mmzone.h 39.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
#ifndef _LINUX_MMZONE_H
#define _LINUX_MMZONE_H

#ifndef __ASSEMBLY__
C
Christoph Lameter 已提交
5
#ifndef __GENERATING_BOUNDS_H
L
Linus Torvalds 已提交
6 7 8 9

#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/wait.h>
10
#include <linux/bitops.h>
L
Linus Torvalds 已提交
11 12 13 14
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/numa.h>
#include <linux/init.h>
15
#include <linux/seqlock.h>
16
#include <linux/nodemask.h>
17
#include <linux/pageblock-flags.h>
18
#include <linux/page-flags-layout.h>
A
Arun Sharma 已提交
19
#include <linux/atomic.h>
R
Ralf Baechle 已提交
20
#include <asm/page.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26 27

/* Free memory management - zoned buddy allocator.  */
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define MAX_ORDER 11
#else
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
#endif
28
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
L
Linus Torvalds 已提交
29

A
Andy Whitcroft 已提交
30 31 32
/*
 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
 * costly to service.  That is between allocation orders which should
33
 * coalesce naturally under reasonable reclaim pressure and those which
A
Andy Whitcroft 已提交
34 35 36 37
 * will not.
 */
#define PAGE_ALLOC_COSTLY_ORDER 3

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
enum {
	MIGRATE_UNMOVABLE,
	MIGRATE_RECLAIMABLE,
	MIGRATE_MOVABLE,
	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
#ifdef CONFIG_CMA
	/*
	 * MIGRATE_CMA migration type is designed to mimic the way
	 * ZONE_MOVABLE works.  Only movable pages can be allocated
	 * from MIGRATE_CMA pageblocks and page allocator never
	 * implicitly change migration type of MIGRATE_CMA pageblock.
	 *
	 * The way to use it is to change migratetype of a range of
	 * pageblocks to MIGRATE_CMA which can be done by
	 * __free_pageblock_cma() function.  What is important though
	 * is that a range of pageblocks must be aligned to
	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
	 * a single pageblock.
	 */
	MIGRATE_CMA,
#endif
60
#ifdef CONFIG_MEMORY_ISOLATION
61
	MIGRATE_ISOLATE,	/* can't allocate from here */
62
#endif
63 64 65 66 67 68 69 70
	MIGRATE_TYPES
};

#ifdef CONFIG_CMA
#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
#else
#  define is_migrate_cma(migratetype) false
#endif
71 72 73 74 75

#define for_each_migratetype_order(order, type) \
	for (order = 0; order < MAX_ORDER; order++) \
		for (type = 0; type < MIGRATE_TYPES; type++)

76 77 78 79 80 81 82
extern int page_group_by_mobility_disabled;

static inline int get_pageblock_migratetype(struct page *page)
{
	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
}

L
Linus Torvalds 已提交
83
struct free_area {
84
	struct list_head	free_list[MIGRATE_TYPES];
L
Linus Torvalds 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
	unsigned long		nr_free;
};

struct pglist_data;

/*
 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
 * So add a wild amount of padding here to ensure that they fall into separate
 * cachelines.  There are very few zone structures in the machine, so space
 * consumption is not a concern here.
 */
#if defined(CONFIG_SMP)
struct zone_padding {
	char x[0];
99
} ____cacheline_internodealigned_in_smp;
L
Linus Torvalds 已提交
100 101 102 103 104
#define ZONE_PADDING(name)	struct zone_padding name;
#else
#define ZONE_PADDING(name)
#endif

105
enum zone_stat_item {
106
	/* First 128 byte cacheline (assuming 64 bit words) */
107
	NR_FREE_PAGES,
108
	NR_ALLOC_BATCH,
109
	NR_LRU_BASE,
110 111 112 113
	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
L
Lee Schermerhorn 已提交
114
	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
N
Nick Piggin 已提交
115
	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
116 117
	NR_ANON_PAGES,	/* Mapped anonymous pages */
	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
118
			   only modified from process context */
119
	NR_FILE_PAGES,
120
	NR_FILE_DIRTY,
121
	NR_WRITEBACK,
122 123 124
	NR_SLAB_RECLAIMABLE,
	NR_SLAB_UNRECLAIMABLE,
	NR_PAGETABLE,		/* used for pagetables */
125 126
	NR_KERNEL_STACK,
	/* Second 128 byte cacheline */
127
	NR_UNSTABLE_NFS,	/* NFS unstable pages */
128
	NR_BOUNCE,
129
	NR_VMSCAN_WRITE,
130
	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
131
	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
K
KOSAKI Motohiro 已提交
132 133
	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
134
	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
135 136
	NR_DIRTIED,		/* page dirtyings since bootup */
	NR_WRITTEN,		/* page writings since bootup */
137 138 139 140 141 142 143 144
#ifdef CONFIG_NUMA
	NUMA_HIT,		/* allocated in intended node */
	NUMA_MISS,		/* allocated in non intended node */
	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
	NUMA_LOCAL,		/* allocation from local node */
	NUMA_OTHER,		/* allocation from other node */
#endif
145
	NR_ANON_TRANSPARENT_HUGEPAGES,
146
	NR_FREE_CMA_PAGES,
147 148
	NR_VM_ZONE_STAT_ITEMS };

149 150 151 152 153 154 155 156 157 158 159 160 161
/*
 * We do arithmetic on the LRU lists in various places in the code,
 * so it is important to keep the active lists LRU_ACTIVE higher in
 * the array than the corresponding inactive lists, and to keep
 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 *
 * This has to be kept in sync with the statistics in zone_stat_item
 * above and the descriptions in vmstat_text in mm/vmstat.c
 */
#define LRU_BASE 0
#define LRU_ACTIVE 1
#define LRU_FILE 2

162
enum lru_list {
163 164 165 166
	LRU_INACTIVE_ANON = LRU_BASE,
	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
L
Lee Schermerhorn 已提交
167 168 169
	LRU_UNEVICTABLE,
	NR_LRU_LISTS
};
170

H
Hugh Dickins 已提交
171
#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
172

H
Hugh Dickins 已提交
173
#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
L
Lee Schermerhorn 已提交
174

H
Hugh Dickins 已提交
175
static inline int is_file_lru(enum lru_list lru)
176
{
H
Hugh Dickins 已提交
177
	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
178 179
}

H
Hugh Dickins 已提交
180
static inline int is_active_lru(enum lru_list lru)
181
{
H
Hugh Dickins 已提交
182
	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
183 184
}

H
Hugh Dickins 已提交
185
static inline int is_unevictable_lru(enum lru_list lru)
L
Lee Schermerhorn 已提交
186
{
H
Hugh Dickins 已提交
187
	return (lru == LRU_UNEVICTABLE);
L
Lee Schermerhorn 已提交
188 189
}

190 191 192
struct zone_reclaim_stat {
	/*
	 * The pageout code in vmscan.c keeps track of how many of the
193
	 * mem/swap backed and file backed pages are referenced.
194 195 196 197 198 199 200 201 202
	 * The higher the rotated/scanned ratio, the more valuable
	 * that cache is.
	 *
	 * The anon LRU stats live in [0], file LRU stats in [1]
	 */
	unsigned long		recent_rotated[2];
	unsigned long		recent_scanned[2];
};

203 204
struct lruvec {
	struct list_head lists[NR_LRU_LISTS];
205
	struct zone_reclaim_stat reclaim_stat;
A
Andrew Morton 已提交
206
#ifdef CONFIG_MEMCG
207 208
	struct zone *zone;
#endif
209 210
};

211 212 213 214 215
/* Mask used at gathering information at once (see memcontrol.c) */
#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

216
/* Isolate clean file */
217
#define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
218
/* Isolate unmapped file */
219
#define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
220
/* Isolate for asynchronous migration */
221
#define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
M
Minchan Kim 已提交
222 223
/* Isolate unevictable pages */
#define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
224 225 226 227

/* LRU Isolation modes. */
typedef unsigned __bitwise__ isolate_mode_t;

228 229 230 231 232 233 234 235 236 237 238
enum zone_watermarks {
	WMARK_MIN,
	WMARK_LOW,
	WMARK_HIGH,
	NR_WMARK
};

#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])

L
Linus Torvalds 已提交
239 240 241 242
struct per_cpu_pages {
	int count;		/* number of pages in the list */
	int high;		/* high watermark, emptying needed */
	int batch;		/* chunk size for buddy add/remove */
243 244 245

	/* Lists of pages, one per migrate type stored on the pcp-lists */
	struct list_head lists[MIGRATE_PCPTYPES];
L
Linus Torvalds 已提交
246 247 248
};

struct per_cpu_pageset {
249
	struct per_cpu_pages pcp;
250 251 252
#ifdef CONFIG_NUMA
	s8 expire;
#endif
253
#ifdef CONFIG_SMP
254
	s8 stat_threshold;
255 256
	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
#endif
257
};
258

C
Christoph Lameter 已提交
259 260
#endif /* !__GENERATING_BOUNDS.H */

261
enum zone_type {
262
#ifdef CONFIG_ZONE_DMA
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	/*
	 * ZONE_DMA is used when there are devices that are not able
	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
	 * carve out the portion of memory that is needed for these devices.
	 * The range is arch specific.
	 *
	 * Some examples
	 *
	 * Architecture		Limit
	 * ---------------------------
	 * parisc, ia64, sparc	<4G
	 * s390			<2G
	 * arm			Various
	 * alpha		Unlimited or 0-16MB.
	 *
	 * i386, x86_64 and multiple other arches
	 * 			<16M.
	 */
	ZONE_DMA,
282
#endif
283
#ifdef CONFIG_ZONE_DMA32
284 285 286 287 288 289
	/*
	 * x86_64 needs two ZONE_DMAs because it supports devices that are
	 * only able to do DMA to the lower 16M but also 32 bit devices that
	 * can only do DMA areas below 4G.
	 */
	ZONE_DMA32,
290
#endif
291 292 293 294 295 296
	/*
	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
	 * performed on pages in ZONE_NORMAL if the DMA devices support
	 * transfers to all addressable memory.
	 */
	ZONE_NORMAL,
297
#ifdef CONFIG_HIGHMEM
298 299 300 301 302 303 304 305 306
	/*
	 * A memory area that is only addressable by the kernel through
	 * mapping portions into its own address space. This is for example
	 * used by i386 to allow the kernel to address the memory beyond
	 * 900MB. The kernel will set up special mappings (page
	 * table entries on i386) for each page that the kernel needs to
	 * access.
	 */
	ZONE_HIGHMEM,
307
#endif
M
Mel Gorman 已提交
308
	ZONE_MOVABLE,
C
Christoph Lameter 已提交
309
	__MAX_NR_ZONES
310
};
L
Linus Torvalds 已提交
311

C
Christoph Lameter 已提交
312 313
#ifndef __GENERATING_BOUNDS_H

L
Linus Torvalds 已提交
314 315
struct zone {
	/* Fields commonly accessed by the page allocator */
316 317 318 319

	/* zone watermarks, access with *_wmark_pages(zone) macros */
	unsigned long watermark[NR_WMARK];

320 321 322 323 324 325 326
	/*
	 * When free pages are below this point, additional steps are taken
	 * when reading the number of free pages to avoid per-cpu counter
	 * drift allowing watermarks to be breached
	 */
	unsigned long percpu_drift_mark;

L
Linus Torvalds 已提交
327 328 329 330 331 332 333 334 335 336
	/*
	 * We don't know if the memory that we're going to allocate will be freeable
	 * or/and it will be released eventually, so to avoid totally wasting several
	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
	 * to run OOM on the lower zones despite there's tons of freeable ram
	 * on the higher zones). This array is recalculated at runtime if the
	 * sysctl_lowmem_reserve_ratio sysctl changes.
	 */
	unsigned long		lowmem_reserve[MAX_NR_ZONES];

337 338 339 340 341 342
	/*
	 * This is a per-zone reserve of pages that should not be
	 * considered dirtyable memory.
	 */
	unsigned long		dirty_balance_reserve;

343
#ifdef CONFIG_NUMA
344
	int node;
345 346 347
	/*
	 * zone reclaim becomes active if more unmapped pages exist.
	 */
348
	unsigned long		min_unmapped_pages;
349
	unsigned long		min_slab_pages;
350
#endif
351
	struct per_cpu_pageset __percpu *pageset;
L
Linus Torvalds 已提交
352 353 354 355
	/*
	 * free areas of different sizes
	 */
	spinlock_t		lock;
356
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
357 358
	/* Set to true when the PG_migrate_skip bits should be cleared */
	bool			compact_blockskip_flush;
359 360 361 362

	/* pfns where compaction scanners should start */
	unsigned long		compact_cached_free_pfn;
	unsigned long		compact_cached_migrate_pfn;
363
#endif
364 365 366 367
#ifdef CONFIG_MEMORY_HOTPLUG
	/* see spanned/present_pages for more description */
	seqlock_t		span_seqlock;
#endif
L
Linus Torvalds 已提交
368 369
	struct free_area	free_area[MAX_ORDER];

370 371
#ifndef CONFIG_SPARSEMEM
	/*
372
	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
373 374 375 376 377
	 * In SPARSEMEM, this map is stored in struct mem_section
	 */
	unsigned long		*pageblock_flags;
#endif /* CONFIG_SPARSEMEM */

378 379 380 381 382 383 384 385
#ifdef CONFIG_COMPACTION
	/*
	 * On compaction failure, 1<<compact_defer_shift compactions
	 * are skipped before trying again. The number attempted since
	 * last failure is tracked with compact_considered.
	 */
	unsigned int		compact_considered;
	unsigned int		compact_defer_shift;
386
	int			compact_order_failed;
387
#endif
L
Linus Torvalds 已提交
388 389 390 391

	ZONE_PADDING(_pad1_)

	/* Fields commonly accessed by the page reclaim scanner */
392 393
	spinlock_t		lru_lock;
	struct lruvec		lruvec;
394

L
Linus Torvalds 已提交
395
	unsigned long		pages_scanned;	   /* since last reclaim */
396
	unsigned long		flags;		   /* zone flags, see below */
M
Martin Hicks 已提交
397

398 399
	/* Zone statistics */
	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
400

401 402 403 404 405 406
	/*
	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
	 * this zone's LRU.  Maintained by the pageout code.
	 */
	unsigned int inactive_ratio;

L
Linus Torvalds 已提交
407 408 409 410 411 412

	ZONE_PADDING(_pad2_)
	/* Rarely used or read-mostly fields */

	/*
	 * wait_table		-- the array holding the hash table
413
	 * wait_table_hash_nr_entries	-- the size of the hash table array
L
Linus Torvalds 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
	 *
	 * The purpose of all these is to keep track of the people
	 * waiting for a page to become available and make them
	 * runnable again when possible. The trouble is that this
	 * consumes a lot of space, especially when so few things
	 * wait on pages at a given time. So instead of using
	 * per-page waitqueues, we use a waitqueue hash table.
	 *
	 * The bucket discipline is to sleep on the same queue when
	 * colliding and wake all in that wait queue when removing.
	 * When something wakes, it must check to be sure its page is
	 * truly available, a la thundering herd. The cost of a
	 * collision is great, but given the expected load of the
	 * table, they should be so rare as to be outweighed by the
	 * benefits from the saved space.
	 *
	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
	 * primary users of these fields, and in mm/page_alloc.c
	 * free_area_init_core() performs the initialization of them.
	 */
	wait_queue_head_t	* wait_table;
436
	unsigned long		wait_table_hash_nr_entries;
L
Linus Torvalds 已提交
437 438 439 440 441 442 443 444 445
	unsigned long		wait_table_bits;

	/*
	 * Discontig memory support fields.
	 */
	struct pglist_data	*zone_pgdat;
	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
	unsigned long		zone_start_pfn;

446
	/*
447 448 449
	 * spanned_pages is the total pages spanned by the zone, including
	 * holes, which is calculated as:
	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
450
	 *
451 452
	 * present_pages is physical pages existing within the zone, which
	 * is calculated as:
453
	 *	present_pages = spanned_pages - absent_pages(pages in holes);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	 *
	 * managed_pages is present pages managed by the buddy system, which
	 * is calculated as (reserved_pages includes pages allocated by the
	 * bootmem allocator):
	 *	managed_pages = present_pages - reserved_pages;
	 *
	 * So present_pages may be used by memory hotplug or memory power
	 * management logic to figure out unmanaged pages by checking
	 * (present_pages - managed_pages). And managed_pages should be used
	 * by page allocator and vm scanner to calculate all kinds of watermarks
	 * and thresholds.
	 *
	 * Locking rules:
	 *
	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
	 * It is a seqlock because it has to be read outside of zone->lock,
	 * and it is done in the main allocator path.  But, it is written
	 * quite infrequently.
	 *
	 * The span_seq lock is declared along with zone->lock because it is
474 475
	 * frequently read in proximity to zone->lock.  It's good to
	 * give them a chance of being in the same cacheline.
476
	 *
477 478 479 480 481 482 483 484 485 486
	 * Write access to present_pages at runtime should be protected by
	 * lock_memory_hotplug()/unlock_memory_hotplug().  Any reader who can't
	 * tolerant drift of present_pages should hold memory hotplug lock to
	 * get a stable value.
	 *
	 * Read access to managed_pages should be safe because it's unsigned
	 * long. Write access to zone->managed_pages and totalram_pages are
	 * protected by managed_page_count_lock at runtime. Idealy only
	 * adjust_managed_page_count() should be used instead of directly
	 * touching zone->managed_pages and totalram_pages.
487
	 */
488 489 490
	unsigned long		spanned_pages;
	unsigned long		present_pages;
	unsigned long		managed_pages;
L
Linus Torvalds 已提交
491 492 493 494

	/*
	 * rarely used fields:
	 */
495
	const char		*name;
496
} ____cacheline_internodealigned_in_smp;
L
Linus Torvalds 已提交
497

498 499
typedef enum {
	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
D
David Rientjes 已提交
500
	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
501 502 503
	ZONE_CONGESTED,			/* zone has many dirty pages backed by
					 * a congested BDI
					 */
504 505 506 507
	ZONE_TAIL_LRU_DIRTY,		/* reclaim scanning has recently found
					 * many dirty file pages at the tail
					 * of the LRU.
					 */
508 509 510
	ZONE_WRITEBACK,			/* reclaim scanning has recently found
					 * many pages under writeback
					 */
511 512 513 514 515 516
} zone_flags_t;

static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
{
	set_bit(flag, &zone->flags);
}
517 518 519 520 521 522

static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
{
	return test_and_set_bit(flag, &zone->flags);
}

523 524 525 526 527
static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
{
	clear_bit(flag, &zone->flags);
}

528 529 530 531 532
static inline int zone_is_reclaim_congested(const struct zone *zone)
{
	return test_bit(ZONE_CONGESTED, &zone->flags);
}

533 534 535 536 537
static inline int zone_is_reclaim_dirty(const struct zone *zone)
{
	return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags);
}

538 539 540 541 542
static inline int zone_is_reclaim_writeback(const struct zone *zone)
{
	return test_bit(ZONE_WRITEBACK, &zone->flags);
}

543 544 545 546
static inline int zone_is_reclaim_locked(const struct zone *zone)
{
	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
}
547

D
David Rientjes 已提交
548 549 550 551
static inline int zone_is_oom_locked(const struct zone *zone)
{
	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
}
552

R
Russ Anderson 已提交
553
static inline unsigned long zone_end_pfn(const struct zone *zone)
554 555 556 557 558 559 560 561 562
{
	return zone->zone_start_pfn + zone->spanned_pages;
}

static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
{
	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
}

563 564 565 566 567 568 569 570 571 572
static inline bool zone_is_initialized(struct zone *zone)
{
	return !!zone->wait_table;
}

static inline bool zone_is_empty(struct zone *zone)
{
	return zone->spanned_pages == 0;
}

L
Linus Torvalds 已提交
573 574 575 576 577 578 579
/*
 * The "priority" of VM scanning is how much of the queues we will scan in one
 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 * queues ("queue_length >> 12") during an aging round.
 */
#define DEF_PRIORITY 12

580 581 582 583
/* Maximum number of zones on a zonelist */
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)

#ifdef CONFIG_NUMA
584 585

/*
586
 * The NUMA zonelists are doubled because we need zonelists that restrict the
587 588
 * allocations to a single node for GFP_THISNODE.
 *
589 590
 * [0]	: Zonelist with fallback
 * [1]	: No fallback (GFP_THISNODE)
591
 */
592
#define MAX_ZONELISTS 2
593 594


595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
/*
 * We cache key information from each zonelist for smaller cache
 * footprint when scanning for free pages in get_page_from_freelist().
 *
 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
 *    up short of free memory since the last time (last_fullzone_zap)
 *    we zero'd fullzones.
 * 2) The array z_to_n[] maps each zone in the zonelist to its node
 *    id, so that we can efficiently evaluate whether that node is
 *    set in the current tasks mems_allowed.
 *
 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
 * indexed by a zones offset in the zonelist zones[] array.
 *
 * The get_page_from_freelist() routine does two scans.  During the
 * first scan, we skip zones whose corresponding bit in 'fullzones'
 * is set or whose corresponding node in current->mems_allowed (which
 * comes from cpusets) is not set.  During the second scan, we bypass
 * this zonelist_cache, to ensure we look methodically at each zone.
 *
 * Once per second, we zero out (zap) fullzones, forcing us to
 * reconsider nodes that might have regained more free memory.
 * The field last_full_zap is the time we last zapped fullzones.
 *
 * This mechanism reduces the amount of time we waste repeatedly
 * reexaming zones for free memory when they just came up low on
 * memory momentarilly ago.
 *
 * The zonelist_cache struct members logically belong in struct
 * zonelist.  However, the mempolicy zonelists constructed for
 * MPOL_BIND are intentionally variable length (and usually much
 * shorter).  A general purpose mechanism for handling structs with
 * multiple variable length members is more mechanism than we want
 * here.  We resort to some special case hackery instead.
 *
 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
 * part because they are shorter), so we put the fixed length stuff
 * at the front of the zonelist struct, ending in a variable length
 * zones[], as is needed by MPOL_BIND.
 *
 * Then we put the optional zonelist cache on the end of the zonelist
 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
 * the fixed length portion at the front of the struct.  This pointer
 * both enables us to find the zonelist cache, and in the case of
 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
 * to know that the zonelist cache is not there.
 *
 * The end result is that struct zonelists come in two flavors:
 *  1) The full, fixed length version, shown below, and
 *  2) The custom zonelists for MPOL_BIND.
 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
 *
 * Even though there may be multiple CPU cores on a node modifying
 * fullzones or last_full_zap in the same zonelist_cache at the same
 * time, we don't lock it.  This is just hint data - if it is wrong now
 * and then, the allocator will still function, perhaps a bit slower.
 */


struct zonelist_cache {
	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
656
	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
657 658 659
	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
};
#else
660
#define MAX_ZONELISTS 1
661 662 663
struct zonelist_cache;
#endif

664 665 666 667 668 669 670 671 672
/*
 * This struct contains information about a zone in a zonelist. It is stored
 * here to avoid dereferences into large structures and lookups of tables
 */
struct zoneref {
	struct zone *zone;	/* Pointer to actual zone */
	int zone_idx;		/* zone_idx(zoneref->zone) */
};

L
Linus Torvalds 已提交
673 674 675 676 677 678
/*
 * One allocation request operates on a zonelist. A zonelist
 * is a list of zones, the first one is the 'goal' of the
 * allocation, the other zones are fallback zones, in decreasing
 * priority.
 *
679 680
 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
681 682 683 684 685 686 687 688
 * *
 * To speed the reading of the zonelist, the zonerefs contain the zone index
 * of the entry being read. Helper functions to access information given
 * a struct zoneref are
 *
 * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
 * zonelist_zone_idx()	- Return the index of the zone for an entry
 * zonelist_node_idx()	- Return the index of the node for an entry
L
Linus Torvalds 已提交
689 690
 */
struct zonelist {
691
	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
692
	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
693 694 695
#ifdef CONFIG_NUMA
	struct zonelist_cache zlcache;			     // optional ...
#endif
L
Linus Torvalds 已提交
696 697
};

T
Tejun Heo 已提交
698
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
699 700 701 702 703
struct node_active_region {
	unsigned long start_pfn;
	unsigned long end_pfn;
	int nid;
};
T
Tejun Heo 已提交
704
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
L
Linus Torvalds 已提交
705

706 707 708 709 710
#ifndef CONFIG_DISCONTIGMEM
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
extern struct page *mem_map;
#endif

L
Linus Torvalds 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724
/*
 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 * zone denotes.
 *
 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 * it's memory layout.
 *
 * Memory statistics and page replacement data structures are maintained on a
 * per-zone basis.
 */
struct bootmem_data;
typedef struct pglist_data {
	struct zone node_zones[MAX_NR_ZONES];
725
	struct zonelist node_zonelists[MAX_ZONELISTS];
L
Linus Torvalds 已提交
726
	int nr_zones;
727
#ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
L
Linus Torvalds 已提交
728
	struct page *node_mem_map;
A
Andrew Morton 已提交
729
#ifdef CONFIG_MEMCG
730 731
	struct page_cgroup *node_page_cgroup;
#endif
A
Andy Whitcroft 已提交
732
#endif
733
#ifndef CONFIG_NO_BOOTMEM
L
Linus Torvalds 已提交
734
	struct bootmem_data *bdata;
735
#endif
736 737 738 739 740 741
#ifdef CONFIG_MEMORY_HOTPLUG
	/*
	 * Must be held any time you expect node_start_pfn, node_present_pages
	 * or node_spanned_pages stay constant.  Holding this will also
	 * guarantee that any pfn_valid() stays that way.
	 *
742 743 744
	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
	 *
745
	 * Nests above zone->lock and zone->span_seqlock
746 747 748
	 */
	spinlock_t node_size_lock;
#endif
L
Linus Torvalds 已提交
749 750 751 752 753
	unsigned long node_start_pfn;
	unsigned long node_present_pages; /* total number of physical pages */
	unsigned long node_spanned_pages; /* total size of physical page
					     range, including holes */
	int node_id;
754
	nodemask_t reclaim_nodes;	/* Nodes allowed to reclaim from */
L
Linus Torvalds 已提交
755
	wait_queue_head_t kswapd_wait;
756
	wait_queue_head_t pfmemalloc_wait;
757
	struct task_struct *kswapd;	/* Protected by lock_memory_hotplug() */
L
Linus Torvalds 已提交
758
	int kswapd_max_order;
759
	enum zone_type classzone_idx;
760 761 762 763 764 765 766 767 768 769 770 771 772
#ifdef CONFIG_NUMA_BALANCING
	/*
	 * Lock serializing the per destination node AutoNUMA memory
	 * migration rate limiting data.
	 */
	spinlock_t numabalancing_migrate_lock;

	/* Rate limiting time interval */
	unsigned long numabalancing_migrate_next_window;

	/* Number of pages migrated during the rate limiting time interval */
	unsigned long numabalancing_migrate_nr_pages;
#endif
L
Linus Torvalds 已提交
773 774 775 776
} pg_data_t;

#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
A
Andy Whitcroft 已提交
777
#ifdef CONFIG_FLAT_NODE_MEM_MAP
778
#define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
A
Andy Whitcroft 已提交
779 780 781
#else
#define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
#endif
782
#define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
L
Linus Torvalds 已提交
783

784
#define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
785
#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
786

787 788 789 790 791 792 793 794 795
static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
{
	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
}

static inline bool pgdat_is_empty(pg_data_t *pgdat)
{
	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
}
796

797 798
#include <linux/memory_hotplug.h>

799
extern struct mutex zonelists_mutex;
800
void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
801
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
802 803 804
bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
		int classzone_idx, int alloc_flags);
bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
R
Rohit Seth 已提交
805
		int classzone_idx, int alloc_flags);
D
Dave Hansen 已提交
806 807 808 809
enum memmap_context {
	MEMMAP_EARLY,
	MEMMAP_HOTPLUG,
};
810
extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
D
Dave Hansen 已提交
811 812
				     unsigned long size,
				     enum memmap_context context);
813

814
extern void lruvec_init(struct lruvec *lruvec);
815 816 817

static inline struct zone *lruvec_zone(struct lruvec *lruvec)
{
A
Andrew Morton 已提交
818
#ifdef CONFIG_MEMCG
819 820 821 822 823 824
	return lruvec->zone;
#else
	return container_of(lruvec, struct zone, lruvec);
#endif
}

L
Linus Torvalds 已提交
825 826 827 828 829 830
#ifdef CONFIG_HAVE_MEMORY_PRESENT
void memory_present(int nid, unsigned long start, unsigned long end);
#else
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
#endif

831 832 833 834 835 836
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
int local_memory_node(int node_id);
#else
static inline int local_memory_node(int node_id) { return node_id; };
#endif

L
Linus Torvalds 已提交
837 838 839 840 841 842 843 844 845
#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
#endif

/*
 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 */
#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)

846 847 848 849 850
static inline int populated_zone(struct zone *zone)
{
	return (!!zone->present_pages);
}

M
Mel Gorman 已提交
851 852 853 854
extern int movable_zone;

static inline int zone_movable_is_highmem(void)
{
855
#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
M
Mel Gorman 已提交
856 857 858 859 860 861
	return movable_zone == ZONE_HIGHMEM;
#else
	return 0;
#endif
}

862
static inline int is_highmem_idx(enum zone_type idx)
L
Linus Torvalds 已提交
863
{
864
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
865 866
	return (idx == ZONE_HIGHMEM ||
		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
867 868 869
#else
	return 0;
#endif
L
Linus Torvalds 已提交
870 871 872 873 874 875 876 877 878 879
}

/**
 * is_highmem - helper function to quickly check if a struct zone is a 
 *              highmem zone or not.  This is an attempt to keep references
 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 * @zone - pointer to struct zone variable
 */
static inline int is_highmem(struct zone *zone)
{
880
#ifdef CONFIG_HIGHMEM
881 882 883 884
	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
		zone_movable_is_highmem());
885 886 887
#else
	return 0;
#endif
L
Linus Torvalds 已提交
888 889 890 891
}

/* These two functions are used to setup the per zone pages min values */
struct ctl_table;
892
int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
L
Linus Torvalds 已提交
893 894
					void __user *, size_t *, loff_t *);
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
895
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
L
Linus Torvalds 已提交
896
					void __user *, size_t *, loff_t *);
897
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
898
					void __user *, size_t *, loff_t *);
899
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
900
			void __user *, size_t *, loff_t *);
901
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
902
			void __user *, size_t *, loff_t *);
L
Linus Torvalds 已提交
903

904
extern int numa_zonelist_order_handler(struct ctl_table *, int,
905
			void __user *, size_t *, loff_t *);
906 907 908
extern char numa_zonelist_order[];
#define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */

909
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
910 911 912 913 914

extern struct pglist_data contig_page_data;
#define NODE_DATA(nid)		(&contig_page_data)
#define NODE_MEM_MAP(nid)	mem_map

915
#else /* CONFIG_NEED_MULTIPLE_NODES */
L
Linus Torvalds 已提交
916 917 918

#include <asm/mmzone.h>

919
#endif /* !CONFIG_NEED_MULTIPLE_NODES */
920

921 922 923
extern struct pglist_data *first_online_pgdat(void);
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
extern struct zone *next_zone(struct zone *zone);
924 925

/**
926
 * for_each_online_pgdat - helper macro to iterate over all online nodes
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
 * @pgdat - pointer to a pg_data_t variable
 */
#define for_each_online_pgdat(pgdat)			\
	for (pgdat = first_online_pgdat();		\
	     pgdat;					\
	     pgdat = next_online_pgdat(pgdat))
/**
 * for_each_zone - helper macro to iterate over all memory zones
 * @zone - pointer to struct zone variable
 *
 * The user only needs to declare the zone variable, for_each_zone
 * fills it in.
 */
#define for_each_zone(zone)			        \
	for (zone = (first_online_pgdat())->node_zones; \
	     zone;					\
	     zone = next_zone(zone))

945 946 947 948 949 950 951 952
#define for_each_populated_zone(zone)		        \
	for (zone = (first_online_pgdat())->node_zones; \
	     zone;					\
	     zone = next_zone(zone))			\
		if (!populated_zone(zone))		\
			; /* do nothing */		\
		else

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static inline struct zone *zonelist_zone(struct zoneref *zoneref)
{
	return zoneref->zone;
}

static inline int zonelist_zone_idx(struct zoneref *zoneref)
{
	return zoneref->zone_idx;
}

static inline int zonelist_node_idx(struct zoneref *zoneref)
{
#ifdef CONFIG_NUMA
	/* zone_to_nid not available in this context */
	return zoneref->zone->node;
#else
	return 0;
#endif /* CONFIG_NUMA */
}

973 974 975 976 977 978 979 980 981
/**
 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 * @z - The cursor used as a starting point for the search
 * @highest_zoneidx - The zone index of the highest zone to return
 * @nodes - An optional nodemask to filter the zonelist with
 * @zone - The first suitable zone found is returned via this parameter
 *
 * This function returns the next zone at or below a given zone index that is
 * within the allowed nodemask using a cursor as the starting point for the
982 983 984
 * search. The zoneref returned is a cursor that represents the current zone
 * being examined. It should be advanced by one before calling
 * next_zones_zonelist again.
985 986 987 988 989
 */
struct zoneref *next_zones_zonelist(struct zoneref *z,
					enum zone_type highest_zoneidx,
					nodemask_t *nodes,
					struct zone **zone);
990

991 992 993 994 995 996 997 998 999
/**
 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 * @zonelist - The zonelist to search for a suitable zone
 * @highest_zoneidx - The zone index of the highest zone to return
 * @nodes - An optional nodemask to filter the zonelist with
 * @zone - The first suitable zone found is returned via this parameter
 *
 * This function returns the first zone at or below a given zone index that is
 * within the allowed nodemask. The zoneref returned is a cursor that can be
1000 1001
 * used to iterate the zonelist with next_zones_zonelist by advancing it by
 * one before calling.
1002
 */
1003
static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1004 1005 1006
					enum zone_type highest_zoneidx,
					nodemask_t *nodes,
					struct zone **zone)
1007
{
1008 1009
	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
								zone);
1010 1011
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
/**
 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
 * @zone - The current zone in the iterator
 * @z - The current pointer within zonelist->zones being iterated
 * @zlist - The zonelist being iterated
 * @highidx - The zone index of the highest zone to return
 * @nodemask - Nodemask allowed by the allocator
 *
 * This iterator iterates though all zones at or below a given zone index and
 * within a given nodemask
 */
#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
		zone;							\
1026
		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

/**
 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
 * @zone - The current zone in the iterator
 * @z - The current pointer within zonelist->zones being iterated
 * @zlist - The zonelist being iterated
 * @highidx - The zone index of the highest zone to return
 *
 * This iterator iterates though all zones at or below a given zone index.
 */
#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1038
	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1039

A
Andy Whitcroft 已提交
1040 1041 1042 1043
#ifdef CONFIG_SPARSEMEM
#include <asm/sparsemem.h>
#endif

1044
#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
T
Tejun Heo 已提交
1045
	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1046 1047 1048 1049
static inline unsigned long early_pfn_to_nid(unsigned long pfn)
{
	return 0;
}
1050 1051
#endif

1052 1053 1054 1055
#ifdef CONFIG_FLATMEM
#define pfn_to_nid(pfn)		(0)
#endif

A
Andy Whitcroft 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
#ifdef CONFIG_SPARSEMEM

/*
 * SECTION_SHIFT    		#bits space required to store a section #
 *
 * PA_SECTION_SHIFT		physical address to/from section number
 * PFN_SECTION_SHIFT		pfn to/from section number
 */
#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)

#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)

#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))

1072
#define SECTION_BLOCKFLAGS_BITS \
1073
	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1074

A
Andy Whitcroft 已提交
1075 1076 1077 1078
#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
#error Allocator MAX_ORDER exceeds SECTION_SIZE
#endif

1079 1080 1081
#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)

1082 1083 1084
#define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
#define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)

A
Andy Whitcroft 已提交
1085
struct page;
1086
struct page_cgroup;
A
Andy Whitcroft 已提交
1087
struct mem_section {
A
Andy Whitcroft 已提交
1088 1089 1090 1091 1092
	/*
	 * This is, logically, a pointer to an array of struct
	 * pages.  However, it is stored with some other magic.
	 * (see sparse.c::sparse_init_one_section())
	 *
1093 1094 1095 1096
	 * Additionally during early boot we encode node id of
	 * the location of the section here to guide allocation.
	 * (see sparse.c::memory_present())
	 *
A
Andy Whitcroft 已提交
1097 1098 1099 1100
	 * Making it a UL at least makes someone do a cast
	 * before using it wrong.
	 */
	unsigned long section_mem_map;
1101 1102 1103

	/* See declaration of similar field in struct zone */
	unsigned long *pageblock_flags;
A
Andrew Morton 已提交
1104
#ifdef CONFIG_MEMCG
1105 1106 1107 1108 1109 1110 1111
	/*
	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
	 * section. (see memcontrol.h/page_cgroup.h about this.)
	 */
	struct page_cgroup *page_cgroup;
	unsigned long pad;
#endif
1112 1113 1114 1115
	/*
	 * WARNING: mem_section must be a power-of-2 in size for the
	 * calculation and use of SECTION_ROOT_MASK to make sense.
	 */
A
Andy Whitcroft 已提交
1116 1117
};

1118 1119 1120 1121 1122
#ifdef CONFIG_SPARSEMEM_EXTREME
#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
#else
#define SECTIONS_PER_ROOT	1
#endif
B
Bob Picco 已提交
1123

1124
#define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1125
#define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1126
#define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
B
Bob Picco 已提交
1127

1128 1129
#ifdef CONFIG_SPARSEMEM_EXTREME
extern struct mem_section *mem_section[NR_SECTION_ROOTS];
B
Bob Picco 已提交
1130
#else
1131 1132
extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
#endif
A
Andy Whitcroft 已提交
1133

A
Andy Whitcroft 已提交
1134 1135
static inline struct mem_section *__nr_to_section(unsigned long nr)
{
1136 1137 1138
	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
		return NULL;
	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
A
Andy Whitcroft 已提交
1139
}
1140
extern int __section_nr(struct mem_section* ms);
1141
extern unsigned long usemap_size(void);
A
Andy Whitcroft 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

/*
 * We use the lower bits of the mem_map pointer to store
 * a little bit of information.  There should be at least
 * 3 bits here due to 32-bit alignment.
 */
#define	SECTION_MARKED_PRESENT	(1UL<<0)
#define SECTION_HAS_MEM_MAP	(1UL<<1)
#define SECTION_MAP_LAST_BIT	(1UL<<2)
#define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1152
#define SECTION_NID_SHIFT	2
A
Andy Whitcroft 已提交
1153 1154 1155 1156 1157 1158 1159 1160

static inline struct page *__section_mem_map_addr(struct mem_section *section)
{
	unsigned long map = section->section_mem_map;
	map &= SECTION_MAP_MASK;
	return (struct page *)map;
}

1161
static inline int present_section(struct mem_section *section)
A
Andy Whitcroft 已提交
1162
{
B
Bob Picco 已提交
1163
	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
A
Andy Whitcroft 已提交
1164 1165
}

1166 1167 1168 1169 1170 1171
static inline int present_section_nr(unsigned long nr)
{
	return present_section(__nr_to_section(nr));
}

static inline int valid_section(struct mem_section *section)
A
Andy Whitcroft 已提交
1172
{
B
Bob Picco 已提交
1173
	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
A
Andy Whitcroft 已提交
1174 1175 1176 1177 1178 1179 1180
}

static inline int valid_section_nr(unsigned long nr)
{
	return valid_section(__nr_to_section(nr));
}

A
Andy Whitcroft 已提交
1181 1182
static inline struct mem_section *__pfn_to_section(unsigned long pfn)
{
A
Andy Whitcroft 已提交
1183
	return __nr_to_section(pfn_to_section_nr(pfn));
A
Andy Whitcroft 已提交
1184 1185
}

1186
#ifndef CONFIG_HAVE_ARCH_PFN_VALID
A
Andy Whitcroft 已提交
1187 1188 1189 1190
static inline int pfn_valid(unsigned long pfn)
{
	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
		return 0;
A
Andy Whitcroft 已提交
1191
	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
A
Andy Whitcroft 已提交
1192
}
1193
#endif
A
Andy Whitcroft 已提交
1194

1195 1196 1197 1198 1199 1200 1201
static inline int pfn_present(unsigned long pfn)
{
	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
		return 0;
	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
}

A
Andy Whitcroft 已提交
1202 1203 1204 1205 1206 1207
/*
 * These are _only_ used during initialisation, therefore they
 * can use __initdata ...  They could have names to indicate
 * this restriction.
 */
#ifdef CONFIG_NUMA
1208 1209 1210 1211 1212
#define pfn_to_nid(pfn)							\
({									\
	unsigned long __pfn_to_nid_pfn = (pfn);				\
	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
})
1213 1214
#else
#define pfn_to_nid(pfn)		(0)
A
Andy Whitcroft 已提交
1215 1216 1217 1218 1219 1220
#endif

#define early_pfn_valid(pfn)	pfn_valid(pfn)
void sparse_init(void);
#else
#define sparse_init()	do {} while (0)
1221
#define sparse_index_init(_sec, _nid)  do {} while (0)
A
Andy Whitcroft 已提交
1222 1223
#endif /* CONFIG_SPARSEMEM */

1224
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1225
bool early_pfn_in_nid(unsigned long pfn, int nid);
1226 1227 1228 1229
#else
#define early_pfn_in_nid(pfn, nid)	(1)
#endif

A
Andy Whitcroft 已提交
1230 1231 1232 1233 1234 1235 1236
#ifndef early_pfn_valid
#define early_pfn_valid(pfn)	(1)
#endif

void memory_present(int nid, unsigned long start, unsigned long end);
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/*
 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
 * pfn_valid_within() should be used in this case; we optimise this away
 * when we have no holes within a MAX_ORDER_NR_PAGES block.
 */
#ifdef CONFIG_HOLES_IN_ZONE
#define pfn_valid_within(pfn) pfn_valid(pfn)
#else
#define pfn_valid_within(pfn) (1)
#endif

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
/*
 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
 * associated with it or not. In FLATMEM, it is expected that holes always
 * have valid memmap as long as there is valid PFNs either side of the hole.
 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
 * entire section.
 *
 * However, an ARM, and maybe other embedded architectures in the future
 * free memmap backing holes to save memory on the assumption the memmap is
 * never used. The page_zone linkages are then broken even though pfn_valid()
 * returns true. A walker of the full memmap must then do this additional
 * check to ensure the memmap they are looking at is sane by making sure
 * the zone and PFN linkages are still valid. This is expensive, but walkers
 * of the full memmap are extremely rare.
 */
int memmap_valid_within(unsigned long pfn,
					struct page *page, struct zone *zone);
#else
static inline int memmap_valid_within(unsigned long pfn,
					struct page *page, struct zone *zone)
{
	return 1;
}
#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */

C
Christoph Lameter 已提交
1275
#endif /* !__GENERATING_BOUNDS.H */
L
Linus Torvalds 已提交
1276 1277
#endif /* !__ASSEMBLY__ */
#endif /* _LINUX_MMZONE_H */