP sees
		 * an IP fragment, it either ignores it completely, or reports
		 * "bad checksum" on it.
		 *
		 * Maybe I missed something -- corrections are welcome.
		 * Until then, the printk stays. :-) -Ion
		 */
		else if (le16_to_cpu(desc->status2) & 0x0040) {
			skb->ip_summed = CHECKSUM_HW;
			skb->csum = le16_to_cpu(desc->csum);
			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
		}
#ifdef VLAN_SUPPORT
		if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
			if (debug > 4)
				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n", le16_to_cpu(desc->vlanid));
			/* vlan_netdev_receive_skb() expects a packet with the VLAN tag stripped out */
			vlan_netdev_receive_skb(skb, np->vlgrp, le16_to_cpu(desc->vlanid) & VLAN_VID_MASK);
		} else
#endif /* VLAN_SUPPORT */
			netdev_receive_skb(skb);
		dev->last_rx = jiffies;
		np->stats.rx_packets++;

	next_rx:
		np->cur_rx++;
		desc->status = 0;
		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
	}
	writew(np->rx_done, np->base + CompletionQConsumerIdx);

 out:
	refill_rx_ring(dev);
	if (debug > 5)
		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
		       retcode, np->rx_done, desc_status);
	return retcode;
}


#ifdef HAVE_NETDEV_POLL
static int netdev_poll(struct net_device *dev, int *budget)
{
	u32 intr_status;
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	int retcode = 0, quota = dev->quota;

	do {
		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);

		retcode = __netdev_rx(dev, &quota);
		*budget -= (dev->quota - quota);
		dev->quota = quota;
		if (retcode)
			goto out;

		intr_status = readl(ioaddr + IntrStatus);
	} while (intr_status & (IntrRxDone | IntrRxEmpty));

	netif_rx_complete(dev);
	intr_status = readl(ioaddr + IntrEnable);
	intr_status |= IntrRxDone | IntrRxEmpty;
	writel(intr_status, ioaddr + IntrEnable);

 out:
	if (debug > 5)
		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n", retcode);

	/* Restart Rx engine if stopped. */
	return retcode;
}
#endif /* HAVE_NETDEV_POLL */


static void refill_rx_ring(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	struct sk_buff *skb;
	int entry = -1;

	/* Refill the Rx ring buffers. */
	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
		entry = np->dirty_rx % RX_RING_SIZE;
		if (np->rx_info[entry].skb == NULL) {
			skb = dev_alloc_skb(np->rx_buf_sz);
			np->rx_info[entry].skb = skb;
			if (skb == NULL)
				break;	/* Better luck next round. */
			np->rx_info[entry].mapping =
1702
				pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
L
Linus Torvalds 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
			skb->dev = dev;	/* Mark as being used by this device. */
			np->rx_ring[entry].rxaddr =
				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
		}
		if (entry == RX_RING_SIZE - 1)
			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
	}
	if (entry >= 0)
		writew(entry, np->base + RxDescQIdx);
}


static void netdev_media_change(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	u16 reg0, reg1, reg4, reg5;
	u32 new_tx_mode;
	u32 new_intr_timer_ctrl;

	/* reset status first */
	mdio_read(dev, np->phys[0], MII_BMCR);
	mdio_read(dev, np->phys[0], MII_BMSR);

	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);

	if (reg1 & BMSR_LSTATUS) {
		/* link is up */
		if (reg0 & BMCR_ANENABLE) {
			/* autonegotiation is enabled */
			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
				np->speed100 = 1;
				np->mii_if.full_duplex = 1;
			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
				np->speed100 = 1;
				np->mii_if.full_duplex = 0;
			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
				np->speed100 = 0;
				np->mii_if.full_duplex = 1;
			} else {
				np->speed100 = 0;
				np->mii_if.full_duplex = 0;
			}
		} else {
			/* autonegotiation is disabled */
			if (reg0 & BMCR_SPEED100)
				np->speed100 = 1;
			else
				np->speed100 = 0;
			if (reg0 & BMCR_FULLDPLX)
				np->mii_if.full_duplex = 1;
			else
				np->mii_if.full_duplex = 0;
		}
		netif_carrier_on(dev);
		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
		       dev->name,
		       np->speed100 ? "100" : "10",
		       np->mii_if.full_duplex ? "full" : "half");

		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
		if (np->mii_if.full_duplex)
			new_tx_mode |= FullDuplex;
		if (np->tx_mode != new_tx_mode) {
			np->tx_mode = new_tx_mode;
			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
			udelay(1000);
			writel(np->tx_mode, ioaddr + TxMode);
		}

		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
		if (np->speed100)
			new_intr_timer_ctrl |= Timer10X;
		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
			np->intr_timer_ctrl = new_intr_timer_ctrl;
			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
		}
	} else {
		netif_carrier_off(dev);
		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
	}
}


static void netdev_error(struct net_device *dev, int intr_status)
{
	struct netdev_private *np = netdev_priv(dev);

	/* Came close to underrunning the Tx FIFO, increase threshold. */
	if (intr_status & IntrTxDataLow) {
		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
			writel(++np->tx_threshold, np->base + TxThreshold);
			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
			       dev->name, np->tx_threshold * 16);
		} else
			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
	}
	if (intr_status & IntrRxGFPDead) {
		np->stats.rx_fifo_errors++;
		np->stats.rx_errors++;
	}
	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
		np->stats.tx_fifo_errors++;
		np->stats.tx_errors++;
	}
	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
		       dev->name, intr_status);
}


static struct net_device_stats *get_stats(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;

	/* This adapter architecture needs no SMP locks. */
	np->stats.tx_bytes = readl(ioaddr + 0x57010);
	np->stats.rx_bytes = readl(ioaddr + 0x57044);
	np->stats.tx_packets = readl(ioaddr + 0x57000);
	np->stats.tx_aborted_errors =
		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
	np->stats.tx_window_errors = readl(ioaddr + 0x57018);
	np->stats.collisions =
		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);

	/* The chip only need report frame silently dropped. */
	np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
	writew(0, ioaddr + RxDMAStatus);
	np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
	np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
	np->stats.rx_length_errors = readl(ioaddr + 0x57058);
	np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);

	return &np->stats;
}


static void set_rx_mode(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	u32 rx_mode = MinVLANPrio;
	struct dev_mc_list *mclist;
	int i;
#ifdef VLAN_SUPPORT

	rx_mode |= VlanMode;
	if (np->vlgrp) {
		int vlan_count = 0;
		void __iomem *filter_addr = ioaddr + HashTable + 8;
		for (i = 0; i < VLAN_VID_MASK; i++) {
			if (np->vlgrp->vlan_devices[i]) {
				if (vlan_count >= 32)
					break;
				writew(cpu_to_be16(i), filter_addr);
				filter_addr += 16;
				vlan_count++;
			}
		}
		if (i == VLAN_VID_MASK) {
			rx_mode |= PerfectFilterVlan;
			while (vlan_count < 32) {
				writew(0, filter_addr);
				filter_addr += 16;
				vlan_count++;
			}
		}
	}
#endif /* VLAN_SUPPORT */

	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
		rx_mode |= AcceptAll;
	} else if ((dev->mc_count > multicast_filter_limit)
		   || (dev->flags & IFF_ALLMULTI)) {
		/* Too many to match, or accept all multicasts. */
		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
	} else if (dev->mc_count <= 14) {
		/* Use the 16 element perfect filter, skip first two entries. */
		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
		u16 *eaddrs;
		for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
		     i++, mclist = mclist->next) {
			eaddrs = (u16 *)mclist->dmi_addr;
			writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 4;
			writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
			writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 8;
		}
		eaddrs = (u16 *)dev->dev_addr;
		while (i++ < 16) {
			writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
			writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
			writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
		}
		rx_mode |= AcceptBroadcast|PerfectFilter;
	} else {
		/* Must use a multicast hash table. */
		void __iomem *filter_addr;
		u16 *eaddrs;
		u16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */

		memset(mc_filter, 0, sizeof(mc_filter));
		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
		     i++, mclist = mclist->next) {
1910 1911
			/* The chip uses the upper 9 CRC bits
			   as index into the hash table */
L
Linus Torvalds 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
			int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
			__u32 *fptr = (__u32 *) &mc_filter[(bit_nr >> 4) & ~1];

			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
		}
		/* Clear the perfect filter list, skip first two entries. */
		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
		eaddrs = (u16 *)dev->dev_addr;
		for (i = 2; i < 16; i++) {
			writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
			writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
			writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
		}
		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
			writew(mc_filter[i], filter_addr);
		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
	}
	writel(rx_mode, ioaddr + RxFilterMode);
}

static int check_if_running(struct net_device *dev)
{
	if (!netif_running(dev))
		return -EINVAL;
	return 0;
}

static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct netdev_private *np = netdev_priv(dev);
	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
1944
	strcpy(info->bus_info, pci_name(np->pci_dev));
L
Linus Torvalds 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
}

static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct netdev_private *np = netdev_priv(dev);
	spin_lock_irq(&np->lock);
	mii_ethtool_gset(&np->mii_if, ecmd);
	spin_unlock_irq(&np->lock);
	return 0;
}

static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct netdev_private *np = netdev_priv(dev);
	int res;
	spin_lock_irq(&np->lock);
	res = mii_ethtool_sset(&np->mii_if, ecmd);
	spin_unlock_irq(&np->lock);
	check_duplex(dev);
	return res;
}

static int nway_reset(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	return mii_nway_restart(&np->mii_if);
}

static u32 get_link(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	return mii_link_ok(&np->mii_if);
}

static u32 get_msglevel(struct net_device *dev)
{
	return debug;
}

static void set_msglevel(struct net_device *dev, u32 val)
{
	debug = val;
}

static struct ethtool_ops ethtool_ops = {
	.begin = check_if_running,
	.get_drvinfo = get_drvinfo,
	.get_settings = get_settings,
	.set_settings = set_settings,
	.nway_reset = nway_reset,
	.get_link = get_link,
	.get_msglevel = get_msglevel,
	.set_msglevel = set_msglevel,
};

static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct netdev_private *np = netdev_priv(dev);
	struct mii_ioctl_data *data = if_mii(rq);
	int rc;

	if (!netif_running(dev))
		return -EINVAL;

	spin_lock_irq(&np->lock);
	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
	spin_unlock_irq(&np->lock);

	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
		check_duplex(dev);

	return rc;
}

static int netdev_close(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	int i;

	netif_stop_queue(dev);

	if (debug > 1) {
		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
			   dev->name, (int) readl(ioaddr + IntrStatus));
		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
		       dev->name, np->cur_tx, np->dirty_tx,
		       np->cur_rx, np->dirty_rx);
	}

	/* Disable interrupts by clearing the interrupt mask. */
	writel(0, ioaddr + IntrEnable);

	/* Stop the chip's Tx and Rx processes. */
	writel(0, ioaddr + GenCtrl);
	readl(ioaddr + GenCtrl);

	if (debug > 5) {
		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
		       (long long) np->tx_ring_dma);
		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
			       i, le32_to_cpu(np->tx_ring[i].status),
			       (long long) dma_to_cpu(np->tx_ring[i].addr),
			       le32_to_cpu(np->tx_done_q[i].status));
		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
		       (long long) np->rx_ring_dma, np->rx_done_q);
		if (np->rx_done_q)
			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
		}
	}

	free_irq(dev->irq, dev);

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
		if (np->rx_info[i].skb != NULL) {
			pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
			dev_kfree_skb(np->rx_info[i].skb);
		}
		np->rx_info[i].skb = NULL;
		np->rx_info[i].mapping = 0;
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		struct sk_buff *skb = np->tx_info[i].skb;
		if (skb == NULL)
			continue;
		pci_unmap_single(np->pci_dev,
				 np->tx_info[i].mapping,
				 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
		np->tx_info[i].mapping = 0;
		dev_kfree_skb(skb);
		np->tx_info[i].skb = NULL;
	}

	return 0;
}


static void __devexit starfire_remove_one (struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct netdev_private *np = netdev_priv(dev);

	if (!dev)
		BUG();

	unregister_netdev(dev);

	if (np->queue_mem)
		pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);


	/* XXX: add wakeup code -- requires firmware for MagicPacket */
	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
	pci_disable_device(pdev);

	iounmap(np->base);
	pci_release_regions(pdev);

	pci_set_drvdata(pdev, NULL);
	free_netdev(dev);			/* Will also free np!! */
}


static struct pci_driver starfire_driver = {
	.name		= DRV_NAME,
	.probe		= starfire_init_one,
	.remove		= __devexit_p(starfire_remove_one),
	.id_table	= starfire_pci_tbl,
};


static int __init starfire_init (void)
{
/* when a module, this is printed whether or not devices are found in probe */
#ifdef MODULE
	printk(version);
2126 2127 2128 2129
#ifdef HAVE_NETDEV_POLL
	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
#else
	printk(KERN_INFO DRV_NAME ": polling (NAPI) disabled\n");
L
Linus Torvalds 已提交
2130
#endif
2131 2132
#endif

L
Linus Torvalds 已提交
2133
	/* we can do this test only at run-time... sigh */
2134 2135
	if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
		printk("This driver has dma_addr_t issues, please send email to maintainer\n");
L
Linus Torvalds 已提交
2136 2137
		return -ENODEV;
	}
2138

L
Linus Torvalds 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	return pci_module_init (&starfire_driver);
}


static void __exit starfire_cleanup (void)
{
	pci_unregister_driver (&starfire_driver);
}


module_init(starfire_init);
module_exit(starfire_cleanup);


/*
 * Local variables:
 *  c-basic-offset: 8
 *  tab-width: 8
 * End:
 */