xc5000.c 24.5 KB
Newer Older
1 2 3 4
/*
 *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
 *
 *  Copyright (c) 2007 Xceive Corporation
5
 *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
25
#include <linux/videodev2.h>
26 27 28 29 30 31 32 33 34 35 36 37 38
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>

#include "dvb_frontend.h"

#include "xc5000.h"
#include "xc5000_priv.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");

39 40 41 42
static int xc5000_load_fw_on_attach;
module_param_named(init_fw, xc5000_load_fw_on_attach, int, 0644);
MODULE_PARM_DESC(init_fw, "Load firmware during driver initialization.");

43 44 45 46
#define dprintk(level,fmt, arg...) if (debug >= level) \
	printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)

#define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw"
47
#define XC5000_DEFAULT_FIRMWARE_SIZE 12332
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

/* Misc Defines */
#define MAX_TV_STANDARD			23
#define XC_MAX_I2C_WRITE_LENGTH		64

/* Signal Types */
#define XC_RF_MODE_AIR			0
#define XC_RF_MODE_CABLE		1

/* Result codes */
#define XC_RESULT_SUCCESS		0
#define XC_RESULT_RESET_FAILURE		1
#define XC_RESULT_I2C_WRITE_FAILURE	2
#define XC_RESULT_I2C_READ_FAILURE	3
#define XC_RESULT_OUT_OF_RANGE		5

64 65 66 67
/* Product id */
#define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
#define XC_PRODUCT_ID_FW_LOADED 	0x1388

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/* Registers */
#define XREG_INIT         0x00
#define XREG_VIDEO_MODE   0x01
#define XREG_AUDIO_MODE   0x02
#define XREG_RF_FREQ      0x03
#define XREG_D_CODE       0x04
#define XREG_IF_OUT       0x05
#define XREG_SEEK_MODE    0x07
#define XREG_POWER_DOWN   0x0A
#define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
#define XREG_SMOOTHEDCVBS 0x0E
#define XREG_XTALFREQ     0x0F
#define XREG_FINERFFREQ   0x10
#define XREG_DDIMODE      0x11

#define XREG_ADC_ENV      0x00
#define XREG_QUALITY      0x01
#define XREG_FRAME_LINES  0x02
#define XREG_HSYNC_FREQ   0x03
#define XREG_LOCK         0x04
#define XREG_FREQ_ERROR   0x05
#define XREG_SNR          0x06
#define XREG_VERSION      0x07
#define XREG_PRODUCT_ID   0x08
#define XREG_BUSY         0x09

/*
   Basic firmware description. This will remain with
   the driver for documentation purposes.

   This represents an I2C firmware file encoded as a
   string of unsigned char. Format is as follows:

   char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
   char[1  ]=len0_LSB  -> length of first write transaction
   char[2  ]=data0 -> first byte to be sent
   char[3  ]=data1
   char[4  ]=data2
   char[   ]=...
   char[M  ]=dataN  -> last byte to be sent
   char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
   char[M+2]=len1_LSB  -> length of second write transaction
   char[M+3]=data0
   char[M+4]=data1
   ...
   etc.

   The [len] value should be interpreted as follows:

   len= len_MSB _ len_LSB
   len=1111_1111_1111_1111   : End of I2C_SEQUENCE
   len=0000_0000_0000_0000   : Reset command: Do hardware reset
   len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
   len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms

   For the RESET and WAIT commands, the two following bytes will contain
   immediately the length of the following transaction.

*/
typedef struct {
	char *Name;
129 130
	u16 AudioMode;
	u16 VideoMode;
131 132 133
} XC_TV_STANDARD;

/* Tuner standards */
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
#define MN_NTSC_PAL_BTSC	0
#define MN_NTSC_PAL_A2		1
#define MN_NTSC_PAL_EIAJ	2
#define MN_NTSC_PAL_Mono	3
#define BG_PAL_A2		4
#define BG_PAL_NICAM		5
#define BG_PAL_MONO		6
#define I_PAL_NICAM		7
#define I_PAL_NICAM_MONO	8
#define DK_PAL_A2		9
#define DK_PAL_NICAM		10
#define DK_PAL_MONO		11
#define DK_SECAM_A2DK1		12
#define DK_SECAM_A2LDK3 	13
#define DK_SECAM_A2MONO 	14
#define L_SECAM_NICAM		15
#define LC_SECAM_NICAM		16
#define DTV6			17
#define DTV8			18
#define DTV7_8			19
#define DTV7			20
#define FM_Radio_INPUT2 	21
#define FM_Radio_INPUT1 	22
157

158
static XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
	{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
	{"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
	{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
	{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
	{"B/G-PAL-A2",        0x0A00, 0x8049},
	{"B/G-PAL-NICAM",     0x0C04, 0x8049},
	{"B/G-PAL-MONO",      0x0878, 0x8059},
	{"I-PAL-NICAM",       0x1080, 0x8009},
	{"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
	{"D/K-PAL-A2",        0x1600, 0x8009},
	{"D/K-PAL-NICAM",     0x0E80, 0x8009},
	{"D/K-PAL-MONO",      0x1478, 0x8009},
	{"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
	{"D/K-SECAM-A2 L/DK3",0x0E00, 0x8009},
	{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
	{"L-SECAM-NICAM",     0x8E82, 0x0009},
	{"L'-SECAM-NICAM",    0x8E82, 0x4009},
	{"DTV6",              0x00C0, 0x8002},
	{"DTV8",              0x00C0, 0x800B},
	{"DTV7/8",            0x00C0, 0x801B},
	{"DTV7",              0x00C0, 0x8007},
	{"FM Radio-INPUT2",   0x9802, 0x9002},
	{"FM Radio-INPUT1",   0x0208, 0x9002}
};

184
static int  xc5000_is_firmware_loaded(struct dvb_frontend *fe);
185 186 187 188
static int  xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len);
static int  xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len);
static void xc5000_TunerReset(struct dvb_frontend *fe);

189
static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
190
{
191
	return xc5000_writeregs(priv, buf, len)
192 193 194
		? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS;
}

195
static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
196
{
197
	return xc5000_readregs(priv, buf, len)
198 199 200
		? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS;
}

201
static int xc_reset(struct dvb_frontend *fe)
202 203 204 205 206
{
	xc5000_TunerReset(fe);
	return XC_RESULT_SUCCESS;
}

207
static void xc_wait(int wait_ms)
208
{
209
	msleep(wait_ms);
210 211 212 213 214 215 216
}

static void xc5000_TunerReset(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

217
	dprintk(1, "%s()\n", __func__);
218

219
	if (priv->cfg->tuner_callback) {
220
		ret = priv->cfg->tuner_callback(priv->devptr,
221
						XC5000_TUNER_RESET, 0);
222 223 224
		if (ret)
			printk(KERN_ERR "xc5000: reset failed\n");
	} else
225
		printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
226 227
}

228
static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
229
{
230
	u8 buf[4];
231 232 233 234 235 236 237 238
	int WatchDogTimer = 5;
	int result;

	buf[0] = (regAddr >> 8) & 0xFF;
	buf[1] = regAddr & 0xFF;
	buf[2] = (i2cData >> 8) & 0xFF;
	buf[3] = i2cData & 0xFF;
	result = xc_send_i2c_data(priv, buf, 4);
239
	if (result == XC_RESULT_SUCCESS) {
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
		/* wait for busy flag to clear */
		while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
			buf[0] = 0;
			buf[1] = XREG_BUSY;

			result = xc_send_i2c_data(priv, buf, 2);
			if (result == XC_RESULT_SUCCESS) {
				result = xc_read_i2c_data(priv, buf, 2);
				if (result == XC_RESULT_SUCCESS) {
					if ((buf[0] == 0) && (buf[1] == 0)) {
						/* busy flag cleared */
					break;
					} else {
						xc_wait(100); /* wait 5 ms */
						WatchDogTimer--;
					}
				}
			}
		}
	}
	if (WatchDogTimer < 0)
		result = XC_RESULT_I2C_WRITE_FAILURE;

	return result;
}

266
static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData)
267
{
268
	u8 buf[2];
269 270 271 272 273
	int result;

	buf[0] = (regAddr >> 8) & 0xFF;
	buf[1] = regAddr & 0xFF;
	result = xc_send_i2c_data(priv, buf, 2);
274
	if (result != XC_RESULT_SUCCESS)
275 276 277
		return result;

	result = xc_read_i2c_data(priv, buf, 2);
278
	if (result != XC_RESULT_SUCCESS)
279 280 281 282 283 284
		return result;

	*i2cData = buf[0] * 256 + buf[1];
	return result;
}

285
static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
286 287 288 289 290
{
	struct xc5000_priv *priv = fe->tuner_priv;

	int i, nbytes_to_send, result;
	unsigned int len, pos, index;
291
	u8 buf[XC_MAX_I2C_WRITE_LENGTH];
292 293 294 295

	index=0;
	while ((i2c_sequence[index]!=0xFF) || (i2c_sequence[index+1]!=0xFF)) {
		len = i2c_sequence[index]* 256 + i2c_sequence[index+1];
296
		if (len == 0x0000) {
297 298 299
			/* RESET command */
			result = xc_reset(fe);
			index += 2;
300
			if (result != XC_RESULT_SUCCESS)
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
				return result;
		} else if (len & 0x8000) {
			/* WAIT command */
			xc_wait(len & 0x7FFF);
			index += 2;
		} else {
			/* Send i2c data whilst ensuring individual transactions
			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
			 */
			index += 2;
			buf[0] = i2c_sequence[index];
			buf[1] = i2c_sequence[index + 1];
			pos = 2;
			while (pos < len) {
				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) {
					nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH;
				} else {
					nbytes_to_send = (len - pos + 2);
				}
				for (i=2; i<nbytes_to_send; i++) {
					buf[i] = i2c_sequence[index + pos + i - 2];
				}
				result = xc_send_i2c_data(priv, buf, nbytes_to_send);

325
				if (result != XC_RESULT_SUCCESS)
326 327 328 329 330 331 332 333 334 335
					return result;

				pos += nbytes_to_send - 2;
			}
			index += len;
		}
	}
	return XC_RESULT_SUCCESS;
}

336
static int xc_initialize(struct xc5000_priv *priv)
337
{
338
	dprintk(1, "%s()\n", __func__);
339 340 341
	return xc_write_reg(priv, XREG_INIT, 0);
}

342 343
static int xc_SetTVStandard(struct xc5000_priv *priv,
	u16 VideoMode, u16 AudioMode)
344 345
{
	int ret;
346
	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
347
	dprintk(1, "%s() Standard = %s\n",
348
		__func__,
349 350 351 352 353 354 355 356 357
		XC5000_Standard[priv->video_standard].Name);

	ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
	if (ret == XC_RESULT_SUCCESS)
		ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);

	return ret;
}

358
static int xc_shutdown(struct xc5000_priv *priv)
359
{
360
	return XC_RESULT_SUCCESS;
361 362 363 364
	/* Fixme: cannot bring tuner back alive once shutdown
	 *        without reloading the driver modules.
	 *    return xc_write_reg(priv, XREG_POWER_DOWN, 0);
	 */
365 366
}

367
static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
368
{
369
	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
370 371
		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");

372
	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE))
373 374 375 376
	{
		rf_mode = XC_RF_MODE_CABLE;
		printk(KERN_ERR
			"%s(), Invalid mode, defaulting to CABLE",
377
			__func__);
378 379 380 381
	}
	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}

382
static const struct dvb_tuner_ops xc5000_tuner_ops;
383

384 385 386
static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
{
	u16 freq_code;
387

388
	dprintk(1, "%s(%u)\n", __func__, freq_hz);
389

390 391
	if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
		(freq_hz < xc5000_tuner_ops.info.frequency_min))
392 393
		return XC_RESULT_OUT_OF_RANGE;

394 395 396
	freq_code = (u16)(freq_hz / 15625);

	return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
397 398 399
}


400 401 402 403
static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
{
	u32 freq_code = (freq_khz * 1024)/1000;
	dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
404
		__func__, freq_khz, freq_code);
405

406
	return xc_write_reg(priv, XREG_IF_OUT, freq_code);
407 408 409
}


410
static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
411 412 413 414
{
	return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope);
}

415
static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
416 417
{
	int result;
418
	u16 regData;
419 420 421 422 423 424 425
	u32 tmp;

	result = xc_read_reg(priv, XREG_FREQ_ERROR, &regData);
	if (result)
		return result;

	tmp = (u32)regData;
426
	(*freq_error_hz) = (tmp * 15625) / 1000;
427 428 429
	return result;
}

430
static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
431 432 433 434
{
	return xc_read_reg(priv, XREG_LOCK, lock_status);
}

435 436 437
static int xc_get_version(struct xc5000_priv *priv,
	u8 *hw_majorversion, u8 *hw_minorversion,
	u8 *fw_majorversion, u8 *fw_minorversion)
438
{
439
	u16 data;
440 441 442 443 444 445
	int result;

	result = xc_read_reg(priv, XREG_VERSION, &data);
	if (result)
		return result;

446 447 448 449
	(*hw_majorversion) = (data >> 12) & 0x0F;
	(*hw_minorversion) = (data >>  8) & 0x0F;
	(*fw_majorversion) = (data >>  4) & 0x0F;
	(*fw_minorversion) = data & 0x0F;
450 451 452 453

	return 0;
}

454
static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
455
{
456
	u16 regData;
457 458 459 460 461 462 463 464 465 466
	int result;

	result = xc_read_reg(priv, XREG_HSYNC_FREQ, &regData);
	if (result)
		return result;

	(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
	return result;
}

467
static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
468 469 470 471
{
	return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines);
}

472
static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
473 474 475 476
{
	return xc_read_reg(priv, XREG_QUALITY, quality);
}

477
static u16 WaitForLock(struct xc5000_priv *priv)
478
{
479
	u16 lockState = 0;
480
	int watchDogCount = 40;
481 482

	while ((lockState == 0) && (watchDogCount > 0)) {
483
		xc_get_lock_status(priv, &lockState);
484
		if (lockState != 1) {
485 486 487 488 489 490 491
			xc_wait(5);
			watchDogCount--;
		}
	}
	return lockState;
}

492
static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz)
493 494 495
{
	int found = 0;

496
	dprintk(1, "%s(%u)\n", __func__, freq_hz);
497

498
	if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
499 500
		return 0;

501
	if (WaitForLock(priv) == 1)
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
		found = 1;

	return found;
}

static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
{
	u8 buf[2] = { reg >> 8, reg & 0xff };
	u8 bval[2] = { 0, 0 };
	struct i2c_msg msg[2] = {
		{ .addr = priv->cfg->i2c_address,
			.flags = 0, .buf = &buf[0], .len = 2 },
		{ .addr = priv->cfg->i2c_address,
			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
	};

	if (i2c_transfer(priv->i2c, msg, 2) != 2) {
519
		printk(KERN_WARNING "xc5000: I2C read failed\n");
520 521 522 523 524 525 526 527 528 529 530 531 532
		return -EREMOTEIO;
	}

	*val = (bval[0] << 8) | bval[1];
	return 0;
}

static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len)
{
	struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
		.flags = 0, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
533
		printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n",
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
			(int)len);
		return -EREMOTEIO;
	}
	return 0;
}

static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len)
{
	struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
		.flags = I2C_M_RD, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
		printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n",(int)len);
		return -EREMOTEIO;
	}
	return 0;
}

static int xc5000_fwupload(struct dvb_frontend* fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	const struct firmware *fw;
	int ret;

558 559 560 561
	/* request the firmware, this will block and timeout */
	printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
		XC5000_DEFAULT_FIRMWARE);

562
	ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE, &priv->i2c->dev);
563 564 565
	if (ret) {
		printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
		ret = XC_RESULT_RESET_FAILURE;
566
		goto out;
567
	} else {
568 569
		printk(KERN_INFO "xc5000: firmware read %Zu bytes.\n",
		       fw->size);
570 571 572
		ret = XC_RESULT_SUCCESS;
	}

573
	if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
574 575 576 577 578 579 580
		printk(KERN_ERR "xc5000: firmware incorrect size\n");
		ret = XC_RESULT_RESET_FAILURE;
	} else {
		printk(KERN_INFO "xc5000: firmware upload\n");
		ret = xc_load_i2c_sequence(fe,  fw->data );
	}

581
out:
582 583 584 585
	release_firmware(fw);
	return ret;
}

586
static void xc_debug_dump(struct xc5000_priv *priv)
587
{
588 589 590 591 592 593 594 595
	u16 adc_envelope;
	u32 freq_error_hz = 0;
	u16 lock_status;
	u32 hsync_freq_hz = 0;
	u16 frame_lines;
	u16 quality;
	u8 hw_majorversion = 0, hw_minorversion = 0;
	u8 fw_majorversion = 0, fw_minorversion = 0;
596 597 598 599 600

	/* Wait for stats to stabilize.
	 * Frame Lines needs two frame times after initial lock
	 * before it is valid.
	 */
601
	xc_wait(100);
602

603 604
	xc_get_ADC_Envelope(priv,  &adc_envelope);
	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
605

606 607
	xc_get_frequency_error(priv, &freq_error_hz);
	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
608

609 610
	xc_get_lock_status(priv,  &lock_status);
	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
611 612 613
		lock_status);

	xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
614
		&fw_majorversion, &fw_minorversion);
615 616 617 618
	dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
		hw_majorversion, hw_minorversion,
		fw_majorversion, fw_minorversion);

619 620
	xc_get_hsync_freq(priv,  &hsync_freq_hz);
	dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
621

622 623
	xc_get_frame_lines(priv,  &frame_lines);
	dprintk(1, "*** Frame lines = %d\n", frame_lines);
624

625 626
	xc_get_quality(priv,  &quality);
	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
627 628 629 630 631 632
}

static int xc5000_set_params(struct dvb_frontend *fe,
	struct dvb_frontend_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
633
	int ret;
634

635
	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
636 637 638 639

	switch(params->u.vsb.modulation) {
	case VSB_8:
	case VSB_16:
640
		dprintk(1, "%s() VSB modulation\n", __func__);
641
		priv->rf_mode = XC_RF_MODE_AIR;
642 643 644
		priv->freq_hz = params->frequency - 1750000;
		priv->bandwidth = BANDWIDTH_6_MHZ;
		priv->video_standard = DTV6;
645 646 647 648
		break;
	case QAM_64:
	case QAM_256:
	case QAM_AUTO:
649
		dprintk(1, "%s() QAM modulation\n", __func__);
650
		priv->rf_mode = XC_RF_MODE_CABLE;
651 652 653
		priv->freq_hz = params->frequency - 1750000;
		priv->bandwidth = BANDWIDTH_6_MHZ;
		priv->video_standard = DTV6;
654 655 656 657 658 659
		break;
	default:
		return -EINVAL;
	}

	dprintk(1, "%s() frequency=%d (compensated)\n",
660
		__func__, priv->freq_hz);
661

662 663 664 665 666 667 668
	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}
669

670
	ret = xc_SetTVStandard(priv,
671 672
		XC5000_Standard[priv->video_standard].VideoMode,
		XC5000_Standard[priv->video_standard].AudioMode);
673 674 675 676 677 678 679 680 681 682 683 684 685
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

	ret = xc_set_IF_frequency(priv, priv->cfg->if_khz);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
			priv->cfg->if_khz);
		return -EIO;
	}

	xc_tune_channel(priv, priv->freq_hz);
686

687 688
	if (debug)
		xc_debug_dump(priv);
689 690 691 692

	return 0;
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;
	u16 id;

	ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
	if (ret == XC_RESULT_SUCCESS) {
		if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
			ret = XC_RESULT_RESET_FAILURE;
		else
			ret = XC_RESULT_SUCCESS;
	}

	dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
		ret == XC_RESULT_SUCCESS ? "True" : "False", id);
	return ret;
}

712 713 714 715 716 717 718 719
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);

static int xc5000_set_analog_params(struct dvb_frontend *fe,
	struct analog_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

720
	if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
721 722 723
		xc_load_fw_and_init_tuner(fe);

	dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
724
		__func__, params->frequency);
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

	priv->rf_mode = XC_RF_MODE_CABLE; /* Fix me: it could be air. */

	/* params->frequency is in units of 62.5khz */
	priv->freq_hz = params->frequency * 62500;

	/* FIX ME: Some video standards may have several possible audio
		   standards. We simply default to one of them here.
	 */
	if(params->std & V4L2_STD_MN) {
		/* default to BTSC audio standard */
		priv->video_standard = MN_NTSC_PAL_BTSC;
		goto tune_channel;
	}

	if(params->std & V4L2_STD_PAL_BG) {
		/* default to NICAM audio standard */
		priv->video_standard = BG_PAL_NICAM;
		goto tune_channel;
	}

	if(params->std & V4L2_STD_PAL_I) {
		/* default to NICAM audio standard */
		priv->video_standard = I_PAL_NICAM;
		goto tune_channel;
	}

	if(params->std & V4L2_STD_PAL_DK) {
		/* default to NICAM audio standard */
		priv->video_standard = DK_PAL_NICAM;
		goto tune_channel;
	}

	if(params->std & V4L2_STD_SECAM_DK) {
		/* default to A2 DK1 audio standard */
		priv->video_standard = DK_SECAM_A2DK1;
		goto tune_channel;
	}

	if(params->std & V4L2_STD_SECAM_L) {
		priv->video_standard = L_SECAM_NICAM;
		goto tune_channel;
	}

	if(params->std & V4L2_STD_SECAM_LC) {
		priv->video_standard = LC_SECAM_NICAM;
		goto tune_channel;
	}

tune_channel:
	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
	printk(KERN_ERR
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}

	ret = xc_SetTVStandard(priv,
		XC5000_Standard[priv->video_standard].VideoMode,
		XC5000_Standard[priv->video_standard].AudioMode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

	xc_tune_channel(priv, priv->freq_hz);

	if (debug)
		xc_debug_dump(priv);

	return 0;
}

799 800 801
static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
{
	struct xc5000_priv *priv = fe->tuner_priv;
802
	dprintk(1, "%s()\n", __func__);
803
	*freq = priv->freq_hz;
804 805 806 807 808 809
	return 0;
}

static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
	struct xc5000_priv *priv = fe->tuner_priv;
810
	dprintk(1, "%s()\n", __func__);
811

812 813 814 815 816 817 818
	*bw = priv->bandwidth;
	return 0;
}

static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
{
	struct xc5000_priv *priv = fe->tuner_priv;
819
	u16 lock_status = 0;
820 821 822

	xc_get_lock_status(priv, &lock_status);

823
	dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
824 825 826 827 828 829

	*status = lock_status;

	return 0;
}

830
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
831 832
{
	struct xc5000_priv *priv = fe->tuner_priv;
833
	int ret = 0;
834

835
	if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
836
		ret = xc5000_fwupload(fe);
837 838
		if (ret != XC_RESULT_SUCCESS)
			return ret;
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	}

	/* Start the tuner self-calibration process */
	ret |= xc_initialize(priv);

	/* Wait for calibration to complete.
	 * We could continue but XC5000 will clock stretch subsequent
	 * I2C transactions until calibration is complete.  This way we
	 * don't have to rely on clock stretching working.
	 */
	xc_wait( 100 );

	/* Default to "CABLE" mode */
	ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);

	return ret;
}

857 858 859
static int xc5000_sleep(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
860 861
	int ret;

862
	dprintk(1, "%s()\n", __func__);
863

864 865 866 867 868 869 870 871 872 873
	/* On Pinnacle PCTV HD 800i, the tuner cannot be reinitialized
	 * once shutdown without reloading the driver. Maybe I am not
	 * doing something right.
	 *
	 */

	ret = xc_shutdown(priv);
	if(ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc5000: %s() unable to shutdown tuner\n",
874
			__func__);
875 876 877 878 879
		return -EREMOTEIO;
	}
	else {
		return XC_RESULT_SUCCESS;
	}
880 881
}

882 883 884
static int xc5000_init(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
885
	dprintk(1, "%s()\n", __func__);
886

887 888 889 890 891 892 893
	if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
		return -EREMOTEIO;
	}

	if (debug)
		xc_debug_dump(priv);
894 895 896 897 898 899

	return 0;
}

static int xc5000_release(struct dvb_frontend *fe)
{
900
	dprintk(1, "%s()\n", __func__);
901 902 903 904 905 906 907 908 909 910 911 912 913
	kfree(fe->tuner_priv);
	fe->tuner_priv = NULL;
	return 0;
}

static const struct dvb_tuner_ops xc5000_tuner_ops = {
	.info = {
		.name           = "Xceive XC5000",
		.frequency_min  =    1000000,
		.frequency_max  = 1023000000,
		.frequency_step =      50000,
	},

914 915 916
	.release	   = xc5000_release,
	.init		   = xc5000_init,
	.sleep		   = xc5000_sleep,
917

918 919 920 921 922
	.set_params	   = xc5000_set_params,
	.set_analog_params = xc5000_set_analog_params,
	.get_frequency	   = xc5000_get_frequency,
	.get_bandwidth	   = xc5000_get_bandwidth,
	.get_status	   = xc5000_get_status
923 924
};

925 926 927
struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
				   struct i2c_adapter *i2c,
				   struct xc5000_config *cfg, void *devptr)
928 929 930 931
{
	struct xc5000_priv *priv = NULL;
	u16 id = 0;

932
	dprintk(1, "%s()\n", __func__);
933 934 935 936 937 938

	priv = kzalloc(sizeof(struct xc5000_priv), GFP_KERNEL);
	if (priv == NULL)
		return NULL;

	priv->cfg = cfg;
939
	priv->bandwidth = BANDWIDTH_6_MHZ;
940
	priv->i2c = i2c;
941
	priv->devptr = devptr;
942

943 944 945
	/* Check if firmware has been loaded. It is possible that another
	   instance of the driver has loaded the firmware.
	 */
946 947 948 949 950
	if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0) {
		kfree(priv);
		return NULL;
	}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	switch(id) {
	case XC_PRODUCT_ID_FW_LOADED:
		printk(KERN_INFO
			"xc5000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc5000: Firmware has been loaded previously\n");
		break;
	case XC_PRODUCT_ID_FW_NOT_LOADED:
		printk(KERN_INFO
			"xc5000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc5000: Firmware has not been loaded previously\n");
		break;
	default:
967 968 969 970 971 972 973 974 975 976 977 978
		printk(KERN_ERR
			"xc5000: Device not found at addr 0x%02x (0x%x)\n",
			cfg->i2c_address, id);
		kfree(priv);
		return NULL;
	}

	memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
		sizeof(struct dvb_tuner_ops));

	fe->tuner_priv = priv;

979 980 981
	if (xc5000_load_fw_on_attach)
		xc5000_init(fe);

982 983 984 985 986
	return fe;
}
EXPORT_SYMBOL(xc5000_attach);

MODULE_AUTHOR("Steven Toth");
987
MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
988
MODULE_LICENSE("GPL");