mmu.c 123.7 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
A
Avi Kivity 已提交
44

45 46 47 48 49 50 51
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
52
bool tdp_enabled = false;
53

54 55 56 57
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
58 59 60
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
61
};
62

63
#undef MMU_DEBUG
64 65

#ifdef MMU_DEBUG
66 67
static bool dbg = 0;
module_param(dbg, bool, 0644);
68 69 70

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71
#define MMU_WARN_ON(x) WARN_ON(x)
72 73 74
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
75
#define MMU_WARN_ON(x) do { } while (0)
76
#endif
A
Avi Kivity 已提交
77

78 79
#define PTE_PREFETCH_NUM		8

80
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
81 82 83 84 85
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
86
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
87 88 89 90 91 92 93 94

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
95
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
96

97 98 99
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
100 101 102 103 104

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


105
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
106 107
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 109 110 111 112 113
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
114 115 116 117

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 119 120
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
121

122 123
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
124

125 126 127 128 129
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

130 131
#include <trace/events/kvm.h>

132 133 134
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

135 136
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137

138 139
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

140 141 142
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

143 144 145
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
146 147
};

148 149 150 151
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
152
	int level;
153 154 155 156 157 158 159 160
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

161 162 163 164 165 166
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

167
static struct kmem_cache *pte_list_desc_cache;
168
static struct kmem_cache *mmu_page_header_cache;
169
static struct percpu_counter kvm_total_used_mmu_pages;
170

S
Sheng Yang 已提交
171 172 173 174 175
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
176 177 178
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
179
static void mmu_free_roots(struct kvm_vcpu *vcpu);
180 181 182 183 184 185 186

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

187
/*
188 189 190 191 192 193 194
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
195
 */
196
#define MMIO_SPTE_GEN_LOW_SHIFT		2
197 198
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

199 200 201
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
202
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
203 204 205 206 207

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
208
	WARN_ON(gen & ~MMIO_GEN_MASK);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

226
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
227
{
228
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
229 230
}

231
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
232
			   unsigned access)
233
{
234
	unsigned int gen = kvm_current_mmio_generation(vcpu);
235
	u64 mask = generation_mmio_spte_mask(gen);
236

237
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 239
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

240
	trace_mark_mmio_spte(sptep, gfn, access, gen);
241
	mmu_spte_set(sptep, mask);
242 243 244 245 246 247 248 249 250
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
251
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252
	return (spte & ~mask) >> PAGE_SHIFT;
253 254 255 256
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
257
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258
	return (spte & ~mask) & ~PAGE_MASK;
259 260
}

261
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262
			  pfn_t pfn, unsigned access)
263 264
{
	if (unlikely(is_noslot_pfn(pfn))) {
265
		mark_mmio_spte(vcpu, sptep, gfn, access);
266 267 268 269 270
		return true;
	}

	return false;
}
271

272
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273
{
274 275
	unsigned int kvm_gen, spte_gen;

276
	kvm_gen = kvm_current_mmio_generation(vcpu);
277 278 279 280
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
281 282
}

S
Sheng Yang 已提交
283
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
285 286 287 288 289 290 291 292 293
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
294 295 296 297 298
static int is_cpuid_PSE36(void)
{
	return 1;
}

299 300
static int is_nx(struct kvm_vcpu *vcpu)
{
301
	return vcpu->arch.efer & EFER_NX;
302 303
}

304 305
static int is_shadow_present_pte(u64 pte)
{
306
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 308
}

M
Marcelo Tosatti 已提交
309 310 311 312 313
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

314
static int is_rmap_spte(u64 pte)
315
{
316
	return is_shadow_present_pte(pte);
317 318
}

319 320 321 322
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
323
	if (is_large_pte(pte))
324 325 326 327
		return 1;
	return 0;
}

328
static pfn_t spte_to_pfn(u64 pte)
329
{
330
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 332
}

333 334 335 336 337 338 339
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

340
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
341
static void __set_spte(u64 *sptep, u64 spte)
342
{
343
	*sptep = spte;
344 345
}

346
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347
{
348 349 350 351 352 353 354
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
355 356 357 358 359

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
360
#else
361 362 363 364 365 366 367
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
368

369 370 371 372 373 374 375 376 377 378 379 380
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

381 382 383
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
384

385 386 387 388 389 390 391 392 393 394 395 396 397
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
398 399
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
416
	count_spte_clear(sptep, spte);
417 418 419 420 421 422 423 424 425 426 427
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428 429
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
430
	count_spte_clear(sptep, spte);
431 432 433

	return orig.spte;
}
434 435 436 437

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
438 439 440 441 442 443 444 445 446 447 448 449 450 451
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
475 476
#endif

477 478
static bool spte_is_locklessly_modifiable(u64 spte)
{
479 480
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
481 482
}

483 484
static bool spte_has_volatile_bits(u64 spte)
{
485 486 487 488 489 490 491 492 493
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

494 495 496 497 498 499
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

500 501
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
502 503 504 505 506
		return false;

	return true;
}

507 508 509 510 511
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

512 513 514 515 516
static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) != (new_spte & bit_mask);
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
531 532 533 534 535 536
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
537
 */
538
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
539
{
540
	u64 old_spte = *sptep;
541
	bool ret = false;
542 543

	WARN_ON(!is_rmap_spte(new_spte));
544

545 546 547 548
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
549

550
	if (!spte_has_volatile_bits(old_spte))
551
		__update_clear_spte_fast(sptep, new_spte);
552
	else
553
		old_spte = __update_clear_spte_slow(sptep, new_spte);
554

555 556 557 558 559
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
560 561
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
562 563
		ret = true;

564
	if (!shadow_accessed_mask)
565
		return ret;
566

567 568 569 570 571 572 573 574
	/*
	 * Flush TLB when accessed/dirty bits are changed in the page tables,
	 * to guarantee consistency between TLB and page tables.
	 */
	if (spte_is_bit_changed(old_spte, new_spte,
                                shadow_accessed_mask | shadow_dirty_mask))
		ret = true;

575 576 577 578
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
579 580

	return ret;
581 582
}

583 584 585 586 587 588 589 590 591 592 593
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
594
		__update_clear_spte_fast(sptep, 0ull);
595
	else
596
		old_spte = __update_clear_spte_slow(sptep, 0ull);
597 598 599 600 601

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
602 603 604 605 606 607

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
608
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
609

610 611 612 613 614 615 616 617 618 619 620 621 622 623
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
624
	__update_clear_spte_fast(sptep, 0ull);
625 626
}

627 628 629 630 631 632 633
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
634 635 636 637 638 639 640 641 642 643 644
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
645 646 647 648
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
649 650 651 652 653 654 655 656
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
657 658
}

659
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
660
				  struct kmem_cache *base_cache, int min)
661 662 663 664
{
	void *obj;

	if (cache->nobjs >= min)
665
		return 0;
666
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
667
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
668
		if (!obj)
669
			return -ENOMEM;
670 671
		cache->objects[cache->nobjs++] = obj;
	}
672
	return 0;
673 674
}

675 676 677 678 679
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

680 681
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
682 683
{
	while (mc->nobjs)
684
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
685 686
}

A
Avi Kivity 已提交
687
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
688
				       int min)
A
Avi Kivity 已提交
689
{
690
	void *page;
A
Avi Kivity 已提交
691 692 693 694

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
695
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
696 697
		if (!page)
			return -ENOMEM;
698
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
699 700 701 702 703 704 705
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
706
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
707 708
}

709
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
710
{
711 712
	int r;

713
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
714
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
715 716
	if (r)
		goto out;
717
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
718 719
	if (r)
		goto out;
720
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
721
				   mmu_page_header_cache, 4);
722 723
out:
	return r;
724 725 726 727
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
728 729
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
730
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
731 732
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
733 734
}

735
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
736 737 738 739 740 741 742 743
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

744
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745
{
746
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 748
}

749
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750
{
751
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 753
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
770
/*
771 772
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
773
 */
774 775 776
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
777 778 779
{
	unsigned long idx;

780
	idx = gfn_to_index(gfn, slot->base_gfn, level);
781
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
782 783
}

784
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
785
{
786
	struct kvm_memslots *slots;
787
	struct kvm_memory_slot *slot;
788
	struct kvm_lpage_info *linfo;
789
	gfn_t gfn;
790
	int i;
M
Marcelo Tosatti 已提交
791

792
	gfn = sp->gfn;
793 794
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
795
	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
796 797
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
798
	}
799
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
800 801
}

802
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
803
{
804
	struct kvm_memslots *slots;
805
	struct kvm_memory_slot *slot;
806
	struct kvm_lpage_info *linfo;
807
	gfn_t gfn;
808
	int i;
M
Marcelo Tosatti 已提交
809

810
	gfn = sp->gfn;
811 812
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
813
	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
814 815 816
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
817
	}
818
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
819 820
}

821
static int has_wrprotected_page(struct kvm_vcpu *vcpu,
822 823
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
824
{
825
	struct kvm_memory_slot *slot;
826
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
827

828
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
M
Marcelo Tosatti 已提交
829
	if (slot) {
830 831
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
832 833 834 835 836
	}

	return 1;
}

837
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
838
{
J
Joerg Roedel 已提交
839
	unsigned long page_size;
840
	int i, ret = 0;
M
Marcelo Tosatti 已提交
841

J
Joerg Roedel 已提交
842
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
843

844
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
845 846 847 848 849 850
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

851
	return ret;
M
Marcelo Tosatti 已提交
852 853
}

854 855 856
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
857 858
{
	struct kvm_memory_slot *slot;
859

860
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
861 862 863 864 865 866 867 868 869
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
870
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
871 872 873 874 875
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
876

877 878 879 880 881
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
882
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
883 884

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
885
		if (has_wrprotected_page(vcpu, large_gfn, level))
886 887 888
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
889 890
}

891
/*
892
 * Pte mapping structures:
893
 *
894
 * If pte_list bit zero is zero, then pte_list point to the spte.
895
 *
896 897
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
898
 *
899
 * Returns the number of pte entries before the spte was added or zero if
900 901
 * the spte was not added.
 *
902
 */
903 904
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
905
{
906
	struct pte_list_desc *desc;
907
	int i, count = 0;
908

909 910 911 912 913 914 915
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
916
		desc->sptes[1] = spte;
917
		*pte_list = (unsigned long)desc | 1;
918
		++count;
919
	} else {
920 921 922
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
923
			desc = desc->more;
924
			count += PTE_LIST_EXT;
925
		}
926 927
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
928 929
			desc = desc->more;
		}
A
Avi Kivity 已提交
930
		for (i = 0; desc->sptes[i]; ++i)
931
			++count;
A
Avi Kivity 已提交
932
		desc->sptes[i] = spte;
933
	}
934
	return count;
935 936
}

937 938 939
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
940 941 942
{
	int j;

943
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
944
		;
A
Avi Kivity 已提交
945 946
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
947 948 949
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
950
		*pte_list = (unsigned long)desc->sptes[0];
951 952 953 954
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
955 956
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
957 958
}

959
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
960
{
961 962
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
963 964
	int i;

965 966
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
967
		BUG();
968 969 970 971
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
972 973
			BUG();
		}
974
		*pte_list = 0;
975
	} else {
976 977
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
978 979
		prev_desc = NULL;
		while (desc) {
980
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
981
				if (desc->sptes[i] == spte) {
982
					pte_list_desc_remove_entry(pte_list,
983
							       desc, i,
984 985 986 987 988 989
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
990
		pr_err("pte_list_remove: %p many->many\n", spte);
991 992 993 994
		BUG();
	}
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1015
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1016
				    struct kvm_memory_slot *slot)
1017
{
1018
	unsigned long idx;
1019

1020
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1021
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1022 1023
}

1024 1025 1026
/*
 * Take gfn and return the reverse mapping to it.
 */
1027
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
1028
{
1029
	struct kvm_memslots *slots;
1030 1031
	struct kvm_memory_slot *slot;

1032 1033
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1034
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1035 1036
}

1037 1038 1039 1040 1041 1042 1043 1044
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1045 1046 1047 1048 1049 1050 1051
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1052
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1064
	rmapp = gfn_to_rmap(kvm, gfn, sp);
1065 1066 1067
	pte_list_remove(spte, rmapp);
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1129 1130 1131 1132 1133
#define for_each_rmap_spte(_rmap_, _iter_, _spte_)			    \
	   for (_spte_ = rmap_get_first(*_rmap_, _iter_);		    \
		_spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;});  \
			_spte_ = rmap_get_next(_iter_))

1134
static void drop_spte(struct kvm *kvm, u64 *sptep)
1135
{
1136
	if (mmu_spte_clear_track_bits(sptep))
1137
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1138 1139
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1161
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1162
 * spte write-protection is caused by protecting shadow page table.
1163
 *
T
Tiejun Chen 已提交
1164
 * Note: write protection is difference between dirty logging and spte
1165 1166 1167 1168 1169
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1170
 *
1171
 * Return true if tlb need be flushed.
1172
 */
1173
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1174 1175 1176
{
	u64 spte = *sptep;

1177 1178
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1179 1180 1181 1182
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1183 1184
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1185
	spte = spte & ~PT_WRITABLE_MASK;
1186

1187
	return mmu_spte_update(sptep, spte);
1188 1189
}

1190
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1191
				 bool pt_protect)
1192
{
1193 1194
	u64 *sptep;
	struct rmap_iterator iter;
1195
	bool flush = false;
1196

1197
	for_each_rmap_spte(rmapp, &iter, sptep)
1198
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1199

1200
	return flush;
1201 1202
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1220
	for_each_rmap_spte(rmapp, &iter, sptep)
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		flush |= spte_clear_dirty(kvm, sptep);

	return flush;
}

static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1243
	for_each_rmap_spte(rmapp, &iter, sptep)
1244 1245 1246 1247 1248
		flush |= spte_set_dirty(kvm, sptep);

	return flush;
}

1249
/**
1250
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1251 1252 1253 1254 1255 1256 1257 1258
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1259
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1260 1261
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1262 1263 1264
{
	unsigned long *rmapp;

1265
	while (mask) {
1266 1267
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1268
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1269

1270 1271 1272
		/* clear the first set bit */
		mask &= mask - 1;
	}
1273 1274
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
/**
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
	unsigned long *rmapp;

	while (mask) {
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmapp);

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1315 1316 1317 1318 1319
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1320 1321
}

1322
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1323 1324
{
	struct kvm_memory_slot *slot;
1325 1326
	unsigned long *rmapp;
	int i;
1327
	bool write_protected = false;
1328

1329
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1330

1331
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1332
		rmapp = __gfn_to_rmap(gfn, i, slot);
1333
		write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
1334 1335 1336
	}

	return write_protected;
1337 1338
}

1339
static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1340
{
1341 1342
	u64 *sptep;
	struct rmap_iterator iter;
1343
	bool flush = false;
1344

1345 1346
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1347
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1348 1349

		drop_spte(kvm, sptep);
1350
		flush = true;
1351
	}
1352

1353 1354 1355 1356 1357 1358 1359 1360
	return flush;
}

static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
	return kvm_zap_rmapp(kvm, rmapp);
1361 1362
}

F
Frederik Deweerdt 已提交
1363
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1364 1365
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1366
{
1367 1368
	u64 *sptep;
	struct rmap_iterator iter;
1369
	int need_flush = 0;
1370
	u64 new_spte;
1371 1372 1373 1374 1375
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1376

1377 1378
restart:
	for_each_rmap_spte(rmapp, &iter, sptep) {
1379 1380
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1381

1382
		need_flush = 1;
1383

1384
		if (pte_write(*ptep)) {
1385
			drop_spte(kvm, sptep);
1386
			goto restart;
1387
		} else {
1388
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1389 1390 1391 1392
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1393
			new_spte &= ~shadow_accessed_mask;
1394 1395 1396

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1397 1398
		}
	}
1399

1400 1401 1402 1403 1404 1405
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
	unsigned long *rmap;
	int level;

	/* private field. */
	unsigned long *end_rmap;
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1474 1475 1476 1477 1478 1479
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1480
					       struct kvm_memory_slot *slot,
1481 1482
					       gfn_t gfn,
					       int level,
1483
					       unsigned long data))
1484
{
1485
	struct kvm_memslots *slots;
1486
	struct kvm_memory_slot *memslot;
1487 1488
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1489
	int i;
1490

1491 1492 1493 1494 1495
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1496

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1516 1517
	}

1518
	return ret;
1519 1520
}

1521 1522 1523
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1524
					 struct kvm_memory_slot *slot,
1525
					 gfn_t gfn, int level,
1526 1527 1528
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1529 1530 1531 1532
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1533 1534 1535
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1536 1537 1538 1539 1540
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1541 1542
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1543
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1544 1545
}

F
Frederik Deweerdt 已提交
1546
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1547 1548
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1549
{
1550
	u64 *sptep;
1551
	struct rmap_iterator uninitialized_var(iter);
1552 1553
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1554
	BUG_ON(!shadow_accessed_mask);
1555

1556
	for_each_rmap_spte(rmapp, &iter, sptep)
1557
		if (*sptep & shadow_accessed_mask) {
1558
			young = 1;
1559 1560
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1561
		}
1562

1563
	trace_kvm_age_page(gfn, level, slot, young);
1564 1565 1566
	return young;
}

A
Andrea Arcangeli 已提交
1567
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1568 1569
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1570
{
1571 1572
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1583
	for_each_rmap_spte(rmapp, &iter, sptep)
1584
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1585 1586 1587 1588 1589 1590 1591
			young = 1;
			break;
		}
out:
	return young;
}

1592 1593
#define RMAP_RECYCLE_THRESHOLD 1000

1594
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1595 1596
{
	unsigned long *rmapp;
1597 1598 1599
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1600

1601
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1602

1603
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1604 1605 1606
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1607
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1608
{
A
Andres Lagar-Cavilla 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1630 1631
}

A
Andrea Arcangeli 已提交
1632 1633 1634 1635 1636
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1637
#ifdef MMU_DEBUG
1638
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1639
{
1640 1641 1642
	u64 *pos;
	u64 *end;

1643
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1644
		if (is_shadow_present_pte(*pos)) {
1645
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1646
			       pos, *pos);
A
Avi Kivity 已提交
1647
			return 0;
1648
		}
A
Avi Kivity 已提交
1649 1650
	return 1;
}
1651
#endif
A
Avi Kivity 已提交
1652

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1665
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1666
{
1667
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1668
	hlist_del(&sp->hash_link);
1669 1670
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1671 1672
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1673
	kmem_cache_free(mmu_page_header_cache, sp);
1674 1675
}

1676 1677
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1678
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1679 1680
}

1681
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1682
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1683 1684 1685 1686
{
	if (!parent_pte)
		return;

1687
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1688 1689
}

1690
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1691 1692
				       u64 *parent_pte)
{
1693
	pte_list_remove(parent_pte, &sp->parent_ptes);
1694 1695
}

1696 1697 1698 1699
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1700
	mmu_spte_clear_no_track(parent_pte);
1701 1702
}

1703 1704
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1705
{
1706
	struct kvm_mmu_page *sp;
1707

1708 1709
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1710
	if (!direct)
1711
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1712
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1713 1714 1715 1716 1717 1718

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1719 1720 1721 1722 1723
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1724 1725
}

1726
static void mark_unsync(u64 *spte);
1727
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1728
{
1729
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1730 1731
}

1732
static void mark_unsync(u64 *spte)
1733
{
1734
	struct kvm_mmu_page *sp;
1735
	unsigned int index;
1736

1737
	sp = page_header(__pa(spte));
1738 1739
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1740
		return;
1741
	if (sp->unsync_children++)
1742
		return;
1743
	kvm_mmu_mark_parents_unsync(sp);
1744 1745
}

1746
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1747
			       struct kvm_mmu_page *sp)
1748 1749 1750 1751
{
	return 1;
}

M
Marcelo Tosatti 已提交
1752 1753 1754 1755
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1756 1757
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1758
				 const void *pte)
1759 1760 1761 1762
{
	WARN_ON(1);
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1773 1774
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1775
{
1776
	int i;
1777

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1793

1794
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1795
		struct kvm_mmu_page *child;
1796 1797
		u64 ent = sp->spt[i];

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1827 1828 1829
	}


1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1841 1842 1843 1844 1845
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1846
	trace_kvm_mmu_sync_page(sp);
1847 1848 1849 1850
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1851 1852 1853 1854
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1855

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1866 1867 1868 1869 1870 1871 1872 1873
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1874

1875
/* @sp->gfn should be write-protected at the call site */
1876
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1877
			   struct list_head *invalid_list, bool clear_unsync)
1878
{
1879
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1880
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1881 1882 1883
		return 1;
	}

1884
	if (clear_unsync)
1885 1886
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1887
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1888
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1889 1890 1891
		return 1;
	}

1892
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1893 1894 1895
	return 0;
}

1896 1897 1898
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1899
	LIST_HEAD(invalid_list);
1900 1901
	int ret;

1902
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1903
	if (ret)
1904 1905
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1906 1907 1908
	return ret;
}

1909 1910 1911 1912 1913 1914 1915
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1916 1917
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1918
{
1919
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1920 1921
}

1922 1923 1924 1925
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1926
	LIST_HEAD(invalid_list);
1927 1928
	bool flush = false;

1929
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1930
		if (!s->unsync)
1931 1932 1933
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1934
		kvm_unlink_unsync_page(vcpu->kvm, s);
1935
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1936
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1937
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1938 1939 1940 1941 1942
			continue;
		}
		flush = true;
	}

1943
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1944
	if (flush)
1945
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1946 1947
}

1948 1949 1950
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1951 1952
};

1953 1954 1955 1956 1957 1958
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1959 1960 1961
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1980
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1981
{
1982 1983 1984 1985 1986
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1987

1988 1989 1990 1991 1992 1993 1994 1995 1996
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1997 1998
}

1999 2000 2001
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
2002
{
2003 2004 2005
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
2006

2007 2008 2009 2010 2011 2012 2013
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2014
	LIST_HEAD(invalid_list);
2015 2016 2017

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
2018
		bool protected = false;
2019 2020

		for_each_sp(pages, sp, parents, i)
2021
			protected |= rmap_write_protect(vcpu, sp->gfn);
2022 2023 2024 2025

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

2026
		for_each_sp(pages, sp, parents, i) {
2027
			kvm_sync_page(vcpu, sp, &invalid_list);
2028 2029
			mmu_pages_clear_parents(&parents);
		}
2030
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2031
		cond_resched_lock(&vcpu->kvm->mmu_lock);
2032 2033
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
2034 2035
}

2036 2037 2038 2039 2040 2041 2042 2043
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2056 2057 2058 2059 2060
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2061 2062 2063 2064
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2065
					     int direct,
2066
					     unsigned access,
2067
					     u64 *parent_pte)
2068 2069 2070
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2071 2072
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2073

2074
	role = vcpu->arch.mmu.base_role;
2075
	role.level = level;
2076
	role.direct = direct;
2077
	if (role.direct)
2078
		role.cr4_pae = 0;
2079
	role.access = access;
2080 2081
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2082 2083 2084 2085
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2086
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2087 2088 2089
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

2090 2091
		if (!need_sync && sp->unsync)
			need_sync = true;
2092

2093 2094
		if (sp->role.word != role.word)
			continue;
2095

2096 2097
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
2098

2099 2100
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
2101
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2102 2103 2104
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
2105

2106
		__clear_sp_write_flooding_count(sp);
2107 2108 2109
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
2110
	++vcpu->kvm->stat.mmu_cache_miss;
2111
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2112 2113 2114 2115
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
2116 2117
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2118
	if (!direct) {
2119
		if (rmap_write_protect(vcpu, gfn))
2120
			kvm_flush_remote_tlbs(vcpu->kvm);
2121 2122 2123
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

2124
		account_shadowed(vcpu->kvm, sp);
2125
	}
2126
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2127
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
2128
	trace_kvm_mmu_get_page(sp, true);
2129
	return sp;
2130 2131
}

2132 2133 2134 2135 2136 2137
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2138 2139 2140 2141 2142 2143

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2158

2159 2160 2161 2162 2163
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2164 2165
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2166
{
2167
	if (is_last_spte(spte, iterator->level)) {
2168 2169 2170 2171
		iterator->level = 0;
		return;
	}

2172
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2173 2174 2175
	--iterator->level;
}

2176 2177 2178 2179 2180
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2181
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2182 2183 2184
{
	u64 spte;

2185 2186 2187
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2188
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2189 2190 2191 2192
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2193

2194
	mmu_spte_set(sptep, spte);
2195 2196
}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2214
		drop_parent_pte(child, sptep);
2215 2216 2217 2218
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2219
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2220 2221 2222 2223 2224 2225 2226
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2227
		if (is_last_spte(pte, sp->role.level)) {
2228
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2229 2230 2231
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2232
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2233
			drop_parent_pte(child, spte);
2234
		}
X
Xiao Guangrong 已提交
2235 2236 2237 2238
		return true;
	}

	if (is_mmio_spte(pte))
2239
		mmu_spte_clear_no_track(spte);
2240

X
Xiao Guangrong 已提交
2241
	return false;
2242 2243
}

2244
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2245
					 struct kvm_mmu_page *sp)
2246
{
2247 2248
	unsigned i;

2249 2250
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2251 2252
}

2253
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2254
{
2255
	mmu_page_remove_parent_pte(sp, parent_pte);
2256 2257
}

2258
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2259
{
2260 2261
	u64 *sptep;
	struct rmap_iterator iter;
2262

2263 2264
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2265 2266
}

2267
static int mmu_zap_unsync_children(struct kvm *kvm,
2268 2269
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2270
{
2271 2272 2273
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2274

2275
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2276
		return 0;
2277 2278 2279 2280 2281 2282

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2283
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2284
			mmu_pages_clear_parents(&parents);
2285
			zapped++;
2286 2287 2288 2289 2290
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2291 2292
}

2293 2294
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2295
{
2296
	int ret;
A
Avi Kivity 已提交
2297

2298
	trace_kvm_mmu_prepare_zap_page(sp);
2299
	++kvm->stat.mmu_shadow_zapped;
2300
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2301
	kvm_mmu_page_unlink_children(kvm, sp);
2302
	kvm_mmu_unlink_parents(kvm, sp);
2303

2304
	if (!sp->role.invalid && !sp->role.direct)
2305
		unaccount_shadowed(kvm, sp);
2306

2307 2308
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2309
	if (!sp->root_count) {
2310 2311
		/* Count self */
		ret++;
2312
		list_move(&sp->link, invalid_list);
2313
		kvm_mod_used_mmu_pages(kvm, -1);
2314
	} else {
A
Avi Kivity 已提交
2315
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2316 2317 2318 2319 2320 2321 2322

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2323
	}
2324 2325

	sp->role.invalid = 1;
2326
	return ret;
2327 2328
}

2329 2330 2331
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2332
	struct kvm_mmu_page *sp, *nsp;
2333 2334 2335 2336

	if (list_empty(invalid_list))
		return;

2337 2338 2339 2340 2341
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2342

2343 2344 2345 2346 2347
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2348

2349
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2350
		WARN_ON(!sp->role.invalid || sp->root_count);
2351
		kvm_mmu_free_page(sp);
2352
	}
2353 2354
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2370 2371
/*
 * Changing the number of mmu pages allocated to the vm
2372
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2373
 */
2374
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2375
{
2376
	LIST_HEAD(invalid_list);
2377

2378 2379
	spin_lock(&kvm->mmu_lock);

2380
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2381 2382 2383 2384
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2385

2386
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2387
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2388 2389
	}

2390
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2391 2392

	spin_unlock(&kvm->mmu_lock);
2393 2394
}

2395
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2396
{
2397
	struct kvm_mmu_page *sp;
2398
	LIST_HEAD(invalid_list);
2399 2400
	int r;

2401
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2402
	r = 0;
2403
	spin_lock(&kvm->mmu_lock);
2404
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2405
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2406 2407
			 sp->role.word);
		r = 1;
2408
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2409
	}
2410
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2411 2412
	spin_unlock(&kvm->mmu_lock);

2413
	return r;
2414
}
2415
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2416

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2427 2428
{
	struct kvm_mmu_page *s;
2429

2430
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2431
		if (s->unsync)
2432
			continue;
2433 2434
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2435 2436 2437 2438 2439 2440
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2441 2442 2443
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2444
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2445 2446 2447
		if (!can_unsync)
			return 1;

2448
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2449
			return 1;
2450

G
Gleb Natapov 已提交
2451
		if (!s->unsync)
2452
			need_unsync = true;
2453
	}
2454 2455
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2456 2457 2458
	return 0;
}

2459 2460 2461 2462 2463 2464 2465 2466
static bool kvm_is_mmio_pfn(pfn_t pfn)
{
	if (pfn_valid(pfn))
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));

	return true;
}

A
Avi Kivity 已提交
2467
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2468
		    unsigned pte_access, int level,
2469
		    gfn_t gfn, pfn_t pfn, bool speculative,
2470
		    bool can_unsync, bool host_writable)
2471
{
2472
	u64 spte;
M
Marcelo Tosatti 已提交
2473
	int ret = 0;
S
Sheng Yang 已提交
2474

2475
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2476 2477
		return 0;

2478
	spte = PT_PRESENT_MASK;
2479
	if (!speculative)
2480
		spte |= shadow_accessed_mask;
2481

S
Sheng Yang 已提交
2482 2483 2484 2485
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2486

2487
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2488
		spte |= shadow_user_mask;
2489

2490
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2491
		spte |= PT_PAGE_SIZE_MASK;
2492
	if (tdp_enabled)
2493
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2494
			kvm_is_mmio_pfn(pfn));
2495

2496
	if (host_writable)
2497
		spte |= SPTE_HOST_WRITEABLE;
2498 2499
	else
		pte_access &= ~ACC_WRITE_MASK;
2500

2501
	spte |= (u64)pfn << PAGE_SHIFT;
2502

2503
	if (pte_access & ACC_WRITE_MASK) {
2504

X
Xiao Guangrong 已提交
2505
		/*
2506 2507 2508 2509
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2510
		 */
2511
		if (level > PT_PAGE_TABLE_LEVEL &&
2512
		    has_wrprotected_page(vcpu, gfn, level))
A
Avi Kivity 已提交
2513
			goto done;
2514

2515
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2516

2517 2518 2519 2520 2521 2522
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2523
		if (!can_unsync && is_writable_pte(*sptep))
2524 2525
			goto set_pte;

2526
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2527
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2528
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2529
			ret = 1;
2530
			pte_access &= ~ACC_WRITE_MASK;
2531
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2532 2533 2534
		}
	}

2535
	if (pte_access & ACC_WRITE_MASK) {
2536
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2537 2538
		spte |= shadow_dirty_mask;
	}
2539

2540
set_pte:
2541
	if (mmu_spte_update(sptep, spte))
2542
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2543
done:
M
Marcelo Tosatti 已提交
2544 2545 2546
	return ret;
}

A
Avi Kivity 已提交
2547
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2548 2549 2550
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2551 2552
{
	int was_rmapped = 0;
2553
	int rmap_count;
M
Marcelo Tosatti 已提交
2554

2555 2556
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2557

A
Avi Kivity 已提交
2558
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2559 2560 2561 2562
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2563 2564
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2565
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2566
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2567 2568

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2569
			drop_parent_pte(child, sptep);
2570
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2571
		} else if (pfn != spte_to_pfn(*sptep)) {
2572
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2573
				 spte_to_pfn(*sptep), pfn);
2574
			drop_spte(vcpu->kvm, sptep);
2575
			kvm_flush_remote_tlbs(vcpu->kvm);
2576 2577
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2578
	}
2579

2580 2581
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2582
		if (write_fault)
2583
			*emulate = 1;
2584
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2585
	}
M
Marcelo Tosatti 已提交
2586

2587 2588 2589
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2590
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2591
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2592
		 is_large_pte(*sptep)? "2MB" : "4kB",
2593 2594
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2595
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2596 2597
		++vcpu->kvm->stat.lpages;

2598 2599 2600 2601 2602 2603
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2604
	}
2605

X
Xiao Guangrong 已提交
2606
	kvm_release_pfn_clean(pfn);
2607 2608
}

2609 2610 2611 2612 2613
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2614
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2615
	if (!slot)
2616
		return KVM_PFN_ERR_FAULT;
2617

2618
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2619 2620 2621 2622 2623 2624 2625
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2626
	struct kvm_memory_slot *slot;
2627 2628 2629 2630 2631
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2632 2633
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2634 2635
		return -1;

2636
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2637 2638 2639 2640
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2641
		mmu_set_spte(vcpu, start, access, 0, NULL,
2642 2643
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2660
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2691
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2692 2693
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2694
{
2695
	struct kvm_shadow_walk_iterator iterator;
2696
	struct kvm_mmu_page *sp;
2697
	int emulate = 0;
2698
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2699

2700 2701 2702
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2703
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2704
		if (iterator.level == level) {
2705
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2706 2707
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2708
			direct_pte_prefetch(vcpu, iterator.sptep);
2709 2710
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2711 2712
		}

2713
		drop_large_spte(vcpu, iterator.sptep);
2714
		if (!is_shadow_present_pte(*iterator.sptep)) {
2715 2716 2717 2718
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2719 2720 2721
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2722

2723
			link_shadow_page(iterator.sptep, sp, true);
2724 2725
		}
	}
2726
	return emulate;
A
Avi Kivity 已提交
2727 2728
}

H
Huang Ying 已提交
2729
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2730
{
H
Huang Ying 已提交
2731 2732 2733 2734 2735 2736 2737
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2738

H
Huang Ying 已提交
2739
	send_sig_info(SIGBUS, &info, tsk);
2740 2741
}

2742
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2743
{
X
Xiao Guangrong 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2753
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2754
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2755
		return 0;
2756
	}
2757

2758
	return -EFAULT;
2759 2760
}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2774
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2775 2776
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
2777
	    !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2796
			kvm_get_pfn(pfn);
2797 2798 2799 2800 2801
			*pfnp = pfn;
		}
	}
}

2802 2803 2804 2805 2806 2807
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2808
	if (unlikely(is_error_pfn(pfn))) {
2809 2810 2811 2812
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2813
	if (unlikely(is_noslot_pfn(pfn)))
2814 2815 2816 2817 2818 2819 2820
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2821
static bool page_fault_can_be_fast(u32 error_code)
2822
{
2823 2824 2825 2826 2827 2828 2829
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2843 2844
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
2868
	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2869
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2883
	struct kvm_mmu_page *sp;
2884 2885 2886
	bool ret = false;
	u64 spte = 0ull;

2887 2888 2889
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2890
	if (!page_fault_can_be_fast(error_code))
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

2907 2908
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2942 2943 2944 2945 2946
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2947
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2948
exit:
X
Xiao Guangrong 已提交
2949 2950
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2951 2952 2953 2954 2955
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2956
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2957
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2958
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2959

2960 2961
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2962 2963
{
	int r;
2964
	int level;
2965
	int force_pt_level;
2966
	pfn_t pfn;
2967
	unsigned long mmu_seq;
2968
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2969

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2980

2981 2982 2983
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2984

2985 2986 2987
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2988
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2989
	smp_rmb();
2990

2991
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2992
		return 0;
2993

2994 2995
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2996

2997
	spin_lock(&vcpu->kvm->mmu_lock);
2998
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2999
		goto out_unlock;
3000
	make_mmu_pages_available(vcpu);
3001 3002
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3003 3004
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
3005 3006 3007
	spin_unlock(&vcpu->kvm->mmu_lock);


3008
	return r;
3009 3010 3011 3012 3013

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3014 3015 3016
}


3017 3018 3019
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3020
	struct kvm_mmu_page *sp;
3021
	LIST_HEAD(invalid_list);
3022

3023
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3024
		return;
3025

3026 3027 3028
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
3029
		hpa_t root = vcpu->arch.mmu.root_hpa;
3030

3031
		spin_lock(&vcpu->kvm->mmu_lock);
3032 3033
		sp = page_header(root);
		--sp->root_count;
3034 3035 3036 3037
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3038
		spin_unlock(&vcpu->kvm->mmu_lock);
3039
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3040 3041
		return;
	}
3042 3043

	spin_lock(&vcpu->kvm->mmu_lock);
3044
	for (i = 0; i < 4; ++i) {
3045
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3046

A
Avi Kivity 已提交
3047 3048
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3049 3050
			sp = page_header(root);
			--sp->root_count;
3051
			if (!sp->root_count && sp->role.invalid)
3052 3053
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3054
		}
3055
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3056
	}
3057
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3058
	spin_unlock(&vcpu->kvm->mmu_lock);
3059
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3060 3061
}

3062 3063 3064 3065 3066
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3067
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3068 3069 3070 3071 3072 3073
		ret = 1;
	}

	return ret;
}

3074 3075 3076
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3077
	unsigned i;
3078 3079 3080

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3081
		make_mmu_pages_available(vcpu);
3082 3083 3084 3085 3086 3087 3088 3089 3090
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3091
			MMU_WARN_ON(VALID_PAGE(root));
3092
			spin_lock(&vcpu->kvm->mmu_lock);
3093
			make_mmu_pages_available(vcpu);
3094 3095
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3096 3097 3098 3099 3100 3101 3102
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3103
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3104 3105 3106 3107 3108 3109 3110
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3111
{
3112
	struct kvm_mmu_page *sp;
3113 3114 3115
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3116

3117
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3118

3119 3120 3121 3122 3123 3124 3125 3126
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3127
		hpa_t root = vcpu->arch.mmu.root_hpa;
3128

3129
		MMU_WARN_ON(VALID_PAGE(root));
3130

3131
		spin_lock(&vcpu->kvm->mmu_lock);
3132
		make_mmu_pages_available(vcpu);
3133 3134
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3135 3136
		root = __pa(sp->spt);
		++sp->root_count;
3137
		spin_unlock(&vcpu->kvm->mmu_lock);
3138
		vcpu->arch.mmu.root_hpa = root;
3139
		return 0;
3140
	}
3141

3142 3143
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3144 3145
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3146
	 */
3147 3148 3149 3150
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3151
	for (i = 0; i < 4; ++i) {
3152
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3153

3154
		MMU_WARN_ON(VALID_PAGE(root));
3155
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3156
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3157
			if (!is_present_gpte(pdptr)) {
3158
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3159 3160
				continue;
			}
A
Avi Kivity 已提交
3161
			root_gfn = pdptr >> PAGE_SHIFT;
3162 3163
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3164
		}
3165
		spin_lock(&vcpu->kvm->mmu_lock);
3166
		make_mmu_pages_available(vcpu);
3167
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3168
				      PT32_ROOT_LEVEL, 0,
3169
				      ACC_ALL, NULL);
3170 3171
		root = __pa(sp->spt);
		++sp->root_count;
3172 3173
		spin_unlock(&vcpu->kvm->mmu_lock);

3174
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3175
	}
3176
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3203
	return 0;
3204 3205
}

3206 3207 3208 3209 3210 3211 3212 3213
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3214 3215 3216 3217 3218
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3219 3220 3221
	if (vcpu->arch.mmu.direct_map)
		return;

3222 3223
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3224

3225
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3226
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3227
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3228 3229 3230
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3231
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3232 3233 3234 3235 3236
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3237
		if (root && VALID_PAGE(root)) {
3238 3239 3240 3241 3242
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3243
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3244 3245 3246 3247 3248 3249
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3250
	spin_unlock(&vcpu->kvm->mmu_lock);
3251
}
N
Nadav Har'El 已提交
3252
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3253

3254
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3255
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3256
{
3257 3258
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3259 3260 3261
	return vaddr;
}

3262
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3263 3264
					 u32 access,
					 struct x86_exception *exception)
3265
{
3266 3267
	if (exception)
		exception->error_code = 0;
3268
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3269 3270
}

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3290 3291 3292 3293 3294 3295 3296 3297
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3298 3299 3300
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3301 3302
{
	struct kvm_shadow_walk_iterator iterator;
3303 3304 3305
	u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
	int root, leaf;
	bool reserved = false;
3306

3307
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3308
		goto exit;
3309

3310
	walk_shadow_page_lockless_begin(vcpu);
3311

3312 3313
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3314 3315 3316 3317 3318
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3319
		leaf--;
3320

3321 3322
		if (!is_shadow_present_pte(spte))
			break;
3323 3324 3325 3326 3327

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
						    leaf);
	}

3328 3329
	walk_shadow_page_lockless_end(vcpu);

3330 3331 3332
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3333
		while (root > leaf) {
3334 3335 3336 3337 3338 3339 3340 3341
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3342 3343 3344 3345 3346
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;
3347
	bool reserved;
3348 3349

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3350
		return RET_MMIO_PF_EMULATE;
3351

3352 3353 3354
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
	if (unlikely(reserved))
		return RET_MMIO_PF_BUG;
3355 3356 3357 3358 3359

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3360
		if (!check_mmio_spte(vcpu, spte))
3361 3362
			return RET_MMIO_PF_INVALID;

3363 3364
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3365 3366

		trace_handle_mmio_page_fault(addr, gfn, access);
3367
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3368
		return RET_MMIO_PF_EMULATE;
3369 3370 3371 3372 3373 3374
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3375
	return RET_MMIO_PF_RETRY;
3376 3377 3378 3379 3380 3381 3382 3383 3384
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3385
	WARN_ON(ret == RET_MMIO_PF_BUG);
3386 3387 3388
	return ret;
}

A
Avi Kivity 已提交
3389
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3390
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3391
{
3392
	gfn_t gfn;
3393
	int r;
A
Avi Kivity 已提交
3394

3395
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3396

3397 3398 3399 3400 3401 3402
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3403

3404 3405 3406
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3407

3408
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3409

3410
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3411

3412
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3413
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3414 3415
}

3416
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3417 3418
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3419

3420
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3421
	arch.gfn = gfn;
3422
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3423
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3424

3425
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3437
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3438
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3439
{
3440
	struct kvm_memory_slot *slot;
3441 3442
	bool async;

3443
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3444 3445
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3446 3447 3448
	if (!async)
		return false; /* *pfn has correct page already */

3449
	if (!prefault && can_do_async_pf(vcpu)) {
3450
		trace_kvm_try_async_get_page(gva, gfn);
3451 3452 3453 3454 3455 3456 3457 3458
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3459
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3460 3461 3462
	return false;
}

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3473
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3474
			  bool prefault)
3475
{
3476
	pfn_t pfn;
3477
	int r;
3478
	int level;
3479
	int force_pt_level;
M
Marcelo Tosatti 已提交
3480
	gfn_t gfn = gpa >> PAGE_SHIFT;
3481
	unsigned long mmu_seq;
3482 3483
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3484

3485
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3486

3487 3488 3489 3490 3491 3492
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3493

3494 3495 3496 3497
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3498 3499 3500 3501 3502 3503
	if (mapping_level_dirty_bitmap(vcpu, gfn) ||
	    !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL))
		force_pt_level = 1;
	else
		force_pt_level = 0;

3504 3505
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
3506 3507 3508
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
3509 3510 3511
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3512

3513 3514 3515
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3516
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3517
	smp_rmb();
3518

3519
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3520 3521
		return 0;

3522 3523 3524
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3525
	spin_lock(&vcpu->kvm->mmu_lock);
3526
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3527
		goto out_unlock;
3528
	make_mmu_pages_available(vcpu);
3529 3530
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3531
	r = __direct_map(vcpu, gpa, write, map_writable,
3532
			 level, gfn, pfn, prefault);
3533 3534 3535
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3536 3537 3538 3539 3540

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3541 3542
}

3543 3544
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3545 3546 3547
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3548
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3549
	context->invlpg = nonpaging_invlpg;
3550
	context->update_pte = nonpaging_update_pte;
3551
	context->root_level = 0;
A
Avi Kivity 已提交
3552
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3553
	context->root_hpa = INVALID_PAGE;
3554
	context->direct_map = true;
3555
	context->nx = false;
A
Avi Kivity 已提交
3556 3557
}

3558
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3559
{
3560
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3561 3562
}

3563 3564
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3565
	return kvm_read_cr3(vcpu);
3566 3567
}

3568 3569
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3570
{
3571
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3572 3573
}

3574
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3575
			   unsigned access, int *nr_present)
3576 3577 3578 3579 3580 3581 3582 3583
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3584
		mark_mmio_spte(vcpu, sptep, gfn, access);
3585 3586 3587 3588 3589 3590
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3591 3592 3593 3594 3595 3596 3597 3598 3599
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3600 3601 3602 3603 3604
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3605 3606 3607 3608 3609 3610 3611 3612
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3613 3614 3615 3616
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
3617
			bool pse, bool amd)
3618 3619
{
	u64 exb_bit_rsvd = 0;
3620
	u64 gbpages_bit_rsvd = 0;
3621
	u64 nonleaf_bit8_rsvd = 0;
3622

3623
	rsvd_check->bad_mt_xwr = 0;
3624

3625
	if (!nx)
3626
		exb_bit_rsvd = rsvd_bits(63, 63);
3627
	if (!gbpages)
3628
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3629 3630 3631 3632 3633

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
3634
	if (amd)
3635 3636
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3637
	switch (level) {
3638 3639
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
3640 3641 3642 3643
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3644

3645
		if (!pse) {
3646
			rsvd_check->rsvd_bits_mask[1][1] = 0;
3647 3648 3649
			break;
		}

3650 3651
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
3652
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3653 3654
		else
			/* 32 bits PSE 4MB page */
3655
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3656 3657
		break;
	case PT32E_ROOT_LEVEL:
3658
		rsvd_check->rsvd_bits_mask[0][2] =
3659
			rsvd_bits(maxphyaddr, 63) |
3660
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3661
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3662
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3663
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3664
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3665
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3666 3667
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3668 3669
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3670 3671
		break;
	case PT64_ROOT_LEVEL:
3672 3673
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3674
			rsvd_bits(maxphyaddr, 51);
3675 3676
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3677
			rsvd_bits(maxphyaddr, 51);
3678 3679 3680 3681 3682 3683 3684
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3685
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3686
			rsvd_bits(13, 29);
3687
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3688 3689
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3690 3691
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3692 3693 3694 3695
		break;
	}
}

3696 3697 3698 3699 3700 3701
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
				context->nx, guest_cpuid_has_gbpages(vcpu),
3702
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3703 3704
}

3705 3706 3707
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
3708 3709 3710
{
	int pte;

3711
	rsvd_check->rsvd_bits_mask[0][3] =
3712
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3713
	rsvd_check->rsvd_bits_mask[0][2] =
3714
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3715
	rsvd_check->rsvd_bits_mask[0][1] =
3716
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3717
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3718 3719

	/* large page */
3720 3721
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
3722
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3723
	rsvd_check->rsvd_bits_mask[1][1] =
3724
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3725
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3726 3727 3728 3729 3730 3731 3732

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
3733
			rsvd_check->bad_mt_xwr |= (1ull << pte);
3734 3735 3736
	}
}

3737 3738 3739 3740 3741 3742 3743
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

3744 3745 3746 3747 3748 3749 3750 3751
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
3752 3753 3754 3755
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
3756 3757 3758
	__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
				boot_cpu_data.x86_phys_bits,
				context->shadow_root_level, context->nx,
3759 3760
				guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
				true);
3761 3762 3763
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

3764 3765 3766 3767 3768 3769
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

3770 3771 3772 3773 3774 3775 3776 3777
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
3778
	if (boot_cpu_is_amd())
3779 3780 3781
		__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
3782
					cpu_has_gbpages, true, true);
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
	else
		__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
					    boot_cpu_data.x86_phys_bits,
					    false);

}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

3802 3803
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
3804 3805 3806
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3807
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3808

F
Feng Wu 已提交
3809
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3810
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3811 3812 3813 3814 3815 3816
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3817 3818 3819 3820 3821 3822
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3823 3824 3825 3826 3827
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3828 3829 3830 3831 3832 3833
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3834
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3855 3856 3857
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3858

F
Feng Wu 已提交
3859 3860
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3861 3862 3863 3864 3865 3866
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3885 3886 3887
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3888
{
3889
	context->nx = is_nx(vcpu);
3890
	context->root_level = level;
3891

3892
	reset_rsvds_bits_mask(vcpu, context);
3893
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3894
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3895

3896
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
3897 3898
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3899
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3900
	context->invlpg = paging64_invlpg;
3901
	context->update_pte = paging64_update_pte;
3902
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3903
	context->root_hpa = INVALID_PAGE;
3904
	context->direct_map = false;
A
Avi Kivity 已提交
3905 3906
}

3907 3908
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3909
{
3910
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3911 3912
}

3913 3914
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3915
{
3916
	context->nx = false;
3917
	context->root_level = PT32_ROOT_LEVEL;
3918

3919
	reset_rsvds_bits_mask(vcpu, context);
3920
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3921
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3922 3923 3924

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3925
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3926
	context->invlpg = paging32_invlpg;
3927
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3928
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3929
	context->root_hpa = INVALID_PAGE;
3930
	context->direct_map = false;
A
Avi Kivity 已提交
3931 3932
}

3933 3934
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3935
{
3936
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3937 3938
}

3939
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3940
{
3941
	struct kvm_mmu *context = &vcpu->arch.mmu;
3942

3943
	context->base_role.word = 0;
3944
	context->base_role.smm = is_smm(vcpu);
3945
	context->page_fault = tdp_page_fault;
3946
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3947
	context->invlpg = nonpaging_invlpg;
3948
	context->update_pte = nonpaging_update_pte;
3949
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3950
	context->root_hpa = INVALID_PAGE;
3951
	context->direct_map = true;
3952
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3953
	context->get_cr3 = get_cr3;
3954
	context->get_pdptr = kvm_pdptr_read;
3955
	context->inject_page_fault = kvm_inject_page_fault;
3956 3957

	if (!is_paging(vcpu)) {
3958
		context->nx = false;
3959 3960 3961
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3962
		context->nx = is_nx(vcpu);
3963
		context->root_level = PT64_ROOT_LEVEL;
3964 3965
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3966
	} else if (is_pae(vcpu)) {
3967
		context->nx = is_nx(vcpu);
3968
		context->root_level = PT32E_ROOT_LEVEL;
3969 3970
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3971
	} else {
3972
		context->nx = false;
3973
		context->root_level = PT32_ROOT_LEVEL;
3974 3975
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3976 3977
	}

3978
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3979
	update_last_pte_bitmap(vcpu, context);
3980
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
3981 3982
}

3983
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3984
{
3985
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3986
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3987 3988
	struct kvm_mmu *context = &vcpu->arch.mmu;

3989
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
3990 3991

	if (!is_paging(vcpu))
3992
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3993
	else if (is_long_mode(vcpu))
3994
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3995
	else if (is_pae(vcpu))
3996
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3997
	else
3998
		paging32_init_context(vcpu, context);
3999

4000 4001 4002 4003
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
4004
		= smep && !is_write_protection(vcpu);
4005 4006
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
4007
	context->base_role.smm = is_smm(vcpu);
4008
	reset_shadow_zero_bits_mask(vcpu, context);
4009 4010 4011
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4012
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
4013
{
4014 4015
	struct kvm_mmu *context = &vcpu->arch.mmu;

4016
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4032
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4033 4034 4035
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4036
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4037
{
4038 4039 4040 4041 4042 4043 4044
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4045 4046
}

4047
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4048 4049 4050 4051
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4052
	g_context->get_pdptr         = kvm_pdptr_read;
4053 4054 4055 4056 4057 4058 4059 4060 4061
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
4062
		g_context->nx = false;
4063 4064 4065
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4066
		g_context->nx = is_nx(vcpu);
4067
		g_context->root_level = PT64_ROOT_LEVEL;
4068
		reset_rsvds_bits_mask(vcpu, g_context);
4069 4070
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4071
		g_context->nx = is_nx(vcpu);
4072
		g_context->root_level = PT32E_ROOT_LEVEL;
4073
		reset_rsvds_bits_mask(vcpu, g_context);
4074 4075
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4076
		g_context->nx = false;
4077
		g_context->root_level = PT32_ROOT_LEVEL;
4078
		reset_rsvds_bits_mask(vcpu, g_context);
4079 4080 4081
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4082
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
4083
	update_last_pte_bitmap(vcpu, g_context);
4084 4085
}

4086
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4087
{
4088
	if (mmu_is_nested(vcpu))
4089
		init_kvm_nested_mmu(vcpu);
4090
	else if (tdp_enabled)
4091
		init_kvm_tdp_mmu(vcpu);
4092
	else
4093
		init_kvm_softmmu(vcpu);
4094 4095
}

4096
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4097
{
4098
	kvm_mmu_unload(vcpu);
4099
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4100
}
4101
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4102 4103

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4104
{
4105 4106
	int r;

4107
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4108 4109
	if (r)
		goto out;
4110
	r = mmu_alloc_roots(vcpu);
4111
	kvm_mmu_sync_roots(vcpu);
4112 4113
	if (r)
		goto out;
4114
	/* set_cr3() should ensure TLB has been flushed */
4115
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4116 4117
out:
	return r;
A
Avi Kivity 已提交
4118
}
A
Avi Kivity 已提交
4119 4120 4121 4122 4123
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4124
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4125
}
4126
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4127

4128
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4129 4130
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4131
{
4132
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4133 4134
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4135
        }
4136

A
Avi Kivity 已提交
4137
	++vcpu->kvm->stat.mmu_pte_updated;
4138
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4139 4140
}

4141 4142 4143 4144 4145 4146 4147 4148
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4149 4150
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4151 4152 4153
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4154 4155
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
4156
{
4157 4158 4159 4160
	if (zap_page)
		return;

	if (remote_flush)
4161
		kvm_flush_remote_tlbs(vcpu->kvm);
4162
	else if (local_flush)
4163
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4164 4165
}

4166 4167
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4168
{
4169 4170
	u64 gentry;
	int r;
4171 4172 4173

	/*
	 * Assume that the pte write on a page table of the same type
4174 4175
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4176
	 */
4177
	if (is_pae(vcpu) && *bytes == 4) {
4178
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4179 4180
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4181
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4182 4183
		if (r)
			gentry = 0;
4184 4185 4186
		new = (const u8 *)&gentry;
	}

4187
	switch (*bytes) {
4188 4189 4190 4191 4192 4193 4194 4195 4196
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4197 4198
	}

4199 4200 4201 4202 4203 4204 4205
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4206
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4207
{
4208 4209 4210 4211
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4212
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4213
		return false;
4214

4215
	return ++sp->write_flooding_count >= 3;
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4232 4233 4234 4235 4236 4237 4238 4239

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4285
	bool remote_flush, local_flush, zap_page;
4286 4287 4288 4289 4290 4291 4292
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4293
	mask.smm = 1;
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4317
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4318

4319
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4320
		if (detect_write_misaligned(sp, gpa, bytes) ||
4321
		      detect_write_flooding(sp)) {
4322
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4323
						     &invalid_list);
A
Avi Kivity 已提交
4324
			++vcpu->kvm->stat.mmu_flooded;
4325 4326
			continue;
		}
4327 4328 4329 4330 4331

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4332
		local_flush = true;
4333
		while (npte--) {
4334
			entry = *spte;
4335
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4336 4337
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4338
			      & mask.word) && rmap_can_add(vcpu))
4339
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4340
			if (need_remote_flush(entry, *spte))
4341
				remote_flush = true;
4342
			++spte;
4343 4344
		}
	}
4345
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4346
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4347
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4348
	spin_unlock(&vcpu->kvm->mmu_lock);
4349 4350
}

4351 4352
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4353 4354
	gpa_t gpa;
	int r;
4355

4356
	if (vcpu->arch.mmu.direct_map)
4357 4358
		return 0;

4359
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4360 4361

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4362

4363
	return r;
4364
}
4365
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4366

4367
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4368
{
4369
	LIST_HEAD(invalid_list);
4370

4371 4372 4373
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4374 4375 4376
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4377

A
Avi Kivity 已提交
4378
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4379
	}
4380
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4381 4382
}

4383 4384 4385 4386 4387 4388 4389 4390
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4391 4392
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4393
{
4394
	int r, emulation_type = EMULTYPE_RETRY;
4395 4396
	enum emulation_result er;

G
Gleb Natapov 已提交
4397
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4398 4399 4400 4401 4402 4403 4404 4405
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4406 4407 4408 4409
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4410 4411 4412 4413

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4414
	case EMULATE_USER_EXIT:
4415
		++vcpu->stat.mmio_exits;
4416
		/* fall through */
4417
	case EMULATE_FAIL:
4418
		return 0;
4419 4420 4421 4422 4423 4424 4425 4426
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4427 4428 4429
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4430
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4431 4432 4433 4434
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4435 4436 4437 4438 4439 4440
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4441 4442 4443 4444 4445 4446
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4447 4448
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4449
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4450 4451
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4452 4453 4454 4455
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4456
	struct page *page;
A
Avi Kivity 已提交
4457 4458
	int i;

4459 4460 4461 4462 4463 4464 4465
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4466 4467
		return -ENOMEM;

4468
	vcpu->arch.mmu.pae_root = page_address(page);
4469
	for (i = 0; i < 4; ++i)
4470
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4471

A
Avi Kivity 已提交
4472 4473 4474
	return 0;
}

4475
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4476
{
4477 4478 4479 4480
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4481

4482 4483
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4484

4485
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4486
{
4487
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4488

4489
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4490 4491
}

4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
4561 4562 4563 4564
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
4565
	int i;
X
Xiao Guangrong 已提交
4566 4567

	spin_lock(&kvm->mmu_lock);
4568 4569 4570 4571 4572 4573 4574 4575 4576
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
4577

4578 4579 4580 4581
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
4582 4583 4584 4585 4586
	}

	spin_unlock(&kvm->mmu_lock);
}

4587 4588 4589 4590 4591
static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
{
	return __rmap_write_protect(kvm, rmapp, false);
}

4592 4593
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
4594
{
4595
	bool flush;
A
Avi Kivity 已提交
4596

4597
	spin_lock(&kvm->mmu_lock);
4598 4599
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
4600
	spin_unlock(&kvm->mmu_lock);
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4620 4621
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4622
}
4623

4624 4625 4626 4627 4628 4629 4630 4631 4632
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
		unsigned long *rmapp)
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
	pfn_t pfn;
	struct kvm_mmu_page *sp;

4633 4634
restart:
	for_each_rmap_spte(rmapp, &iter, sptep) {
4635 4636 4637 4638
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
4639 4640 4641 4642 4643
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
4644 4645 4646 4647 4648 4649
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
			PageTransCompound(pfn_to_page(pfn))) {
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
4650 4651
			goto restart;
		}
4652 4653 4654 4655 4656 4657
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4658
				   const struct kvm_memory_slot *memslot)
4659
{
4660
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4661
	spin_lock(&kvm->mmu_lock);
4662 4663
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
4664 4665 4666
	spin_unlock(&kvm->mmu_lock);
}

4667 4668 4669
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
4670
	bool flush;
4671 4672

	spin_lock(&kvm->mmu_lock);
4673
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
4692
	bool flush;
4693 4694

	spin_lock(&kvm->mmu_lock);
4695 4696
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
4710
	bool flush;
4711 4712

	spin_lock(&kvm->mmu_lock);
4713
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
4724
#define BATCH_ZAP_PAGES	10
4725 4726 4727
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4728
	int batch = 0;
4729 4730 4731 4732

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4733 4734
		int ret;

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4750 4751 4752 4753
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4754
		if (batch >= BATCH_ZAP_PAGES &&
4755
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4756
			batch = 0;
4757 4758 4759
			goto restart;
		}

4760 4761
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4762 4763 4764
		batch += ret;

		if (ret)
4765 4766 4767
			goto restart;
	}

4768 4769 4770 4771
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4772
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4787
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4788 4789
	kvm->arch.mmu_valid_gen++;

4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4801 4802 4803 4804
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4805 4806 4807 4808 4809
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4810
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4811 4812 4813 4814 4815
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4816
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4817
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4818
		kvm_mmu_invalidate_zap_all_pages(kvm);
4819
	}
4820 4821
}

4822 4823
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4824 4825
{
	struct kvm *kvm;
4826
	int nr_to_scan = sc->nr_to_scan;
4827
	unsigned long freed = 0;
4828

4829
	spin_lock(&kvm_lock);
4830 4831

	list_for_each_entry(kvm, &vm_list, vm_list) {
4832
		int idx;
4833
		LIST_HEAD(invalid_list);
4834

4835 4836 4837 4838 4839 4840 4841 4842
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4843 4844 4845 4846 4847 4848
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4849 4850
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4851 4852
			continue;

4853
		idx = srcu_read_lock(&kvm->srcu);
4854 4855
		spin_lock(&kvm->mmu_lock);

4856 4857 4858 4859 4860 4861
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4862 4863
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4864
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4865

4866
unlock:
4867
		spin_unlock(&kvm->mmu_lock);
4868
		srcu_read_unlock(&kvm->srcu, idx);
4869

4870 4871 4872 4873 4874
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4875 4876
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4877 4878
	}

4879
	spin_unlock(&kvm_lock);
4880 4881 4882 4883 4884 4885
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4886
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4887 4888 4889
}

static struct shrinker mmu_shrinker = {
4890 4891
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4892 4893 4894
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4895
static void mmu_destroy_caches(void)
4896
{
4897 4898
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4899 4900
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4901 4902 4903 4904
}

int kvm_mmu_module_init(void)
{
4905 4906
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4907
					    0, 0, NULL);
4908
	if (!pte_list_desc_cache)
4909 4910
		goto nomem;

4911 4912
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4913
						  0, 0, NULL);
4914 4915 4916
	if (!mmu_page_header_cache)
		goto nomem;

4917
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4918 4919
		goto nomem;

4920 4921
	register_shrinker(&mmu_shrinker);

4922 4923 4924
	return 0;

nomem:
4925
	mmu_destroy_caches();
4926 4927 4928
	return -ENOMEM;
}

4929 4930 4931 4932 4933 4934 4935
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4936
	struct kvm_memslots *slots;
4937
	struct kvm_memory_slot *memslot;
4938
	int i;
4939

4940 4941
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
4942

4943 4944 4945
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
4946 4947 4948

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
4949
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4950 4951 4952 4953

	return nr_mmu_pages;
}

4954 4955
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
4956
	kvm_mmu_unload(vcpu);
4957 4958
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4959 4960 4961 4962 4963 4964 4965
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4966 4967
	mmu_audit_disable();
}