verbs.c 40.4 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the BSD-type
 * license below:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *      Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *
 *      Redistributions in binary form must reproduce the above
 *      copyright notice, this list of conditions and the following
 *      disclaimer in the documentation and/or other materials provided
 *      with the distribution.
 *
 *      Neither the name of the Network Appliance, Inc. nor the names of
 *      its contributors may be used to endorse or promote products
 *      derived from this software without specific prior written
 *      permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 39
 */

40 41 42 43 44 45 46 47 48 49
/*
 * verbs.c
 *
 * Encapsulates the major functions managing:
 *  o adapters
 *  o endpoints
 *  o connections
 *  o buffer memory
 */

50
#include <linux/interrupt.h>
51
#include <linux/slab.h>
52
#include <linux/prefetch.h>
53
#include <linux/sunrpc/addr.h>
54
#include <linux/sunrpc/svc_rdma.h>
55 56

#include <asm-generic/barrier.h>
57
#include <asm/bitops.h>
58

59
#include <rdma/ib_cm.h>
60

61 62
#include "xprt_rdma.h"

63 64 65 66
/*
 * Globals/Macros
 */

J
Jeff Layton 已提交
67
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
68 69 70 71 72 73
# define RPCDBG_FACILITY	RPCDBG_TRANS
#endif

/*
 * internal functions
 */
74
static void rpcrdma_create_mrs(struct rpcrdma_xprt *r_xprt);
75 76
static void rpcrdma_destroy_mrs(struct rpcrdma_buffer *buf);
static void rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb);
77

78
struct workqueue_struct *rpcrdma_receive_wq __read_mostly;
79

80 81
int
rpcrdma_alloc_wq(void)
82
{
83
	struct workqueue_struct *recv_wq;
84

85 86 87 88 89
	recv_wq = alloc_workqueue("xprtrdma_receive",
				  WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_HIGHPRI,
				  0);
	if (!recv_wq)
		return -ENOMEM;
90

91 92
	rpcrdma_receive_wq = recv_wq;
	return 0;
93 94
}

95 96
void
rpcrdma_destroy_wq(void)
97
{
98
	struct workqueue_struct *wq;
99

100 101 102 103 104
	if (rpcrdma_receive_wq) {
		wq = rpcrdma_receive_wq;
		rpcrdma_receive_wq = NULL;
		destroy_workqueue(wq);
	}
105 106
}

107 108 109 110 111
static void
rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context)
{
	struct rpcrdma_ep *ep = context;

112 113 114
	pr_err("rpcrdma: %s on device %s ep %p\n",
	       ib_event_msg(event->event), event->device->name, context);

115 116
	if (ep->rep_connected == 1) {
		ep->rep_connected = -EIO;
117
		rpcrdma_conn_func(ep);
118 119 120 121
		wake_up_all(&ep->rep_connect_wait);
	}
}

122 123 124 125 126
/**
 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
 * @cq:	completion queue (ignored)
 * @wc:	completed WR
 *
127 128
 */
static void
129
rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
130
{
131 132 133 134
	struct ib_cqe *cqe = wc->wr_cqe;
	struct rpcrdma_sendctx *sc =
		container_of(cqe, struct rpcrdma_sendctx, sc_cqe);

135 136 137 138 139
	/* WARNING: Only wr_cqe and status are reliable at this point */
	if (wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR)
		pr_err("rpcrdma: Send: %s (%u/0x%x)\n",
		       ib_wc_status_msg(wc->status),
		       wc->status, wc->vendor_err);
140 141

	rpcrdma_sendctx_put_locked(sc);
142
}
143

144
/**
145
 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
146 147 148 149
 * @cq:	completion queue (ignored)
 * @wc:	completed WR
 *
 */
150
static void
151
rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
152
{
153 154 155
	struct ib_cqe *cqe = wc->wr_cqe;
	struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
					       rr_cqe);
156

157 158 159
	/* WARNING: Only wr_id and status are reliable at this point */
	if (wc->status != IB_WC_SUCCESS)
		goto out_fail;
160

161 162 163 164
	/* status == SUCCESS means all fields in wc are trustworthy */
	dprintk("RPC:       %s: rep %p opcode 'recv', length %u: success\n",
		__func__, rep, wc->byte_len);

165
	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
166 167 168
	rep->rr_wc_flags = wc->wc_flags;
	rep->rr_inv_rkey = wc->ex.invalidate_rkey;

169
	ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
170
				   rdmab_addr(rep->rr_rdmabuf),
171
				   wc->byte_len, DMA_FROM_DEVICE);
172

173
out_schedule:
174
	rpcrdma_reply_handler(rep);
175
	return;
176

177 178
out_fail:
	if (wc->status != IB_WC_WR_FLUSH_ERR)
179 180 181
		pr_err("rpcrdma: Recv: %s (%u/0x%x)\n",
		       ib_wc_status_msg(wc->status),
		       wc->status, wc->vendor_err);
182
	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, 0);
183
	goto out_schedule;
184 185
}

186 187 188 189 190 191 192 193
static void
rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt,
			       struct rdma_conn_param *param)
{
	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
	const struct rpcrdma_connect_private *pmsg = param->private_data;
	unsigned int rsize, wsize;

194 195
	/* Default settings for RPC-over-RDMA Version One */
	r_xprt->rx_ia.ri_reminv_expected = false;
196
	r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize;
197 198 199 200 201 202
	rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
	wsize = RPCRDMA_V1_DEF_INLINE_SIZE;

	if (pmsg &&
	    pmsg->cp_magic == rpcrdma_cmp_magic &&
	    pmsg->cp_version == RPCRDMA_CMP_VERSION) {
203
		r_xprt->rx_ia.ri_reminv_expected = true;
204
		r_xprt->rx_ia.ri_implicit_roundup = true;
205 206 207 208 209 210 211 212
		rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
		wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
	}

	if (rsize < cdata->inline_rsize)
		cdata->inline_rsize = rsize;
	if (wsize < cdata->inline_wsize)
		cdata->inline_wsize = wsize;
213 214
	dprintk("RPC:       %s: max send %u, max recv %u\n",
		__func__, cdata->inline_wsize, cdata->inline_rsize);
215 216 217
	rpcrdma_set_max_header_sizes(r_xprt);
}

218 219 220 221 222 223
static int
rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event)
{
	struct rpcrdma_xprt *xprt = id->context;
	struct rpcrdma_ia *ia = &xprt->rx_ia;
	struct rpcrdma_ep *ep = &xprt->rx_ep;
J
Jeff Layton 已提交
224
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
225
	struct sockaddr *sap = (struct sockaddr *)&ep->rep_remote_addr;
226
#endif
227 228 229 230 231
	int connstate = 0;

	switch (event->event) {
	case RDMA_CM_EVENT_ADDR_RESOLVED:
	case RDMA_CM_EVENT_ROUTE_RESOLVED:
232
		ia->ri_async_rc = 0;
233 234 235 236 237 238 239 240 241 242 243 244 245 246
		complete(&ia->ri_done);
		break;
	case RDMA_CM_EVENT_ADDR_ERROR:
		ia->ri_async_rc = -EHOSTUNREACH;
		dprintk("RPC:       %s: CM address resolution error, ep 0x%p\n",
			__func__, ep);
		complete(&ia->ri_done);
		break;
	case RDMA_CM_EVENT_ROUTE_ERROR:
		ia->ri_async_rc = -ENETUNREACH;
		dprintk("RPC:       %s: CM route resolution error, ep 0x%p\n",
			__func__, ep);
		complete(&ia->ri_done);
		break;
247 248
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
249 250
		pr_info("rpcrdma: removing device %s for %pIS:%u\n",
			ia->ri_device->name,
251 252 253 254 255 256 257 258 259 260 261 262
			sap, rpc_get_port(sap));
#endif
		set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags);
		ep->rep_connected = -ENODEV;
		xprt_force_disconnect(&xprt->rx_xprt);
		wait_for_completion(&ia->ri_remove_done);

		ia->ri_id = NULL;
		ia->ri_pd = NULL;
		ia->ri_device = NULL;
		/* Return 1 to ensure the core destroys the id. */
		return 1;
263 264
	case RDMA_CM_EVENT_ESTABLISHED:
		connstate = 1;
265
		rpcrdma_update_connect_private(xprt, &event->param.conn);
266 267 268 269 270 271 272 273
		goto connected;
	case RDMA_CM_EVENT_CONNECT_ERROR:
		connstate = -ENOTCONN;
		goto connected;
	case RDMA_CM_EVENT_UNREACHABLE:
		connstate = -ENETDOWN;
		goto connected;
	case RDMA_CM_EVENT_REJECTED:
274 275
		dprintk("rpcrdma: connection to %pIS:%u rejected: %s\n",
			sap, rpc_get_port(sap),
276
			rdma_reject_msg(id, event->status));
277
		connstate = -ECONNREFUSED;
278 279
		if (event->status == IB_CM_REJ_STALE_CONN)
			connstate = -EAGAIN;
280 281 282 283
		goto connected;
	case RDMA_CM_EVENT_DISCONNECTED:
		connstate = -ECONNABORTED;
connected:
284
		xprt->rx_buf.rb_credits = 1;
285
		ep->rep_connected = connstate;
286
		rpcrdma_conn_func(ep);
287
		wake_up_all(&ep->rep_connect_wait);
288
		/*FALLTHROUGH*/
289
	default:
290 291 292 293
		dprintk("RPC:       %s: %pIS:%u on %s/%s (ep 0x%p): %s\n",
			__func__, sap, rpc_get_port(sap),
			ia->ri_device->name, ia->ri_ops->ro_displayname,
			ep, rdma_event_msg(event->event));
294 295 296 297 298 299 300 301 302 303
		break;
	}

	return 0;
}

static struct rdma_cm_id *
rpcrdma_create_id(struct rpcrdma_xprt *xprt,
			struct rpcrdma_ia *ia, struct sockaddr *addr)
{
304
	unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
305 306 307
	struct rdma_cm_id *id;
	int rc;

308
	init_completion(&ia->ri_done);
309
	init_completion(&ia->ri_remove_done);
310

311 312
	id = rdma_create_id(&init_net, rpcrdma_conn_upcall, xprt, RDMA_PS_TCP,
			    IB_QPT_RC);
313 314 315 316 317 318 319
	if (IS_ERR(id)) {
		rc = PTR_ERR(id);
		dprintk("RPC:       %s: rdma_create_id() failed %i\n",
			__func__, rc);
		return id;
	}

320
	ia->ri_async_rc = -ETIMEDOUT;
321 322 323 324 325 326
	rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT);
	if (rc) {
		dprintk("RPC:       %s: rdma_resolve_addr() failed %i\n",
			__func__, rc);
		goto out;
	}
327 328 329 330 331 332
	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
	if (rc < 0) {
		dprintk("RPC:       %s: wait() exited: %i\n",
			__func__, rc);
		goto out;
	}
333

334 335 336 337
	rc = ia->ri_async_rc;
	if (rc)
		goto out;

338
	ia->ri_async_rc = -ETIMEDOUT;
339 340 341 342
	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
	if (rc) {
		dprintk("RPC:       %s: rdma_resolve_route() failed %i\n",
			__func__, rc);
343
		goto out;
344
	}
345 346 347 348
	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
	if (rc < 0) {
		dprintk("RPC:       %s: wait() exited: %i\n",
			__func__, rc);
349
		goto out;
350
	}
351 352
	rc = ia->ri_async_rc;
	if (rc)
353
		goto out;
354 355

	return id;
356

357 358 359 360 361 362 363 364 365
out:
	rdma_destroy_id(id);
	return ERR_PTR(rc);
}

/*
 * Exported functions.
 */

366 367 368 369 370 371 372
/**
 * rpcrdma_ia_open - Open and initialize an Interface Adapter.
 * @xprt: controlling transport
 * @addr: IP address of remote peer
 *
 * Returns 0 on success, negative errno if an appropriate
 * Interface Adapter could not be found and opened.
373 374
 */
int
375
rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr)
376 377
{
	struct rpcrdma_ia *ia = &xprt->rx_ia;
378 379
	int rc;

380 381 382
	ia->ri_id = rpcrdma_create_id(xprt, ia, addr);
	if (IS_ERR(ia->ri_id)) {
		rc = PTR_ERR(ia->ri_id);
383
		goto out_err;
384
	}
385
	ia->ri_device = ia->ri_id->device;
386

387
	ia->ri_pd = ib_alloc_pd(ia->ri_device, 0);
388 389
	if (IS_ERR(ia->ri_pd)) {
		rc = PTR_ERR(ia->ri_pd);
390
		pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc);
391
		goto out_err;
392 393
	}

394
	switch (xprt_rdma_memreg_strategy) {
395
	case RPCRDMA_FRMR:
396 397 398 399 400
		if (frwr_is_supported(ia)) {
			ia->ri_ops = &rpcrdma_frwr_memreg_ops;
			break;
		}
		/*FALLTHROUGH*/
401
	case RPCRDMA_MTHCAFMR:
402 403 404 405 406
		if (fmr_is_supported(ia)) {
			ia->ri_ops = &rpcrdma_fmr_memreg_ops;
			break;
		}
		/*FALLTHROUGH*/
407
	default:
408 409
		pr_err("rpcrdma: Device %s does not support memreg mode %d\n",
		       ia->ri_device->name, xprt_rdma_memreg_strategy);
410
		rc = -EINVAL;
411
		goto out_err;
412 413 414
	}

	return 0;
415

416 417
out_err:
	rpcrdma_ia_close(ia);
418 419 420
	return rc;
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/**
 * rpcrdma_ia_remove - Handle device driver unload
 * @ia: interface adapter being removed
 *
 * Divest transport H/W resources associated with this adapter,
 * but allow it to be restored later.
 */
void
rpcrdma_ia_remove(struct rpcrdma_ia *ia)
{
	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
						   rx_ia);
	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
	struct rpcrdma_req *req;
	struct rpcrdma_rep *rep;

	cancel_delayed_work_sync(&buf->rb_refresh_worker);

	/* This is similar to rpcrdma_ep_destroy, but:
	 * - Don't cancel the connect worker.
	 * - Don't call rpcrdma_ep_disconnect, which waits
	 *   for another conn upcall, which will deadlock.
	 * - rdma_disconnect is unneeded, the underlying
	 *   connection is already gone.
	 */
	if (ia->ri_id->qp) {
		ib_drain_qp(ia->ri_id->qp);
		rdma_destroy_qp(ia->ri_id);
		ia->ri_id->qp = NULL;
	}
	ib_free_cq(ep->rep_attr.recv_cq);
	ib_free_cq(ep->rep_attr.send_cq);

	/* The ULP is responsible for ensuring all DMA
	 * mappings and MRs are gone.
	 */
	list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list)
		rpcrdma_dma_unmap_regbuf(rep->rr_rdmabuf);
	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
		rpcrdma_dma_unmap_regbuf(req->rl_rdmabuf);
		rpcrdma_dma_unmap_regbuf(req->rl_sendbuf);
		rpcrdma_dma_unmap_regbuf(req->rl_recvbuf);
	}
	rpcrdma_destroy_mrs(buf);

	/* Allow waiters to continue */
	complete(&ia->ri_remove_done);
}

471 472 473 474
/**
 * rpcrdma_ia_close - Clean up/close an IA.
 * @ia: interface adapter to close
 *
475 476 477 478 479
 */
void
rpcrdma_ia_close(struct rpcrdma_ia *ia)
{
	dprintk("RPC:       %s: entering\n", __func__);
480 481 482
	if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
		if (ia->ri_id->qp)
			rdma_destroy_qp(ia->ri_id);
483
		rdma_destroy_id(ia->ri_id);
484
	}
485 486
	ia->ri_id = NULL;
	ia->ri_device = NULL;
487 488 489

	/* If the pd is still busy, xprtrdma missed freeing a resource */
	if (ia->ri_pd && !IS_ERR(ia->ri_pd))
490
		ib_dealloc_pd(ia->ri_pd);
491
	ia->ri_pd = NULL;
492 493 494 495 496 497 498
}

/*
 * Create unconnected endpoint.
 */
int
rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
499
		  struct rpcrdma_create_data_internal *cdata)
500
{
501
	struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private;
502
	unsigned int max_qp_wr, max_sge;
503
	struct ib_cq *sendcq, *recvcq;
504
	int rc;
505

506 507
	max_sge = min_t(unsigned int, ia->ri_device->attrs.max_sge,
			RPCRDMA_MAX_SEND_SGES);
508 509
	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
		pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge);
510 511
		return -ENOMEM;
	}
512
	ia->ri_max_send_sges = max_sge - RPCRDMA_MIN_SEND_SGES;
513

514
	if (ia->ri_device->attrs.max_qp_wr <= RPCRDMA_BACKWARD_WRS) {
515 516 517 518
		dprintk("RPC:       %s: insufficient wqe's available\n",
			__func__);
		return -ENOMEM;
	}
519
	max_qp_wr = ia->ri_device->attrs.max_qp_wr - RPCRDMA_BACKWARD_WRS - 1;
520

521
	/* check provider's send/recv wr limits */
522 523
	if (cdata->max_requests > max_qp_wr)
		cdata->max_requests = max_qp_wr;
524 525 526 527 528

	ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall;
	ep->rep_attr.qp_context = ep;
	ep->rep_attr.srq = NULL;
	ep->rep_attr.cap.max_send_wr = cdata->max_requests;
529
	ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
530
	ep->rep_attr.cap.max_send_wr += 1;	/* drain cqe */
C
Chuck Lever 已提交
531 532 533
	rc = ia->ri_ops->ro_open(ia, ep, cdata);
	if (rc)
		return rc;
534
	ep->rep_attr.cap.max_recv_wr = cdata->max_requests;
535
	ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
536
	ep->rep_attr.cap.max_recv_wr += 1;	/* drain cqe */
537
	ep->rep_attr.cap.max_send_sge = max_sge;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	ep->rep_attr.cap.max_recv_sge = 1;
	ep->rep_attr.cap.max_inline_data = 0;
	ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	ep->rep_attr.qp_type = IB_QPT_RC;
	ep->rep_attr.port_num = ~0;

	dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
		"iovs: send %d recv %d\n",
		__func__,
		ep->rep_attr.cap.max_send_wr,
		ep->rep_attr.cap.max_recv_wr,
		ep->rep_attr.cap.max_send_sge,
		ep->rep_attr.cap.max_recv_sge);

	/* set trigger for requesting send completion */
553 554 555
	ep->rep_send_batch = min_t(unsigned int, RPCRDMA_MAX_SEND_BATCH,
				   cdata->max_requests >> 2);
	ep->rep_send_count = ep->rep_send_batch;
556
	init_waitqueue_head(&ep->rep_connect_wait);
557
	INIT_DELAYED_WORK(&ep->rep_connect_worker, rpcrdma_connect_worker);
558

559 560 561
	sendcq = ib_alloc_cq(ia->ri_device, NULL,
			     ep->rep_attr.cap.max_send_wr + 1,
			     0, IB_POLL_SOFTIRQ);
562 563 564
	if (IS_ERR(sendcq)) {
		rc = PTR_ERR(sendcq);
		dprintk("RPC:       %s: failed to create send CQ: %i\n",
565 566 567 568
			__func__, rc);
		goto out1;
	}

569 570
	recvcq = ib_alloc_cq(ia->ri_device, NULL,
			     ep->rep_attr.cap.max_recv_wr + 1,
571
			     0, IB_POLL_WORKQUEUE);
572 573 574 575 576 577 578 579 580
	if (IS_ERR(recvcq)) {
		rc = PTR_ERR(recvcq);
		dprintk("RPC:       %s: failed to create recv CQ: %i\n",
			__func__, rc);
		goto out2;
	}

	ep->rep_attr.send_cq = sendcq;
	ep->rep_attr.recv_cq = recvcq;
581 582

	/* Initialize cma parameters */
583
	memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma));
584

585 586 587
	/* Prepare RDMA-CM private message */
	pmsg->cp_magic = rpcrdma_cmp_magic;
	pmsg->cp_version = RPCRDMA_CMP_VERSION;
588
	pmsg->cp_flags |= ia->ri_ops->ro_send_w_inv_ok;
589 590 591 592
	pmsg->cp_send_size = rpcrdma_encode_buffer_size(cdata->inline_wsize);
	pmsg->cp_recv_size = rpcrdma_encode_buffer_size(cdata->inline_rsize);
	ep->rep_remote_cma.private_data = pmsg;
	ep->rep_remote_cma.private_data_len = sizeof(*pmsg);
593 594

	/* Client offers RDMA Read but does not initiate */
595
	ep->rep_remote_cma.initiator_depth = 0;
596
	if (ia->ri_device->attrs.max_qp_rd_atom > 32)	/* arbitrary but <= 255 */
597 598
		ep->rep_remote_cma.responder_resources = 32;
	else
599
		ep->rep_remote_cma.responder_resources =
600
						ia->ri_device->attrs.max_qp_rd_atom;
601

602 603 604 605 606 607 608 609 610 611
	/* Limit transport retries so client can detect server
	 * GID changes quickly. RPC layer handles re-establishing
	 * transport connection and retransmission.
	 */
	ep->rep_remote_cma.retry_count = 6;

	/* RPC-over-RDMA handles its own flow control. In addition,
	 * make all RNR NAKs visible so we know that RPC-over-RDMA
	 * flow control is working correctly (no NAKs should be seen).
	 */
612 613 614 615 616 617
	ep->rep_remote_cma.flow_control = 0;
	ep->rep_remote_cma.rnr_retry_count = 0;

	return 0;

out2:
618
	ib_free_cq(sendcq);
619 620 621 622 623 624 625 626 627 628 629
out1:
	return rc;
}

/*
 * rpcrdma_ep_destroy
 *
 * Disconnect and destroy endpoint. After this, the only
 * valid operations on the ep are to free it (if dynamically
 * allocated) or re-create it.
 */
630
void
631 632 633 634 635
rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
{
	dprintk("RPC:       %s: entering, connected is %d\n",
		__func__, ep->rep_connected);

636 637
	cancel_delayed_work_sync(&ep->rep_connect_worker);

638
	if (ia->ri_id->qp) {
639
		rpcrdma_ep_disconnect(ep, ia);
640 641
		rdma_destroy_qp(ia->ri_id);
		ia->ri_id->qp = NULL;
642 643
	}

644
	ib_free_cq(ep->rep_attr.recv_cq);
645
	ib_free_cq(ep->rep_attr.send_cq);
646 647
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
/* Re-establish a connection after a device removal event.
 * Unlike a normal reconnection, a fresh PD and a new set
 * of MRs and buffers is needed.
 */
static int
rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt,
			 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
{
	struct sockaddr *sap = (struct sockaddr *)&r_xprt->rx_data.addr;
	int rc, err;

	pr_info("%s: r_xprt = %p\n", __func__, r_xprt);

	rc = -EHOSTUNREACH;
	if (rpcrdma_ia_open(r_xprt, sap))
		goto out1;

	rc = -ENOMEM;
	err = rpcrdma_ep_create(ep, ia, &r_xprt->rx_data);
	if (err) {
		pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err);
		goto out2;
	}

	rc = -ENETUNREACH;
	err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
	if (err) {
		pr_err("rpcrdma: rdma_create_qp returned %d\n", err);
		goto out3;
	}

	rpcrdma_create_mrs(r_xprt);
	return 0;

out3:
	rpcrdma_ep_destroy(ep, ia);
out2:
	rpcrdma_ia_close(ia);
out1:
	return rc;
}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
static int
rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep,
		     struct rpcrdma_ia *ia)
{
	struct sockaddr *sap = (struct sockaddr *)&r_xprt->rx_data.addr;
	struct rdma_cm_id *id, *old;
	int err, rc;

	dprintk("RPC:       %s: reconnecting...\n", __func__);

	rpcrdma_ep_disconnect(ep, ia);

	rc = -EHOSTUNREACH;
	id = rpcrdma_create_id(r_xprt, ia, sap);
	if (IS_ERR(id))
		goto out;

	/* As long as the new ID points to the same device as the
	 * old ID, we can reuse the transport's existing PD and all
	 * previously allocated MRs. Also, the same device means
	 * the transport's previous DMA mappings are still valid.
	 *
	 * This is a sanity check only. There should be no way these
	 * point to two different devices here.
	 */
	old = id;
	rc = -ENETUNREACH;
	if (ia->ri_device != id->device) {
		pr_err("rpcrdma: can't reconnect on different device!\n");
		goto out_destroy;
	}

	err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr);
	if (err) {
		dprintk("RPC:       %s: rdma_create_qp returned %d\n",
			__func__, err);
		goto out_destroy;
	}

	/* Atomically replace the transport's ID and QP. */
	rc = 0;
	old = ia->ri_id;
	ia->ri_id = id;
	rdma_destroy_qp(old);

out_destroy:
736
	rdma_destroy_id(old);
737 738 739 740
out:
	return rc;
}

741 742 743 744 745 746
/*
 * Connect unconnected endpoint.
 */
int
rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
{
747 748 749
	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
						   rx_ia);
	unsigned int extras;
750
	int rc;
751 752

retry:
753 754
	switch (ep->rep_connected) {
	case 0:
755 756 757 758 759
		dprintk("RPC:       %s: connecting...\n", __func__);
		rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
		if (rc) {
			dprintk("RPC:       %s: rdma_create_qp failed %i\n",
				__func__, rc);
760 761
			rc = -ENETUNREACH;
			goto out_noupdate;
762
		}
763
		break;
764 765 766 767 768
	case -ENODEV:
		rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia);
		if (rc)
			goto out_noupdate;
		break;
769 770 771 772
	default:
		rc = rpcrdma_ep_reconnect(r_xprt, ep, ia);
		if (rc)
			goto out;
773 774 775 776 777 778 779 780 781 782 783 784 785
	}

	ep->rep_connected = 0;

	rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
	if (rc) {
		dprintk("RPC:       %s: rdma_connect() failed with %i\n",
				__func__, rc);
		goto out;
	}

	wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
	if (ep->rep_connected <= 0) {
786
		if (ep->rep_connected == -EAGAIN)
787 788
			goto retry;
		rc = ep->rep_connected;
789
		goto out;
790 791
	}

792 793 794 795 796
	dprintk("RPC:       %s: connected\n", __func__);
	extras = r_xprt->rx_buf.rb_bc_srv_max_requests;
	if (extras)
		rpcrdma_ep_post_extra_recv(r_xprt, extras);

797 798 799
out:
	if (rc)
		ep->rep_connected = rc;
800 801

out_noupdate:
802 803 804 805 806 807 808 809 810 811 812 813
	return rc;
}

/*
 * rpcrdma_ep_disconnect
 *
 * This is separate from destroy to facilitate the ability
 * to reconnect without recreating the endpoint.
 *
 * This call is not reentrant, and must not be made in parallel
 * on the same endpoint.
 */
814
void
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
{
	int rc;

	rc = rdma_disconnect(ia->ri_id);
	if (!rc) {
		/* returns without wait if not connected */
		wait_event_interruptible(ep->rep_connect_wait,
							ep->rep_connected != 1);
		dprintk("RPC:       %s: after wait, %sconnected\n", __func__,
			(ep->rep_connected == 1) ? "still " : "dis");
	} else {
		dprintk("RPC:       %s: rdma_disconnect %i\n", __func__, rc);
		ep->rep_connected = rc;
	}
830 831

	ib_drain_qp(ia->ri_id->qp);
832 833
}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
/* Fixed-size circular FIFO queue. This implementation is wait-free and
 * lock-free.
 *
 * Consumer is the code path that posts Sends. This path dequeues a
 * sendctx for use by a Send operation. Multiple consumer threads
 * are serialized by the RPC transport lock, which allows only one
 * ->send_request call at a time.
 *
 * Producer is the code path that handles Send completions. This path
 * enqueues a sendctx that has been completed. Multiple producer
 * threads are serialized by the ib_poll_cq() function.
 */

/* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
 * queue activity, and ib_drain_qp has flushed all remaining Send
 * requests.
 */
static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf)
{
	unsigned long i;

	for (i = 0; i <= buf->rb_sc_last; i++)
		kfree(buf->rb_sc_ctxs[i]);
	kfree(buf->rb_sc_ctxs);
}

static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia)
{
	struct rpcrdma_sendctx *sc;

	sc = kzalloc(sizeof(*sc) +
		     ia->ri_max_send_sges * sizeof(struct ib_sge),
		     GFP_KERNEL);
	if (!sc)
		return NULL;

	sc->sc_wr.wr_cqe = &sc->sc_cqe;
	sc->sc_wr.sg_list = sc->sc_sges;
	sc->sc_wr.opcode = IB_WR_SEND;
	sc->sc_cqe.done = rpcrdma_wc_send;
	return sc;
}

static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
{
	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
	struct rpcrdma_sendctx *sc;
	unsigned long i;

	/* Maximum number of concurrent outstanding Send WRs. Capping
	 * the circular queue size stops Send Queue overflow by causing
	 * the ->send_request call to fail temporarily before too many
	 * Sends are posted.
	 */
	i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS;
	dprintk("RPC:       %s: allocating %lu send_ctxs\n", __func__, i);
	buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
	if (!buf->rb_sc_ctxs)
		return -ENOMEM;

	buf->rb_sc_last = i - 1;
	for (i = 0; i <= buf->rb_sc_last; i++) {
		sc = rpcrdma_sendctx_create(&r_xprt->rx_ia);
		if (!sc)
			goto out_destroy;

		sc->sc_xprt = r_xprt;
		buf->rb_sc_ctxs[i] = sc;
	}

	return 0;

out_destroy:
	rpcrdma_sendctxs_destroy(buf);
	return -ENOMEM;
}

/* The sendctx queue is not guaranteed to have a size that is a
 * power of two, thus the helpers in circ_buf.h cannot be used.
 * The other option is to use modulus (%), which can be expensive.
 */
static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
					  unsigned long item)
{
	return likely(item < buf->rb_sc_last) ? item + 1 : 0;
}

/**
 * rpcrdma_sendctx_get_locked - Acquire a send context
 * @buf: transport buffers from which to acquire an unused context
 *
 * Returns pointer to a free send completion context; or NULL if
 * the queue is empty.
 *
 * Usage: Called to acquire an SGE array before preparing a Send WR.
 *
 * The caller serializes calls to this function (per rpcrdma_buffer),
 * and provides an effective memory barrier that flushes the new value
 * of rb_sc_head.
 */
struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_buffer *buf)
{
	struct rpcrdma_xprt *r_xprt;
	struct rpcrdma_sendctx *sc;
	unsigned long next_head;

	next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);

	if (next_head == READ_ONCE(buf->rb_sc_tail))
		goto out_emptyq;

	/* ORDER: item must be accessed _before_ head is updated */
	sc = buf->rb_sc_ctxs[next_head];

	/* Releasing the lock in the caller acts as a memory
	 * barrier that flushes rb_sc_head.
	 */
	buf->rb_sc_head = next_head;

	return sc;

out_emptyq:
	/* The queue is "empty" if there have not been enough Send
	 * completions recently. This is a sign the Send Queue is
	 * backing up. Cause the caller to pause and try again.
	 */
	dprintk("RPC:       %s: empty sendctx queue\n", __func__);
	r_xprt = container_of(buf, struct rpcrdma_xprt, rx_buf);
	r_xprt->rx_stats.empty_sendctx_q++;
	return NULL;
}

/**
 * rpcrdma_sendctx_put_locked - Release a send context
 * @sc: send context to release
 *
 * Usage: Called from Send completion to return a sendctxt
 * to the queue.
 *
 * The caller serializes calls to this function (per rpcrdma_buffer).
 */
void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc)
{
	struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf;
	unsigned long next_tail;

	/* Unmap SGEs of previously completed by unsignaled
	 * Sends by walking up the queue until @sc is found.
	 */
	next_tail = buf->rb_sc_tail;
	do {
		next_tail = rpcrdma_sendctx_next(buf, next_tail);

		/* ORDER: item must be accessed _before_ tail is updated */
		rpcrdma_unmap_sendctx(buf->rb_sc_ctxs[next_tail]);

	} while (buf->rb_sc_ctxs[next_tail] != sc);

	/* Paired with READ_ONCE */
	smp_store_release(&buf->rb_sc_tail, next_tail);
}

996 997 998 999 1000 1001 1002 1003 1004
static void
rpcrdma_mr_recovery_worker(struct work_struct *work)
{
	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
						  rb_recovery_worker.work);
	struct rpcrdma_mw *mw;

	spin_lock(&buf->rb_recovery_lock);
	while (!list_empty(&buf->rb_stale_mrs)) {
1005
		mw = rpcrdma_pop_mw(&buf->rb_stale_mrs);
1006 1007 1008 1009 1010 1011
		spin_unlock(&buf->rb_recovery_lock);

		dprintk("RPC:       %s: recovering MR %p\n", __func__, mw);
		mw->mw_xprt->rx_ia.ri_ops->ro_recover_mr(mw);

		spin_lock(&buf->rb_recovery_lock);
1012
	}
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	spin_unlock(&buf->rb_recovery_lock);
}

void
rpcrdma_defer_mr_recovery(struct rpcrdma_mw *mw)
{
	struct rpcrdma_xprt *r_xprt = mw->mw_xprt;
	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;

	spin_lock(&buf->rb_recovery_lock);
1023
	rpcrdma_push_mw(mw, &buf->rb_stale_mrs);
1024 1025 1026 1027 1028
	spin_unlock(&buf->rb_recovery_lock);

	schedule_delayed_work(&buf->rb_recovery_worker, 0);
}

C
Chuck Lever 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
static void
rpcrdma_create_mrs(struct rpcrdma_xprt *r_xprt)
{
	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
	unsigned int count;
	LIST_HEAD(free);
	LIST_HEAD(all);

	for (count = 0; count < 32; count++) {
		struct rpcrdma_mw *mw;
		int rc;

		mw = kzalloc(sizeof(*mw), GFP_KERNEL);
		if (!mw)
			break;

		rc = ia->ri_ops->ro_init_mr(ia, mw);
		if (rc) {
			kfree(mw);
			break;
		}

		mw->mw_xprt = r_xprt;

		list_add(&mw->mw_list, &free);
		list_add(&mw->mw_all, &all);
	}

	spin_lock(&buf->rb_mwlock);
	list_splice(&free, &buf->rb_mws);
	list_splice(&all, &buf->rb_all);
	r_xprt->rx_stats.mrs_allocated += count;
	spin_unlock(&buf->rb_mwlock);

	dprintk("RPC:       %s: created %u MRs\n", __func__, count);
}

static void
rpcrdma_mr_refresh_worker(struct work_struct *work)
{
	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
						  rb_refresh_worker.work);
	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
						   rx_buf);

	rpcrdma_create_mrs(r_xprt);
}

1078
struct rpcrdma_req *
1079 1080
rpcrdma_create_req(struct rpcrdma_xprt *r_xprt)
{
1081
	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
1082 1083
	struct rpcrdma_req *req;

1084
	req = kzalloc(sizeof(*req), GFP_KERNEL);
1085
	if (req == NULL)
1086
		return ERR_PTR(-ENOMEM);
1087

1088 1089 1090
	spin_lock(&buffer->rb_reqslock);
	list_add(&req->rl_all, &buffer->rb_allreqs);
	spin_unlock(&buffer->rb_reqslock);
1091
	req->rl_buffer = &r_xprt->rx_buf;
1092
	INIT_LIST_HEAD(&req->rl_registered);
1093 1094 1095
	return req;
}

1096
struct rpcrdma_rep *
1097 1098 1099 1100 1101 1102 1103
rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt)
{
	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
	struct rpcrdma_rep *rep;
	int rc;

	rc = -ENOMEM;
1104
	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
1105 1106 1107
	if (rep == NULL)
		goto out;

1108
	rep->rr_rdmabuf = rpcrdma_alloc_regbuf(cdata->inline_rsize,
1109
					       DMA_FROM_DEVICE, GFP_KERNEL);
1110 1111
	if (IS_ERR(rep->rr_rdmabuf)) {
		rc = PTR_ERR(rep->rr_rdmabuf);
1112
		goto out_free;
1113
	}
1114 1115
	xdr_buf_init(&rep->rr_hdrbuf, rep->rr_rdmabuf->rg_base,
		     rdmab_length(rep->rr_rdmabuf));
1116

1117
	rep->rr_cqe.done = rpcrdma_wc_receive;
1118
	rep->rr_rxprt = r_xprt;
1119
	INIT_WORK(&rep->rr_work, rpcrdma_deferred_completion);
1120 1121 1122 1123
	rep->rr_recv_wr.next = NULL;
	rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
	rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
	rep->rr_recv_wr.num_sge = 1;
1124 1125 1126 1127 1128 1129 1130 1131
	return rep;

out_free:
	kfree(rep);
out:
	return ERR_PTR(rc);
}

1132
int
1133
rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1134
{
1135
	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1136 1137
	int i, rc;

1138
	buf->rb_max_requests = r_xprt->rx_data.max_requests;
1139
	buf->rb_bc_srv_max_requests = 0;
C
Chuck Lever 已提交
1140
	spin_lock_init(&buf->rb_mwlock);
1141 1142
	spin_lock_init(&buf->rb_lock);
	spin_lock_init(&buf->rb_recovery_lock);
C
Chuck Lever 已提交
1143 1144
	INIT_LIST_HEAD(&buf->rb_mws);
	INIT_LIST_HEAD(&buf->rb_all);
1145
	INIT_LIST_HEAD(&buf->rb_stale_mrs);
C
Chuck Lever 已提交
1146 1147
	INIT_DELAYED_WORK(&buf->rb_refresh_worker,
			  rpcrdma_mr_refresh_worker);
1148 1149
	INIT_DELAYED_WORK(&buf->rb_recovery_worker,
			  rpcrdma_mr_recovery_worker);
1150

C
Chuck Lever 已提交
1151
	rpcrdma_create_mrs(r_xprt);
1152

1153
	INIT_LIST_HEAD(&buf->rb_send_bufs);
1154 1155
	INIT_LIST_HEAD(&buf->rb_allreqs);
	spin_lock_init(&buf->rb_reqslock);
1156 1157 1158
	for (i = 0; i < buf->rb_max_requests; i++) {
		struct rpcrdma_req *req;

1159 1160
		req = rpcrdma_create_req(r_xprt);
		if (IS_ERR(req)) {
1161 1162
			dprintk("RPC:       %s: request buffer %d alloc"
				" failed\n", __func__, i);
1163
			rc = PTR_ERR(req);
1164 1165
			goto out;
		}
1166
		list_add(&req->rl_list, &buf->rb_send_bufs);
1167 1168 1169
	}

	INIT_LIST_HEAD(&buf->rb_recv_bufs);
1170
	for (i = 0; i < buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS; i++) {
1171
		struct rpcrdma_rep *rep;
1172

1173 1174
		rep = rpcrdma_create_rep(r_xprt);
		if (IS_ERR(rep)) {
1175 1176
			dprintk("RPC:       %s: reply buffer %d alloc failed\n",
				__func__, i);
1177
			rc = PTR_ERR(rep);
1178 1179
			goto out;
		}
1180
		list_add(&rep->rr_list, &buf->rb_recv_bufs);
1181
	}
1182

1183 1184 1185 1186
	rc = rpcrdma_sendctxs_create(r_xprt);
	if (rc)
		goto out;

1187 1188 1189 1190 1191 1192
	return 0;
out:
	rpcrdma_buffer_destroy(buf);
	return rc;
}

1193 1194 1195 1196 1197 1198
static struct rpcrdma_req *
rpcrdma_buffer_get_req_locked(struct rpcrdma_buffer *buf)
{
	struct rpcrdma_req *req;

	req = list_first_entry(&buf->rb_send_bufs,
1199
			       struct rpcrdma_req, rl_list);
1200
	list_del_init(&req->rl_list);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	return req;
}

static struct rpcrdma_rep *
rpcrdma_buffer_get_rep_locked(struct rpcrdma_buffer *buf)
{
	struct rpcrdma_rep *rep;

	rep = list_first_entry(&buf->rb_recv_bufs,
			       struct rpcrdma_rep, rr_list);
	list_del(&rep->rr_list);
	return rep;
}

1215
static void
1216
rpcrdma_destroy_rep(struct rpcrdma_rep *rep)
1217
{
1218
	rpcrdma_free_regbuf(rep->rr_rdmabuf);
1219 1220 1221
	kfree(rep);
}

1222
void
1223
rpcrdma_destroy_req(struct rpcrdma_req *req)
1224
{
1225 1226 1227
	rpcrdma_free_regbuf(req->rl_recvbuf);
	rpcrdma_free_regbuf(req->rl_sendbuf);
	rpcrdma_free_regbuf(req->rl_rdmabuf);
1228 1229 1230
	kfree(req);
}

C
Chuck Lever 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
static void
rpcrdma_destroy_mrs(struct rpcrdma_buffer *buf)
{
	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
						   rx_buf);
	struct rpcrdma_ia *ia = rdmab_to_ia(buf);
	struct rpcrdma_mw *mw;
	unsigned int count;

	count = 0;
	spin_lock(&buf->rb_mwlock);
	while (!list_empty(&buf->rb_all)) {
		mw = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
		list_del(&mw->mw_all);

		spin_unlock(&buf->rb_mwlock);
		ia->ri_ops->ro_release_mr(mw);
		count++;
		spin_lock(&buf->rb_mwlock);
	}
	spin_unlock(&buf->rb_mwlock);
	r_xprt->rx_stats.mrs_allocated = 0;

	dprintk("RPC:       %s: released %u MRs\n", __func__, count);
}

1257 1258 1259
void
rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
{
1260
	cancel_delayed_work_sync(&buf->rb_recovery_worker);
1261
	cancel_delayed_work_sync(&buf->rb_refresh_worker);
1262

1263 1264
	rpcrdma_sendctxs_destroy(buf);

1265 1266
	while (!list_empty(&buf->rb_recv_bufs)) {
		struct rpcrdma_rep *rep;
1267

1268
		rep = rpcrdma_buffer_get_rep_locked(buf);
1269
		rpcrdma_destroy_rep(rep);
1270
	}
1271
	buf->rb_send_count = 0;
1272

1273 1274
	spin_lock(&buf->rb_reqslock);
	while (!list_empty(&buf->rb_allreqs)) {
1275
		struct rpcrdma_req *req;
A
Allen Andrews 已提交
1276

1277 1278 1279 1280 1281
		req = list_first_entry(&buf->rb_allreqs,
				       struct rpcrdma_req, rl_all);
		list_del(&req->rl_all);

		spin_unlock(&buf->rb_reqslock);
1282
		rpcrdma_destroy_req(req);
1283
		spin_lock(&buf->rb_reqslock);
1284
	}
1285
	spin_unlock(&buf->rb_reqslock);
1286
	buf->rb_recv_count = 0;
A
Allen Andrews 已提交
1287

C
Chuck Lever 已提交
1288
	rpcrdma_destroy_mrs(buf);
1289 1290
}

1291 1292
struct rpcrdma_mw *
rpcrdma_get_mw(struct rpcrdma_xprt *r_xprt)
1293
{
1294 1295 1296
	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
	struct rpcrdma_mw *mw = NULL;

C
Chuck Lever 已提交
1297
	spin_lock(&buf->rb_mwlock);
1298 1299
	if (!list_empty(&buf->rb_mws))
		mw = rpcrdma_pop_mw(&buf->rb_mws);
C
Chuck Lever 已提交
1300
	spin_unlock(&buf->rb_mwlock);
1301 1302

	if (!mw)
C
Chuck Lever 已提交
1303
		goto out_nomws;
1304
	mw->mw_flags = 0;
1305
	return mw;
C
Chuck Lever 已提交
1306 1307 1308

out_nomws:
	dprintk("RPC:       %s: no MWs available\n", __func__);
1309 1310
	if (r_xprt->rx_ep.rep_connected != -ENODEV)
		schedule_delayed_work(&buf->rb_refresh_worker, 0);
C
Chuck Lever 已提交
1311 1312 1313 1314 1315

	/* Allow the reply handler and refresh worker to run */
	cond_resched();

	return NULL;
1316 1317
}

1318 1319
void
rpcrdma_put_mw(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mw *mw)
1320
{
1321
	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1322

C
Chuck Lever 已提交
1323
	spin_lock(&buf->rb_mwlock);
1324
	rpcrdma_push_mw(mw, &buf->rb_mws);
C
Chuck Lever 已提交
1325
	spin_unlock(&buf->rb_mwlock);
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
static struct rpcrdma_rep *
rpcrdma_buffer_get_rep(struct rpcrdma_buffer *buffers)
{
	/* If an RPC previously completed without a reply (say, a
	 * credential problem or a soft timeout occurs) then hold off
	 * on supplying more Receive buffers until the number of new
	 * pending RPCs catches up to the number of posted Receives.
	 */
	if (unlikely(buffers->rb_send_count < buffers->rb_recv_count))
		return NULL;

	if (unlikely(list_empty(&buffers->rb_recv_bufs)))
		return NULL;
	buffers->rb_recv_count++;
	return rpcrdma_buffer_get_rep_locked(buffers);
}

1345 1346
/*
 * Get a set of request/reply buffers.
1347 1348
 *
 * Reply buffer (if available) is attached to send buffer upon return.
1349 1350 1351 1352 1353
 */
struct rpcrdma_req *
rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
{
	struct rpcrdma_req *req;
1354

1355
	spin_lock(&buffers->rb_lock);
1356 1357
	if (list_empty(&buffers->rb_send_bufs))
		goto out_reqbuf;
1358
	buffers->rb_send_count++;
1359
	req = rpcrdma_buffer_get_req_locked(buffers);
1360
	req->rl_reply = rpcrdma_buffer_get_rep(buffers);
1361
	spin_unlock(&buffers->rb_lock);
1362
	return req;
1363

1364
out_reqbuf:
1365
	spin_unlock(&buffers->rb_lock);
1366
	pr_warn("RPC:       %s: out of request buffers\n", __func__);
1367
	return NULL;
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
}

/*
 * Put request/reply buffers back into pool.
 * Pre-decrement counter/array index.
 */
void
rpcrdma_buffer_put(struct rpcrdma_req *req)
{
	struct rpcrdma_buffer *buffers = req->rl_buffer;
1378
	struct rpcrdma_rep *rep = req->rl_reply;
1379

1380 1381
	req->rl_reply = NULL;

1382
	spin_lock(&buffers->rb_lock);
1383
	buffers->rb_send_count--;
1384
	list_add_tail(&req->rl_list, &buffers->rb_send_bufs);
1385 1386
	if (rep) {
		buffers->rb_recv_count--;
1387
		list_add_tail(&rep->rr_list, &buffers->rb_recv_bufs);
1388
	}
1389
	spin_unlock(&buffers->rb_lock);
1390 1391 1392 1393
}

/*
 * Recover reply buffers from pool.
1394
 * This happens when recovering from disconnect.
1395 1396 1397 1398 1399 1400
 */
void
rpcrdma_recv_buffer_get(struct rpcrdma_req *req)
{
	struct rpcrdma_buffer *buffers = req->rl_buffer;

1401
	spin_lock(&buffers->rb_lock);
1402
	req->rl_reply = rpcrdma_buffer_get_rep(buffers);
1403
	spin_unlock(&buffers->rb_lock);
1404 1405 1406 1407
}

/*
 * Put reply buffers back into pool when not attached to
1408
 * request. This happens in error conditions.
1409 1410 1411 1412
 */
void
rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
{
1413
	struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf;
1414

1415
	spin_lock(&buffers->rb_lock);
1416
	buffers->rb_recv_count--;
1417
	list_add_tail(&rep->rr_list, &buffers->rb_recv_bufs);
1418
	spin_unlock(&buffers->rb_lock);
1419 1420
}

1421
/**
1422
 * rpcrdma_alloc_regbuf - allocate and DMA-map memory for SEND/RECV buffers
1423
 * @size: size of buffer to be allocated, in bytes
1424
 * @direction: direction of data movement
1425 1426
 * @flags: GFP flags
 *
1427 1428
 * Returns an ERR_PTR, or a pointer to a regbuf, a buffer that
 * can be persistently DMA-mapped for I/O.
1429 1430
 *
 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1431 1432
 * receiving the payload of RDMA RECV operations. During Long Calls
 * or Replies they may be registered externally via ro_map.
1433 1434
 */
struct rpcrdma_regbuf *
1435 1436
rpcrdma_alloc_regbuf(size_t size, enum dma_data_direction direction,
		     gfp_t flags)
1437 1438 1439 1440 1441
{
	struct rpcrdma_regbuf *rb;

	rb = kmalloc(sizeof(*rb) + size, flags);
	if (rb == NULL)
1442
		return ERR_PTR(-ENOMEM);
1443

1444
	rb->rg_device = NULL;
1445
	rb->rg_direction = direction;
1446
	rb->rg_iov.length = size;
1447 1448

	return rb;
1449
}
1450

1451 1452 1453 1454 1455 1456 1457 1458
/**
 * __rpcrdma_map_regbuf - DMA-map a regbuf
 * @ia: controlling rpcrdma_ia
 * @rb: regbuf to be mapped
 */
bool
__rpcrdma_dma_map_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb)
{
1459 1460
	struct ib_device *device = ia->ri_device;

1461 1462 1463
	if (rb->rg_direction == DMA_NONE)
		return false;

1464
	rb->rg_iov.addr = ib_dma_map_single(device,
1465 1466 1467
					    (void *)rb->rg_base,
					    rdmab_length(rb),
					    rb->rg_direction);
1468
	if (ib_dma_mapping_error(device, rdmab_addr(rb)))
1469 1470
		return false;

1471
	rb->rg_device = device;
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	rb->rg_iov.lkey = ia->ri_pd->local_dma_lkey;
	return true;
}

static void
rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb)
{
	if (!rpcrdma_regbuf_is_mapped(rb))
		return;

	ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb),
			    rdmab_length(rb), rb->rg_direction);
	rb->rg_device = NULL;
1485 1486 1487 1488 1489 1490 1491
}

/**
 * rpcrdma_free_regbuf - deregister and free registered buffer
 * @rb: regbuf to be deregistered and freed
 */
void
1492
rpcrdma_free_regbuf(struct rpcrdma_regbuf *rb)
1493
{
1494 1495 1496
	if (!rb)
		return;

1497
	rpcrdma_dma_unmap_regbuf(rb);
1498
	kfree(rb);
1499 1500
}

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/*
 * Prepost any receive buffer, then post send.
 *
 * Receive buffer is donated to hardware, reclaimed upon recv completion.
 */
int
rpcrdma_ep_post(struct rpcrdma_ia *ia,
		struct rpcrdma_ep *ep,
		struct rpcrdma_req *req)
{
1511
	struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr;
1512
	struct ib_send_wr *send_wr_fail;
1513
	int rc;
1514

1515 1516
	if (req->rl_reply) {
		rc = rpcrdma_ep_post_recv(ia, req->rl_reply);
1517
		if (rc)
1518
			return rc;
1519 1520 1521
		req->rl_reply = NULL;
	}

1522
	dprintk("RPC:       %s: posting %d s/g entries\n",
1523
		__func__, send_wr->num_sge);
1524

1525 1526
	if (!ep->rep_send_count ||
	    test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) {
1527 1528 1529 1530 1531 1532
		send_wr->send_flags |= IB_SEND_SIGNALED;
		ep->rep_send_count = ep->rep_send_batch;
	} else {
		send_wr->send_flags &= ~IB_SEND_SIGNALED;
		--ep->rep_send_count;
	}
1533
	rc = ib_post_send(ia->ri_id->qp, send_wr, &send_wr_fail);
1534
	if (rc)
1535 1536 1537 1538 1539 1540
		goto out_postsend_err;
	return 0;

out_postsend_err:
	pr_err("rpcrdma: RDMA Send ib_post_send returned %i\n", rc);
	return -ENOTCONN;
1541 1542 1543 1544 1545 1546
}

int
rpcrdma_ep_post_recv(struct rpcrdma_ia *ia,
		     struct rpcrdma_rep *rep)
{
1547
	struct ib_recv_wr *recv_wr_fail;
1548 1549
	int rc;

1550 1551
	if (!rpcrdma_dma_map_regbuf(ia, rep->rr_rdmabuf))
		goto out_map;
1552
	rc = ib_post_recv(ia->ri_id->qp, &rep->rr_recv_wr, &recv_wr_fail);
1553
	if (rc)
1554 1555 1556
		goto out_postrecv;
	return 0;

1557 1558 1559 1560
out_map:
	pr_err("rpcrdma: failed to DMA map the Receive buffer\n");
	return -EIO;

1561 1562 1563
out_postrecv:
	pr_err("rpcrdma: ib_post_recv returned %i\n", rc);
	return -ENOTCONN;
1564
}
1565

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
/**
 * rpcrdma_ep_post_extra_recv - Post buffers for incoming backchannel requests
 * @r_xprt: transport associated with these backchannel resources
 * @min_reqs: minimum number of incoming requests expected
 *
 * Returns zero if all requested buffers were posted, or a negative errno.
 */
int
rpcrdma_ep_post_extra_recv(struct rpcrdma_xprt *r_xprt, unsigned int count)
{
	struct rpcrdma_buffer *buffers = &r_xprt->rx_buf;
	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
	struct rpcrdma_rep *rep;
	int rc;

	while (count--) {
1582
		spin_lock(&buffers->rb_lock);
1583 1584 1585
		if (list_empty(&buffers->rb_recv_bufs))
			goto out_reqbuf;
		rep = rpcrdma_buffer_get_rep_locked(buffers);
1586
		spin_unlock(&buffers->rb_lock);
1587

1588
		rc = rpcrdma_ep_post_recv(ia, rep);
1589 1590 1591 1592 1593 1594 1595
		if (rc)
			goto out_rc;
	}

	return 0;

out_reqbuf:
1596
	spin_unlock(&buffers->rb_lock);
1597 1598 1599 1600 1601 1602 1603
	pr_warn("%s: no extra receive buffers\n", __func__);
	return -ENOMEM;

out_rc:
	rpcrdma_recv_buffer_put(rep);
	return rc;
}