ipg.c 60.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
 *
 * Copyright (C) 2003, 2007  IC Plus Corp
 *
 * Original Author:
 *
 *   Craig Rich
 *   Sundance Technology, Inc.
 *   www.sundanceti.com
 *   craig_rich@sundanceti.com
 *
 * Current Maintainer:
 *
 *   Sorbica Shieh.
 *   http://www.icplus.com.tw
 *   sorbica@icplus.com.tw
 *
 *   Jesse Huang
 *   http://www.icplus.com.tw
 *   jesse@icplus.com.tw
 */
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/mutex.h>

28 29
#include <asm/div64.h>

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#define IPG_RX_RING_BYTES	(sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
#define IPG_TX_RING_BYTES	(sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
#define IPG_RESET_MASK \
	(IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
	 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
	 IPG_AC_AUTO_INIT)

#define ipg_w32(val32,reg)	iowrite32((val32), ioaddr + (reg))
#define ipg_w16(val16,reg)	iowrite16((val16), ioaddr + (reg))
#define ipg_w8(val8,reg)	iowrite8((val8), ioaddr + (reg))

#define ipg_r32(reg)		ioread32(ioaddr + (reg))
#define ipg_r16(reg)		ioread16(ioaddr + (reg))
#define ipg_r8(reg)		ioread8(ioaddr + (reg))

#define JUMBO_FRAME_4k_ONLY
enum {
	netdev_io_size = 128
};

#include "ipg.h"
#define DRV_NAME	"ipg"

MODULE_AUTHOR("IC Plus Corp. 2003");
P
Pekka Enberg 已提交
54
MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
55 56
MODULE_LICENSE("GPL");

A
Adrian Bunk 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
//variable record -- index by leading revision/length
//Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
static unsigned short DefaultPhyParam[] = {
	// 11/12/03 IP1000A v1-3 rev=0x40
	/*--------------------------------------------------------------------------
	(0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
				 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
				 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
	  --------------------------------------------------------------------------*/
	// 12/17/03 IP1000A v1-4 rev=0x40
	(0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
	    0x0000,
	30, 0x005e, 9, 0x0700,
	// 01/09/04 IP1000A v1-5 rev=0x41
	(0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
	    0x0000,
	30, 0x005e, 9, 0x0700,
	0x0000
};

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
static const char *ipg_brand_name[] = {
	"IC PLUS IP1000 1000/100/10 based NIC",
	"Sundance Technology ST2021 based NIC",
	"Tamarack Microelectronics TC9020/9021 based NIC",
	"Tamarack Microelectronics TC9020/9021 based NIC",
	"D-Link NIC",
	"D-Link NIC IP1000A"
};

static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
	{ PCI_VDEVICE(SUNDANCE,	0x1023), 0 },
	{ PCI_VDEVICE(SUNDANCE,	0x2021), 1 },
	{ PCI_VDEVICE(SUNDANCE,	0x1021), 2 },
	{ PCI_VDEVICE(DLINK,	0x9021), 3 },
	{ PCI_VDEVICE(DLINK,	0x4000), 4 },
	{ PCI_VDEVICE(DLINK,	0x4020), 5 },
	{ 0, }
};

MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);

static inline void __iomem *ipg_ioaddr(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	return sp->ioaddr;
}

#ifdef IPG_DEBUG
static void ipg_dump_rfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;
	u32 offset;

	IPG_DEBUG_MSG("_dump_rfdlist\n");

	printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
	printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
	printk(KERN_INFO "RFDList start address = %16.16lx\n",
	       (unsigned long) sp->rxd_map);
	printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
	       ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));

	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
		offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
		printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
		       offset, (unsigned long) sp->rxd[i].next_desc);
		offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
		printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
		       offset, (unsigned long) sp->rxd[i].rfs);
		offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
		printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
		       offset, (unsigned long) sp->rxd[i].frag_info);
	}
}

static void ipg_dump_tfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;
	u32 offset;

	IPG_DEBUG_MSG("_dump_tfdlist\n");

	printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
	printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
	printk(KERN_INFO "TFDList start address = %16.16lx\n",
	       (unsigned long) sp->txd_map);
	printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
	       ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
		printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
		       offset, (unsigned long) sp->txd[i].next_desc);

		offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
		printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
		       offset, (unsigned long) sp->txd[i].tfc);
		offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
		printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
		       offset, (unsigned long) sp->txd[i].frag_info);
	}
}
#endif

static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
{
	ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
	ndelay(IPG_PC_PHYCTRLWAIT_NS);
}

static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
{
	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
}

static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
{
	phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;

	ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
}

static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
{
	ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
		phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
}

static u16 read_phy_bit(void __iomem * ioaddr, u8 phyctrlpolarity)
{
	u16 bit_data;

	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);

	bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;

	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);

	return bit_data;
}

/*
 * Read a register from the Physical Layer device located
 * on the IPG NIC, using the IPG PHYCTRL register.
 */
static int mdio_read(struct net_device * dev, int phy_id, int phy_reg)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	/*
	 * The GMII mangement frame structure for a read is as follows:
	 *
	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
	 *
	 * <32 1s> = 32 consecutive logic 1 values
	 * A = bit of Physical Layer device address (MSB first)
	 * R = bit of register address (MSB first)
	 * z = High impedance state
	 * D = bit of read data (MSB first)
	 *
	 * Transmission order is 'Preamble' field first, bits transmitted
	 * left to right (first to last).
	 */
	struct {
		u32 field;
		unsigned int len;
	} p[] = {
		{ GMII_PREAMBLE,	32 },	/* Preamble */
		{ GMII_ST,		2  },	/* ST */
		{ GMII_READ,		2  },	/* OP */
		{ phy_id,		5  },	/* PHYAD */
		{ phy_reg,		5  },	/* REGAD */
		{ 0x0000,		2  },	/* TA */
		{ 0x0000,		16 },	/* DATA */
		{ 0x0000,		1  }	/* IDLE */
	};
	unsigned int i, j;
	u8 polarity, data;

	polarity  = ipg_r8(PHY_CTRL);
	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);

	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
	for (j = 0; j < 5; j++) {
		for (i = 0; i < p[j].len; i++) {
			/* For each variable length field, the MSB must be
			 * transmitted first. Rotate through the field bits,
			 * starting with the MSB, and move each bit into the
			 * the 1st (2^1) bit position (this is the bit position
			 * corresponding to the MgmtData bit of the PhyCtrl
			 * register for the IPG).
			 *
			 * Example: ST = 01;
			 *
			 *          First write a '0' to bit 1 of the PhyCtrl
			 *          register, then write a '1' to bit 1 of the
			 *          PhyCtrl register.
			 *
			 * To do this, right shift the MSB of ST by the value:
			 * [field length - 1 - #ST bits already written]
			 * then left shift this result by 1.
			 */
			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
			data &= IPG_PC_MGMTDATA;
			data |= polarity | IPG_PC_MGMTDIR;

			ipg_drive_phy_ctl_low_high(ioaddr, data);
		}
	}

	send_three_state(ioaddr, polarity);

	read_phy_bit(ioaddr, polarity);

	/*
	 * For a read cycle, the bits for the next two fields (TA and
	 * DATA) are driven by the PHY (the IPG reads these bits).
	 */
	for (i = 0; i < p[6].len; i++) {
		p[6].field |=
		    (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
	}

	send_three_state(ioaddr, polarity);
	send_three_state(ioaddr, polarity);
	send_three_state(ioaddr, polarity);
	send_end(ioaddr, polarity);

	/* Return the value of the DATA field. */
	return p[6].field;
}

/*
 * Write to a register from the Physical Layer device located
 * on the IPG NIC, using the IPG PHYCTRL register.
 */
static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	/*
	 * The GMII mangement frame structure for a read is as follows:
	 *
	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
	 *
	 * <32 1s> = 32 consecutive logic 1 values
	 * A = bit of Physical Layer device address (MSB first)
	 * R = bit of register address (MSB first)
	 * z = High impedance state
	 * D = bit of write data (MSB first)
	 *
	 * Transmission order is 'Preamble' field first, bits transmitted
	 * left to right (first to last).
	 */
	struct {
		u32 field;
		unsigned int len;
	} p[] = {
		{ GMII_PREAMBLE,	32 },	/* Preamble */
		{ GMII_ST,		2  },	/* ST */
		{ GMII_WRITE,		2  },	/* OP */
		{ phy_id,		5  },	/* PHYAD */
		{ phy_reg,		5  },	/* REGAD */
		{ 0x0002,		2  },	/* TA */
		{ val & 0xffff,		16 },	/* DATA */
		{ 0x0000,		1  }	/* IDLE */
	};
	unsigned int i, j;
	u8 polarity, data;

	polarity  = ipg_r8(PHY_CTRL);
	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);

	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
	for (j = 0; j < 7; j++) {
		for (i = 0; i < p[j].len; i++) {
			/* For each variable length field, the MSB must be
			 * transmitted first. Rotate through the field bits,
			 * starting with the MSB, and move each bit into the
			 * the 1st (2^1) bit position (this is the bit position
			 * corresponding to the MgmtData bit of the PhyCtrl
			 * register for the IPG).
			 *
			 * Example: ST = 01;
			 *
			 *          First write a '0' to bit 1 of the PhyCtrl
			 *          register, then write a '1' to bit 1 of the
			 *          PhyCtrl register.
			 *
			 * To do this, right shift the MSB of ST by the value:
			 * [field length - 1 - #ST bits already written]
			 * then left shift this result by 1.
			 */
			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
			data &= IPG_PC_MGMTDATA;
			data |= polarity | IPG_PC_MGMTDIR;

			ipg_drive_phy_ctl_low_high(ioaddr, data);
		}
	}

	/* The last cycle is a tri-state, so read from the PHY. */
	for (j = 7; j < 8; j++) {
		for (i = 0; i < p[j].len; i++) {
			ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);

			p[j].field |= ((ipg_r8(PHY_CTRL) &
				IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);

			ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
		}
	}
}

/* Set LED_Mode JES20040127EEPROM */
static void ipg_set_led_mode(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	u32 mode;

	mode = ipg_r32(ASIC_CTRL);
	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);

	if ((sp->LED_Mode & 0x03) > 1)
		mode |= IPG_AC_LED_MODE_BIT_1;	/* Write Asic Control Bit 29 */

	if ((sp->LED_Mode & 0x01) == 1)
		mode |= IPG_AC_LED_MODE;	/* Write Asic Control Bit 14 */

	if ((sp->LED_Mode & 0x08) == 8)
		mode |= IPG_AC_LED_SPEED;	/* Write Asic Control Bit 27 */

	ipg_w32(mode, ASIC_CTRL);
}

/* Set PHYSet JES20040127EEPROM */
static void ipg_set_phy_set(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	int physet;

	physet = ipg_r8(PHY_SET);
	physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
	physet |= ((sp->LED_Mode & 0x70) >> 4);
	ipg_w8(physet, PHY_SET);
}

static int ipg_reset(struct net_device *dev, u32 resetflags)
{
	/* Assert functional resets via the IPG AsicCtrl
	 * register as specified by the 'resetflags' input
	 * parameter.
	 */
	void __iomem *ioaddr = ipg_ioaddr(dev);	//JES20040127EEPROM:
	unsigned int timeout_count = 0;

	IPG_DEBUG_MSG("_reset\n");

	ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);

	/* Delay added to account for problem with 10Mbps reset. */
	mdelay(IPG_AC_RESETWAIT);

	while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
		mdelay(IPG_AC_RESETWAIT);
		if (++timeout_count > IPG_AC_RESET_TIMEOUT)
			return -ETIME;
	}
	/* Set LED Mode in Asic Control JES20040127EEPROM */
	ipg_set_led_mode(dev);

	/* Set PHYSet Register Value JES20040127EEPROM */
	ipg_set_phy_set(dev);
	return 0;
}

/* Find the GMII PHY address. */
static int ipg_find_phyaddr(struct net_device *dev)
{
	unsigned int phyaddr, i;

	for (i = 0; i < 32; i++) {
		u32 status;

		/* Search for the correct PHY address among 32 possible. */
		phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;

		/* 10/22/03 Grace change verify from GMII_PHY_STATUS to
		   GMII_PHY_ID1
		 */

		status = mdio_read(dev, phyaddr, MII_BMSR);

		if ((status != 0xFFFF) && (status != 0))
			return phyaddr;
	}

	return 0x1f;
}

/*
 * Configure IPG based on result of IEEE 802.3 PHY
 * auto-negotiation.
 */
static int ipg_config_autoneg(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int txflowcontrol;
	unsigned int rxflowcontrol;
	unsigned int fullduplex;
	unsigned int gig;
	u32 mac_ctrl_val;
	u32 asicctrl;
	u8 phyctrl;

	IPG_DEBUG_MSG("_config_autoneg\n");

	asicctrl = ipg_r32(ASIC_CTRL);
	phyctrl = ipg_r8(PHY_CTRL);
	mac_ctrl_val = ipg_r32(MAC_CTRL);

	/* Set flags for use in resolving auto-negotation, assuming
	 * non-1000Mbps, half duplex, no flow control.
	 */
	fullduplex = 0;
	txflowcontrol = 0;
	rxflowcontrol = 0;
	gig = 0;

	/* To accomodate a problem in 10Mbps operation,
	 * set a global flag if PHY running in 10Mbps mode.
	 */
	sp->tenmbpsmode = 0;

	printk(KERN_INFO "%s: Link speed = ", dev->name);

	/* Determine actual speed of operation. */
	switch (phyctrl & IPG_PC_LINK_SPEED) {
	case IPG_PC_LINK_SPEED_10MBPS:
		printk("10Mbps.\n");
		printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
		       dev->name);
		sp->tenmbpsmode = 1;
		break;
	case IPG_PC_LINK_SPEED_100MBPS:
		printk("100Mbps.\n");
		break;
	case IPG_PC_LINK_SPEED_1000MBPS:
		printk("1000Mbps.\n");
		gig = 1;
		break;
	default:
		printk("undefined!\n");
		return 0;
	}

	if (phyctrl & IPG_PC_DUPLEX_STATUS) {
		fullduplex = 1;
		txflowcontrol = 1;
		rxflowcontrol = 1;
	}

	/* Configure full duplex, and flow control. */
	if (fullduplex == 1) {
		/* Configure IPG for full duplex operation. */
		printk(KERN_INFO "%s: setting full duplex, ", dev->name);

		mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;

		if (txflowcontrol == 1) {
			printk("TX flow control");
			mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
		} else {
			printk("no TX flow control");
			mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
		}

		if (rxflowcontrol == 1) {
			printk(", RX flow control.");
			mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
		} else {
			printk(", no RX flow control.");
			mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
		}

		printk("\n");
	} else {
		/* Configure IPG for half duplex operation. */
	        printk(KERN_INFO "%s: setting half duplex, "
		       "no TX flow control, no RX flow control.\n", dev->name);

		mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
			~IPG_MC_TX_FLOW_CONTROL_ENABLE &
			~IPG_MC_RX_FLOW_CONTROL_ENABLE;
	}
	ipg_w32(mac_ctrl_val, MAC_CTRL);
	return 0;
}

/* Determine and configure multicast operation and set
 * receive mode for IPG.
 */
static void ipg_nic_set_multicast_list(struct net_device *dev)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	struct dev_mc_list *mc_list_ptr;
	unsigned int hashindex;
	u32 hashtable[2];
	u8 receivemode;

	IPG_DEBUG_MSG("_nic_set_multicast_list\n");

	receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;

	if (dev->flags & IFF_PROMISC) {
		/* NIC to be configured in promiscuous mode. */
		receivemode = IPG_RM_RECEIVEALLFRAMES;
	} else if ((dev->flags & IFF_ALLMULTI) ||
		   (dev->flags & IFF_MULTICAST &
		    (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
		/* NIC to be configured to receive all multicast
		 * frames. */
		receivemode |= IPG_RM_RECEIVEMULTICAST;
	} else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) {
		/* NIC to be configured to receive selected
		 * multicast addresses. */
		receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
	}

	/* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
	 * The IPG applies a cyclic-redundancy-check (the same CRC
	 * used to calculate the frame data FCS) to the destination
	 * address all incoming multicast frames whose destination
	 * address has the multicast bit set. The least significant
	 * 6 bits of the CRC result are used as an addressing index
	 * into the hash table. If the value of the bit addressed by
	 * this index is a 1, the frame is passed to the host system.
	 */

	/* Clear hashtable. */
	hashtable[0] = 0x00000000;
	hashtable[1] = 0x00000000;

	/* Cycle through all multicast addresses to filter. */
	for (mc_list_ptr = dev->mc_list;
	     mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
		/* Calculate CRC result for each multicast address. */
		hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
				     ETH_ALEN);

		/* Use only the least significant 6 bits. */
		hashindex = hashindex & 0x3F;

		/* Within "hashtable", set bit number "hashindex"
		 * to a logic 1.
		 */
		set_bit(hashindex, (void *)hashtable);
	}

	/* Write the value of the hashtable, to the 4, 16 bit
	 * HASHTABLE IPG registers.
	 */
	ipg_w32(hashtable[0], HASHTABLE_0);
	ipg_w32(hashtable[1], HASHTABLE_1);

	ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);

	IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
}

static int ipg_io_config(struct net_device *dev)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	u32 origmacctrl;
	u32 restoremacctrl;

	IPG_DEBUG_MSG("_io_config\n");

	origmacctrl = ipg_r32(MAC_CTRL);

	restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;

	/* Based on compilation option, determine if FCS is to be
	 * stripped on receive frames by IPG.
	 */
	if (!IPG_STRIP_FCS_ON_RX)
		restoremacctrl |= IPG_MC_RCV_FCS;

	/* Determine if transmitter and/or receiver are
	 * enabled so we may restore MACCTRL correctly.
	 */
	if (origmacctrl & IPG_MC_TX_ENABLED)
		restoremacctrl |= IPG_MC_TX_ENABLE;

	if (origmacctrl & IPG_MC_RX_ENABLED)
		restoremacctrl |= IPG_MC_RX_ENABLE;

	/* Transmitter and receiver must be disabled before setting
	 * IFSSelect.
	 */
	ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
		IPG_MC_RSVD_MASK, MAC_CTRL);

	/* Now that transmitter and receiver are disabled, write
	 * to IFSSelect.
	 */
	ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);

	/* Set RECEIVEMODE register. */
	ipg_nic_set_multicast_list(dev);

	ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE);

	ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
	ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
	ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
	ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
	ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
	ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
	ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
		 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
		 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
		 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
	ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
	ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);

	/* IPG multi-frag frame bug workaround.
	 * Per silicon revision B3 eratta.
	 */
	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);

	/* IPG TX poll now bug workaround.
	 * Per silicon revision B3 eratta.
	 */
	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);

	/* IPG RX poll now bug workaround.
	 * Per silicon revision B3 eratta.
	 */
	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);

	/* Now restore MACCTRL to original setting. */
	ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);

	/* Disable unused RMON statistics. */
	ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);

	/* Disable unused MIB statistics. */
	ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
		IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
		IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
		IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
		IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
		IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);

	return 0;
}

/*
 * Create a receive buffer within system memory and update
 * NIC private structure appropriately.
 */
static int ipg_get_rxbuff(struct net_device *dev, int entry)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	struct ipg_rx *rxfd = sp->rxd + entry;
	struct sk_buff *skb;
	u64 rxfragsize;

	IPG_DEBUG_MSG("_get_rxbuff\n");

	skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN);
	if (!skb) {
		sp->RxBuff[entry] = NULL;
		return -ENOMEM;
	}

	/* Adjust the data start location within the buffer to
	 * align IP address field to a 16 byte boundary.
	 */
	skb_reserve(skb, NET_IP_ALIGN);

	/* Associate the receive buffer with the IPG NIC. */
	skb->dev = dev;

	/* Save the address of the sk_buff structure. */
	sp->RxBuff[entry] = skb;

	rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
		sp->rx_buf_sz, PCI_DMA_FROMDEVICE));

	/* Set the RFD fragment length. */
	rxfragsize = IPG_RXFRAG_SIZE;
	rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);

	return 0;
}

static int init_rfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_init_rfdlist\n");

	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
		struct ipg_rx *rxfd = sp->rxd + i;

		if (sp->RxBuff[i]) {
			pci_unmap_single(sp->pdev,
A
Al Viro 已提交
776
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
777
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
778
			dev_kfree_skb_irq(sp->RxBuff[i]);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
			sp->RxBuff[i] = NULL;
		}

		/* Clear out the RFS field. */
		rxfd->rfs = 0x0000000000000000;

		if (ipg_get_rxbuff(dev, i) < 0) {
			/*
			 * A receive buffer was not ready, break the
			 * RFD list here.
			 */
			IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");

			/* Just in case we cannot allocate a single RFD.
			 * Should not occur.
			 */
			if (i == 0) {
				printk(KERN_ERR "%s: No memory available"
					" for RFD list.\n", dev->name);
				return -ENOMEM;
			}
		}

		rxfd->next_desc = cpu_to_le64(sp->rxd_map +
			sizeof(struct ipg_rx)*(i + 1));
	}
	sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);

	sp->rx_current = 0;
	sp->rx_dirty = 0;

	/* Write the location of the RFDList to the IPG. */
	ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
	ipg_w32(0x00000000, RFD_LIST_PTR_1);

	return 0;
}

static void init_tfdlist(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_init_tfdlist\n");

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		struct ipg_tx *txfd = sp->txd + i;

		txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);

		if (sp->TxBuff[i]) {
831
			dev_kfree_skb_irq(sp->TxBuff[i]);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
			sp->TxBuff[i] = NULL;
		}

		txfd->next_desc = cpu_to_le64(sp->txd_map +
			sizeof(struct ipg_tx)*(i + 1));
	}
	sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);

	sp->tx_current = 0;
	sp->tx_dirty = 0;

	/* Write the location of the TFDList to the IPG. */
	IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
		       (u32) sp->txd_map);
	ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
	ipg_w32(0x00000000, TFD_LIST_PTR_1);

	sp->ResetCurrentTFD = 1;
}

/*
 * Free all transmit buffers which have already been transfered
 * via DMA to the IPG.
 */
static void ipg_nic_txfree(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
F
Francois Romieu 已提交
859
	unsigned int released, pending, dirty;
860

861 862 863
	IPG_DEBUG_MSG("_nic_txfree\n");

	pending = sp->tx_current - sp->tx_dirty;
F
Francois Romieu 已提交
864
	dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
865 866 867 868 869 870 871 872 873 874 875 876

	for (released = 0; released < pending; released++) {
		struct sk_buff *skb = sp->TxBuff[dirty];
		struct ipg_tx *txfd = sp->txd + dirty;

		IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);

		/* Look at each TFD's TFC field beginning
		 * at the last freed TFD up to the current TFD.
		 * If the TFDDone bit is set, free the associated
		 * buffer.
		 */
F
Francois Romieu 已提交
877 878
		if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
                        break;
879 880 881 882

		/* Free the transmit buffer. */
		if (skb) {
			pci_unmap_single(sp->pdev,
A
Al Viro 已提交
883
				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
884 885
				skb->len, PCI_DMA_TODEVICE);

886
			dev_kfree_skb_irq(skb);
887 888 889

			sp->TxBuff[dirty] = NULL;
		}
F
Francois Romieu 已提交
890
		dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	}

	sp->tx_dirty += released;

	if (netif_queue_stopped(dev) &&
	    (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
		netif_wake_queue(dev);
	}
}

static void ipg_tx_timeout(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;

	ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
		  IPG_AC_FIFO);

	spin_lock_irq(&sp->lock);

	/* Re-configure after DMA reset. */
	if (ipg_io_config(dev) < 0) {
		printk(KERN_INFO "%s: Error during re-configuration.\n",
		       dev->name);
	}

	init_tfdlist(dev);

	spin_unlock_irq(&sp->lock);

	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
		MAC_CTRL);
}

/*
 * For TxComplete interrupts, free all transmit
 * buffers which have already been transfered via DMA
 * to the IPG.
 */
static void ipg_nic_txcleanup(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_nic_txcleanup\n");

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		/* Reading the TXSTATUS register clears the
		 * TX_COMPLETE interrupt.
		 */
		u32 txstatusdword = ipg_r32(TX_STATUS);

		IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);

		/* Check for Transmit errors. Error bits only valid if
		 * TX_COMPLETE bit in the TXSTATUS register is a 1.
		 */
		if (!(txstatusdword & IPG_TS_TX_COMPLETE))
			break;

		/* If in 10Mbps mode, indicate transmit is ready. */
		if (sp->tenmbpsmode) {
			netif_wake_queue(dev);
		}

		/* Transmit error, increment stat counters. */
		if (txstatusdword & IPG_TS_TX_ERROR) {
			IPG_DEBUG_MSG("Transmit error.\n");
			sp->stats.tx_errors++;
		}

		/* Late collision, re-enable transmitter. */
		if (txstatusdword & IPG_TS_LATE_COLLISION) {
			IPG_DEBUG_MSG("Late collision on transmit.\n");
			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
				IPG_MC_RSVD_MASK, MAC_CTRL);
		}

		/* Maximum collisions, re-enable transmitter. */
		if (txstatusdword & IPG_TS_TX_MAX_COLL) {
			IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
				IPG_MC_RSVD_MASK, MAC_CTRL);
		}

		/* Transmit underrun, reset and re-enable
		 * transmitter.
		 */
		if (txstatusdword & IPG_TS_TX_UNDERRUN) {
			IPG_DEBUG_MSG("Transmitter underrun.\n");
			sp->stats.tx_fifo_errors++;
			ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
				  IPG_AC_NETWORK | IPG_AC_FIFO);

			/* Re-configure after DMA reset. */
			if (ipg_io_config(dev) < 0) {
				printk(KERN_INFO
				       "%s: Error during re-configuration.\n",
				       dev->name);
			}
			init_tfdlist(dev);

			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
				IPG_MC_RSVD_MASK, MAC_CTRL);
		}
	}

	ipg_nic_txfree(dev);
}

/* Provides statistical information about the IPG NIC. */
A
Adrian Bunk 已提交
1003
static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	u16 temp1;
	u16 temp2;

	IPG_DEBUG_MSG("_nic_get_stats\n");

	/* Check to see if the NIC has been initialized via nic_open,
	 * before trying to read statistic registers.
	 */
	if (!test_bit(__LINK_STATE_START, &dev->state))
		return &sp->stats;

	sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
	sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
	sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
	sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
	temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
	sp->stats.rx_errors += temp1;
	sp->stats.rx_missed_errors += temp1;
	temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
		ipg_r32(IPG_LATECOLLISIONS);
	temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
	sp->stats.collisions += temp1;
	sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
	sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
		ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
	sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);

	/* detailed tx_errors */
	sp->stats.tx_carrier_errors += temp2;

	/* detailed rx_errors */
	sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
		ipg_r16(IPG_FRAMETOOLONGERRRORS);
	sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);

	/* Unutilized IPG statistic registers. */
	ipg_r32(IPG_MCSTFRAMESRCVDOK);

	return &sp->stats;
}

/* Restore used receive buffers. */
static int ipg_nic_rxrestore(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	const unsigned int curr = sp->rx_current;
	unsigned int dirty = sp->rx_dirty;

	IPG_DEBUG_MSG("_nic_rxrestore\n");

	for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
		unsigned int entry = dirty % IPG_RFDLIST_LENGTH;

		/* rx_copybreak may poke hole here and there. */
		if (sp->RxBuff[entry])
			continue;

		/* Generate a new receive buffer to replace the
		 * current buffer (which will be released by the
		 * Linux system).
		 */
		if (ipg_get_rxbuff(dev, entry) < 0) {
			IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");

			break;
		}

		/* Reset the RFS field. */
		sp->rxd[entry].rfs = 0x0000000000000000;
	}
	sp->rx_dirty = dirty;

	return 0;
}

#ifdef JUMBO_FRAME

/* use jumboindex and jumbosize to control jumbo frame status
   initial status is jumboindex=-1 and jumbosize=0
   1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
   2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
   3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
                previous receiving and need to continue dumping the current one
*/
enum {
	NormalPacket,
	ErrorPacket
};

enum {
	Frame_NoStart_NoEnd	= 0,
	Frame_WithStart		= 1,
	Frame_WithEnd		= 10,
	Frame_WithStart_WithEnd = 11
};

inline void ipg_nic_rx_free_skb(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;

	if (sp->RxBuff[entry]) {
		struct ipg_rx *rxfd = sp->rxd + entry;

		pci_unmap_single(sp->pdev,
			le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
			sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1114
		dev_kfree_skb_irq(sp->RxBuff[entry]);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		sp->RxBuff[entry] = NULL;
	}
}

inline int ipg_nic_rx_check_frame_type(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
	int type = Frame_NoStart_NoEnd;

	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
		type += Frame_WithStart;
	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
		type += Frame_WithEnd;
	return type;
}

inline int ipg_nic_rx_check_error(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
	struct ipg_rx *rxfd = sp->rxd + entry;

	if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
	     (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
	      IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
	      IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
		IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
			      (unsigned long) rxfd->rfs);

		/* Increment general receive error statistic. */
		sp->stats.rx_errors++;

		/* Increment detailed receive error statistics. */
		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
			IPG_DEBUG_MSG("RX FIFO overrun occured.\n");

			sp->stats.rx_fifo_errors++;
		}

		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
			IPG_DEBUG_MSG("RX runt occured.\n");
			sp->stats.rx_length_errors++;
		}

		/* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
		 * error count handled by a IPG statistic register.
		 */

		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
			IPG_DEBUG_MSG("RX alignment error occured.\n");
			sp->stats.rx_frame_errors++;
		}

		/* Do nothing for IPG_RFS_RXFCSERROR, error count
		 * handled by a IPG statistic register.
		 */

		/* Free the memory associated with the RX
		 * buffer since it is erroneous and we will
		 * not pass it to higher layer processes.
		 */
		if (sp->RxBuff[entry]) {
			pci_unmap_single(sp->pdev,
				le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);

1182
			dev_kfree_skb_irq(sp->RxBuff[entry]);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
			sp->RxBuff[entry] = NULL;
		}
		return ErrorPacket;
	}
	return NormalPacket;
}

static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
					  struct ipg_nic_private *sp,
					  struct ipg_rx *rxfd, unsigned entry)
{
	struct SJumbo *jumbo = &sp->Jumbo;
	struct sk_buff *skb;
	int framelen;

	if (jumbo->FoundStart) {
1199
		dev_kfree_skb_irq(jumbo->skb);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		jumbo->FoundStart = 0;
		jumbo->CurrentSize = 0;
		jumbo->skb = NULL;
	}

	// 1: found error, 0 no error
	if (ipg_nic_rx_check_error(dev) != NormalPacket)
		return;

	skb = sp->RxBuff[entry];
	if (!skb)
		return;

	// accept this frame and send to upper layer
	framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
	if (framelen > IPG_RXFRAG_SIZE)
		framelen = IPG_RXFRAG_SIZE;

	skb_put(skb, framelen);
	skb->protocol = eth_type_trans(skb, dev);
	skb->ip_summed = CHECKSUM_NONE;
	netif_rx(skb);
	dev->last_rx = jiffies;
	sp->RxBuff[entry] = NULL;
}

static void ipg_nic_rx_with_start(struct net_device *dev,
				  struct ipg_nic_private *sp,
				  struct ipg_rx *rxfd, unsigned entry)
{
	struct SJumbo *jumbo = &sp->Jumbo;
	struct pci_dev *pdev = sp->pdev;
	struct sk_buff *skb;

	// 1: found error, 0 no error
	if (ipg_nic_rx_check_error(dev) != NormalPacket)
		return;

	// accept this frame and send to upper layer
	skb = sp->RxBuff[entry];
	if (!skb)
		return;

	if (jumbo->FoundStart)
1244
		dev_kfree_skb_irq(jumbo->skb);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

	pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
			 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);

	skb_put(skb, IPG_RXFRAG_SIZE);

	jumbo->FoundStart = 1;
	jumbo->CurrentSize = IPG_RXFRAG_SIZE;
	jumbo->skb = skb;

	sp->RxBuff[entry] = NULL;
	dev->last_rx = jiffies;
}

static void ipg_nic_rx_with_end(struct net_device *dev,
				struct ipg_nic_private *sp,
				struct ipg_rx *rxfd, unsigned entry)
{
	struct SJumbo *jumbo = &sp->Jumbo;

	//1: found error, 0 no error
	if (ipg_nic_rx_check_error(dev) == NormalPacket) {
		struct sk_buff *skb = sp->RxBuff[entry];

		if (!skb)
			return;

		if (jumbo->FoundStart) {
			int framelen, endframelen;

			framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;

			endframeLen = framelen - jumbo->CurrentSize;
			/*
			if (framelen > IPG_RXFRAG_SIZE)
				framelen=IPG_RXFRAG_SIZE;
			 */
			if (framelen > IPG_RXSUPPORT_SIZE)
1283
				dev_kfree_skb_irq(jumbo->skb);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
			else {
				memcpy(skb_put(jumbo->skb, endframeLen),
				       skb->data, endframeLen);

				jumbo->skb->protocol =
				    eth_type_trans(jumbo->skb, dev);

				jumbo->skb->ip_summed = CHECKSUM_NONE;
				netif_rx(jumbo->skb);
			}
		}

		dev->last_rx = jiffies;
		jumbo->FoundStart = 0;
		jumbo->CurrentSize = 0;
		jumbo->skb = NULL;

		ipg_nic_rx_free_skb(dev);
	} else {
1303
		dev_kfree_skb_irq(jumbo->skb);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		jumbo->FoundStart = 0;
		jumbo->CurrentSize = 0;
		jumbo->skb = NULL;
	}
}

static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
				       struct ipg_nic_private *sp,
				       struct ipg_rx *rxfd, unsigned entry)
{
	struct SJumbo *jumbo = &sp->Jumbo;

	//1: found error, 0 no error
	if (ipg_nic_rx_check_error(dev) == NormalPacket) {
		struct sk_buff *skb = sp->RxBuff[entry];

		if (skb) {
			if (jumbo->FoundStart) {
				jumbo->CurrentSize += IPG_RXFRAG_SIZE;
				if (jumbo->CurrentSize <= IPG_RXSUPPORT_SIZE) {
					memcpy(skb_put(jumbo->skb,
						       IPG_RXFRAG_SIZE),
					       skb->data, IPG_RXFRAG_SIZE);
				}
			}
			dev->last_rx = jiffies;
			ipg_nic_rx_free_skb(dev);
		}
	} else {
1333
		dev_kfree_skb_irq(jumbo->skb);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		jumbo->FoundStart = 0;
		jumbo->CurrentSize = 0;
		jumbo->skb = NULL;
	}
}

static int ipg_nic_rx(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int curr = sp->rx_current;
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;

	IPG_DEBUG_MSG("_nic_rx\n");

	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
		struct ipg_rx *rxfd = sp->rxd + entry;

		if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE)))
			break;

		switch (ipg_nic_rx_check_frame_type(dev)) {
		case Frame_WithStart_WithEnd:
			ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry);
			break;
		case Frame_WithStart:
			ipg_nic_rx_with_start(dev, tp, rxfd, entry);
			break;
		case Frame_WithEnd:
			ipg_nic_rx_with_end(dev, tp, rxfd, entry);
			break;
		case Frame_NoStart_NoEnd:
			ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry);
			break;
		}
	}

	sp->rx_current = curr;

	if (i == IPG_MAXRFDPROCESS_COUNT) {
		/* There are more RFDs to process, however the
		 * allocated amount of RFD processing time has
		 * expired. Assert Interrupt Requested to make
		 * sure we come back to process the remaining RFDs.
		 */
		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
	}

	ipg_nic_rxrestore(dev);

	return 0;
}

#else
static int ipg_nic_rx(struct net_device *dev)
{
	/* Transfer received Ethernet frames to higher network layers. */
	struct ipg_nic_private *sp = netdev_priv(dev);
	unsigned int curr = sp->rx_current;
	void __iomem *ioaddr = sp->ioaddr;
	struct ipg_rx *rxfd;
	unsigned int i;

	IPG_DEBUG_MSG("_nic_rx\n");

#define __RFS_MASK \
	cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)

	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
		struct sk_buff *skb = sp->RxBuff[entry];
		unsigned int framelen;

		rxfd = sp->rxd + entry;

		if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
			break;

		/* Get received frame length. */
		framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;

		/* Check for jumbo frame arrival with too small
		 * RXFRAG_SIZE.
		 */
		if (framelen > IPG_RXFRAG_SIZE) {
			IPG_DEBUG_MSG
			    ("RFS FrameLen > allocated fragment size.\n");

			framelen = IPG_RXFRAG_SIZE;
		}

A
Al Viro 已提交
1426
		if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1427 1428
		       (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
			IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
A
Al Viro 已提交
1429
			IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1430 1431 1432 1433 1434 1435 1436 1437

			IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
				      (unsigned long int) rxfd->rfs);

			/* Increment general receive error statistic. */
			sp->stats.rx_errors++;

			/* Increment detailed receive error statistics. */
A
Al Viro 已提交
1438
			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1439 1440 1441 1442
				IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
				sp->stats.rx_fifo_errors++;
			}

A
Al Viro 已提交
1443
			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1444 1445 1446 1447
				IPG_DEBUG_MSG("RX runt occured.\n");
				sp->stats.rx_length_errors++;
			}

A
Al Viro 已提交
1448
			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1449 1450 1451 1452
			/* Do nothing, error count handled by a IPG
			 * statistic register.
			 */

A
Al Viro 已提交
1453
			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1454 1455 1456 1457
				IPG_DEBUG_MSG("RX alignment error occured.\n");
				sp->stats.rx_frame_errors++;
			}

A
Al Viro 已提交
1458
			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1459 1460 1461 1462 1463 1464 1465 1466 1467
			/* Do nothing, error count handled by a IPG
			 * statistic register.
			 */

			/* Free the memory associated with the RX
			 * buffer since it is erroneous and we will
			 * not pass it to higher layer processes.
			 */
			if (skb) {
A
Al Viro 已提交
1468
				__le64 info = rxfd->frag_info;
1469 1470

				pci_unmap_single(sp->pdev,
A
Al Viro 已提交
1471
					le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1472 1473
					sp->rx_buf_sz, PCI_DMA_FROMDEVICE);

1474
				dev_kfree_skb_irq(skb);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
			}
		} else {

			/* Adjust the new buffer length to accomodate the size
			 * of the received frame.
			 */
			skb_put(skb, framelen);

			/* Set the buffer's protocol field to Ethernet. */
			skb->protocol = eth_type_trans(skb, dev);

P
Pekka Enberg 已提交
1486 1487 1488 1489 1490
			/* The IPG encountered an error with (or
			 * there were no) IP/TCP/UDP checksums.
			 * This may or may not indicate an invalid
			 * IP/TCP/UDP frame was received. Let the
			 * upper layer decide.
1491
			 */
P
Pekka Enberg 已提交
1492
			skb->ip_summed = CHECKSUM_NONE;
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

			/* Hand off frame for higher layer processing.
			 * The function netif_rx() releases the sk_buff
			 * when processing completes.
			 */
			netif_rx(skb);

			/* Record frame receive time (jiffies = Linux
			 * kernel current time stamp).
			 */
			dev->last_rx = jiffies;
		}

		/* Assure RX buffer is not reused by IPG. */
		sp->RxBuff[entry] = NULL;
	}

	/*
	 * If there are more RFDs to proces and the allocated amount of RFD
	 * processing time has expired, assert Interrupt Requested to make
	 * sure we come back to process the remaining RFDs.
	 */
	if (i == IPG_MAXRFDPROCESS_COUNT)
		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);

#ifdef IPG_DEBUG
	/* Check if the RFD list contained no receive frame data. */
	if (!i)
		sp->EmptyRFDListCount++;
#endif
A
Al Viro 已提交
1523 1524 1525
	while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
	       !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
		 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
		unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;

		rxfd = sp->rxd + entry;

		IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");

		/* An unexpected event, additional code needed to handle
		 * properly. So for the time being, just disregard the
		 * frame.
		 */

		/* Free the memory associated with the RX
		 * buffer since it is erroneous and we will
		 * not pass it to higher layer processes.
		 */
		if (sp->RxBuff[entry]) {
			pci_unmap_single(sp->pdev,
A
Al Viro 已提交
1543
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1544
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1545
			dev_kfree_skb_irq(sp->RxBuff[entry]);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		}

		/* Assure RX buffer is not reused by IPG. */
		sp->RxBuff[entry] = NULL;
	}

	sp->rx_current = curr;

	/* Check to see if there are a minimum number of used
	 * RFDs before restoring any (should improve performance.)
	 */
	if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
		ipg_nic_rxrestore(dev);

	return 0;
}
#endif

static void ipg_reset_after_host_error(struct work_struct *work)
{
	struct ipg_nic_private *sp =
		container_of(work, struct ipg_nic_private, task.work);
	struct net_device *dev = sp->dev;

	IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));

	/*
	 * Acknowledge HostError interrupt by resetting
	 * IPG DMA and HOST.
	 */
	ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);

	init_rfdlist(dev);
	init_tfdlist(dev);

	if (ipg_io_config(dev) < 0) {
		printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
		       dev->name);
		schedule_delayed_work(&sp->task, HZ);
	}
}

static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
{
	struct net_device *dev = dev_inst;
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int handled = 0;
	u16 status;

	IPG_DEBUG_MSG("_interrupt_handler\n");

#ifdef JUMBO_FRAME
	ipg_nic_rxrestore(dev);
#endif
1601 1602
	spin_lock(&sp->lock);

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	/* Get interrupt source information, and acknowledge
	 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
	 * IntRequested, MacControlFrame, LinkEvent) interrupts
	 * if issued. Also, all IPG interrupts are disabled by
	 * reading IntStatusAck.
	 */
	status = ipg_r16(INT_STATUS_ACK);

	IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);

	/* Shared IRQ of remove event. */
	if (!(status & IPG_IS_RSVD_MASK))
		goto out_enable;

	handled = 1;

	if (unlikely(!netif_running(dev)))
1620
		goto out_unlock;
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

	/* If RFDListEnd interrupt, restore all used RFDs. */
	if (status & IPG_IS_RFD_LIST_END) {
		IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");

		/* The RFD list end indicates an RFD was encountered
		 * with a 0 NextPtr, or with an RFDDone bit set to 1
		 * (indicating the RFD is not read for use by the
		 * IPG.) Try to restore all RFDs.
		 */
		ipg_nic_rxrestore(dev);

#ifdef IPG_DEBUG
		/* Increment the RFDlistendCount counter. */
		sp->RFDlistendCount++;
#endif
	}

	/* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
	 * IntRequested interrupt, process received frames. */
	if ((status & IPG_IS_RX_DMA_PRIORITY) ||
	    (status & IPG_IS_RFD_LIST_END) ||
	    (status & IPG_IS_RX_DMA_COMPLETE) ||
	    (status & IPG_IS_INT_REQUESTED)) {
#ifdef IPG_DEBUG
		/* Increment the RFD list checked counter if interrupted
		 * only to check the RFD list. */
		if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
				IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
			       (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
				IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
				IPG_IS_UPDATE_STATS)))
			sp->RFDListCheckedCount++;
#endif

		ipg_nic_rx(dev);
	}

	/* If TxDMAComplete interrupt, free used TFDs. */
	if (status & IPG_IS_TX_DMA_COMPLETE)
		ipg_nic_txfree(dev);

	/* TxComplete interrupts indicate one of numerous actions.
	 * Determine what action to take based on TXSTATUS register.
	 */
	if (status & IPG_IS_TX_COMPLETE)
		ipg_nic_txcleanup(dev);

	/* If UpdateStats interrupt, update Linux Ethernet statistics */
	if (status & IPG_IS_UPDATE_STATS)
		ipg_nic_get_stats(dev);

	/* If HostError interrupt, reset IPG. */
	if (status & IPG_IS_HOST_ERROR) {
		IPG_DDEBUG_MSG("HostError Interrupt\n");

		schedule_delayed_work(&sp->task, 0);
	}

	/* If LinkEvent interrupt, resolve autonegotiation. */
	if (status & IPG_IS_LINK_EVENT) {
		if (ipg_config_autoneg(dev) < 0)
			printk(KERN_INFO "%s: Auto-negotiation error.\n",
			       dev->name);
	}

	/* If MACCtrlFrame interrupt, do nothing. */
	if (status & IPG_IS_MAC_CTRL_FRAME)
		IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");

	/* If RxComplete interrupt, do nothing. */
	if (status & IPG_IS_RX_COMPLETE)
		IPG_DEBUG_MSG("RxComplete interrupt.\n");

	/* If RxEarly interrupt, do nothing. */
	if (status & IPG_IS_RX_EARLY)
		IPG_DEBUG_MSG("RxEarly interrupt.\n");

out_enable:
	/* Re-enable IPG interrupts. */
	ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
		IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
		IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1704
out_unlock:
1705
	spin_unlock(&sp->lock);
1706

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	return IRQ_RETVAL(handled);
}

static void ipg_rx_clear(struct ipg_nic_private *sp)
{
	unsigned int i;

	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
		if (sp->RxBuff[i]) {
			struct ipg_rx *rxfd = sp->rxd + i;

1718
			dev_kfree_skb_irq(sp->RxBuff[i]);
1719 1720
			sp->RxBuff[i] = NULL;
			pci_unmap_single(sp->pdev,
A
Al Viro 已提交
1721
				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
		}
	}
}

static void ipg_tx_clear(struct ipg_nic_private *sp)
{
	unsigned int i;

	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
		if (sp->TxBuff[i]) {
			struct ipg_tx *txfd = sp->txd + i;

			pci_unmap_single(sp->pdev,
A
Al Viro 已提交
1736
				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1737 1738
				sp->TxBuff[i]->len, PCI_DMA_TODEVICE);

1739
			dev_kfree_skb_irq(sp->TxBuff[i]);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913

			sp->TxBuff[i] = NULL;
		}
	}
}

static int ipg_nic_open(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	struct pci_dev *pdev = sp->pdev;
	int rc;

	IPG_DEBUG_MSG("_nic_open\n");

	sp->rx_buf_sz = IPG_RXSUPPORT_SIZE;

	/* Check for interrupt line conflicts, and request interrupt
	 * line for IPG.
	 *
	 * IMPORTANT: Disable IPG interrupts prior to registering
	 *            IRQ.
	 */
	ipg_w16(0x0000, INT_ENABLE);

	/* Register the interrupt line to be used by the IPG within
	 * the Linux system.
	 */
	rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
			 dev->name, dev);
	if (rc < 0) {
		printk(KERN_INFO "%s: Error when requesting interrupt.\n",
		       dev->name);
		goto out;
	}

	dev->irq = pdev->irq;

	rc = -ENOMEM;

	sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
				     &sp->rxd_map, GFP_KERNEL);
	if (!sp->rxd)
		goto err_free_irq_0;

	sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
				     &sp->txd_map, GFP_KERNEL);
	if (!sp->txd)
		goto err_free_rx_1;

	rc = init_rfdlist(dev);
	if (rc < 0) {
		printk(KERN_INFO "%s: Error during configuration.\n",
		       dev->name);
		goto err_free_tx_2;
	}

	init_tfdlist(dev);

	rc = ipg_io_config(dev);
	if (rc < 0) {
		printk(KERN_INFO "%s: Error during configuration.\n",
		       dev->name);
		goto err_release_tfdlist_3;
	}

	/* Resolve autonegotiation. */
	if (ipg_config_autoneg(dev) < 0)
		printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);

#ifdef JUMBO_FRAME
	/* initialize JUMBO Frame control variable */
	sp->Jumbo.FoundStart = 0;
	sp->Jumbo.CurrentSize = 0;
	sp->Jumbo.skb = 0;
	dev->mtu = IPG_TXFRAG_SIZE;
#endif

	/* Enable transmit and receive operation of the IPG. */
	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
		 IPG_MC_RSVD_MASK, MAC_CTRL);

	netif_start_queue(dev);
out:
	return rc;

err_release_tfdlist_3:
	ipg_tx_clear(sp);
	ipg_rx_clear(sp);
err_free_tx_2:
	dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
err_free_rx_1:
	dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
err_free_irq_0:
	free_irq(pdev->irq, dev);
	goto out;
}

static int ipg_nic_stop(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	struct pci_dev *pdev = sp->pdev;

	IPG_DEBUG_MSG("_nic_stop\n");

	netif_stop_queue(dev);

	IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
	IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
	IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
	IPG_DUMPTFDLIST(dev);

	do {
		(void) ipg_r16(INT_STATUS_ACK);

		ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);

		synchronize_irq(pdev->irq);
	} while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);

	ipg_rx_clear(sp);

	ipg_tx_clear(sp);

	pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
	pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);

	free_irq(pdev->irq, dev);

	return 0;
}

static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
	unsigned long flags;
	struct ipg_tx *txfd;

	IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");

	/* If in 10Mbps mode, stop the transmit queue so
	 * no more transmit frames are accepted.
	 */
	if (sp->tenmbpsmode)
		netif_stop_queue(dev);

	if (sp->ResetCurrentTFD) {
		sp->ResetCurrentTFD = 0;
		entry = 0;
	}

	txfd = sp->txd + entry;

	sp->TxBuff[entry] = skb;

	/* Clear all TFC fields, except TFDDONE. */
	txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);

	/* Specify the TFC field within the TFD. */
	txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
		(IPG_TFC_FRAMEID & cpu_to_le64(sp->tx_current)) |
		(IPG_TFC_FRAGCOUNT & (1 << 24)));

	/* Request TxComplete interrupts at an interval defined
	 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
	 * Request TxComplete interrupt for every frame
	 * if in 10Mbps mode to accomodate problem with 10Mbps
	 * processing.
	 */
	if (sp->tenmbpsmode)
		txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1914
	txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	/* Based on compilation option, determine if FCS is to be
	 * appended to transmit frame by IPG.
	 */
	if (!(IPG_APPEND_FCS_ON_TX))
		txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);

	/* Based on compilation option, determine if IP, TCP and/or
	 * UDP checksums are to be added to transmit frame by IPG.
	 */
	if (IPG_ADD_IPCHECKSUM_ON_TX)
		txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);

	if (IPG_ADD_TCPCHECKSUM_ON_TX)
		txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);

	if (IPG_ADD_UDPCHECKSUM_ON_TX)
		txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);

	/* Based on compilation option, determine if VLAN tag info is to be
	 * inserted into transmit frame by IPG.
	 */
	if (IPG_INSERT_MANUAL_VLAN_TAG) {
		txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
			((u64) IPG_MANUAL_VLAN_VID << 32) |
			((u64) IPG_MANUAL_VLAN_CFI << 44) |
			((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
	}

	/* The fragment start location within system memory is defined
	 * by the sk_buff structure's data field. The physical address
	 * of this location within the system's virtual memory space
	 * is determined using the IPG_HOST2BUS_MAP function.
	 */
	txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
		skb->len, PCI_DMA_TODEVICE));

	/* The length of the fragment within system memory is defined by
	 * the sk_buff structure's len field.
	 */
	txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
		((u64) (skb->len & 0xffff) << 48));

	/* Clear the TFDDone bit last to indicate the TFD is ready
	 * for transfer to the IPG.
	 */
	txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);

	spin_lock_irqsave(&sp->lock, flags);

	sp->tx_current++;

	mmiowb();

	ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);

	if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1971
		netif_stop_queue(dev);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

	spin_unlock_irqrestore(&sp->lock, flags);

	return NETDEV_TX_OK;
}

static void ipg_set_phy_default_param(unsigned char rev,
				      struct net_device *dev, int phy_address)
{
	unsigned short length;
	unsigned char revision;
	unsigned short *phy_param;
	unsigned short address, value;

	phy_param = &DefaultPhyParam[0];
	length = *phy_param & 0x00FF;
	revision = (unsigned char)((*phy_param) >> 8);
	phy_param++;
	while (length != 0) {
		if (rev == revision) {
			while (length > 1) {
				address = *phy_param;
				value = *(phy_param + 1);
				phy_param += 2;
				mdio_write(dev, phy_address, address, value);
				length -= 4;
			}
			break;
		} else {
			phy_param += length / 2;
			length = *phy_param & 0x00FF;
			revision = (unsigned char)((*phy_param) >> 8);
			phy_param++;
		}
	}
}

/* JES20040127EEPROM */
static int read_eeprom(struct net_device *dev, int eep_addr)
{
	void __iomem *ioaddr = ipg_ioaddr(dev);
	unsigned int i;
	int ret = 0;
	u16 value;

	value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
	ipg_w16(value, EEPROM_CTRL);

	for (i = 0; i < 1000; i++) {
		u16 data;

		mdelay(10);
		data = ipg_r16(EEPROM_CTRL);
		if (!(data & IPG_EC_EEPROM_BUSY)) {
			ret = ipg_r16(EEPROM_DATA);
			break;
		}
	}
	return ret;
}

static void ipg_init_mii(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	struct mii_if_info *mii_if = &sp->mii_if;
	int phyaddr;

	mii_if->dev          = dev;
	mii_if->mdio_read    = mdio_read;
	mii_if->mdio_write   = mdio_write;
	mii_if->phy_id_mask  = 0x1f;
	mii_if->reg_num_mask = 0x1f;

	mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);

	if (phyaddr != 0x1f) {
		u16 mii_phyctrl, mii_1000cr;
		u8 revisionid = 0;

		mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
		mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
			GMII_PHY_1000BASETCONTROL_PreferMaster;
		mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);

		mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);

		/* Set default phyparam */
		pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
		ipg_set_phy_default_param(revisionid, dev, phyaddr);

		/* Reset PHY */
		mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
		mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);

	}
}

static int ipg_hw_init(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	void __iomem *ioaddr = sp->ioaddr;
	unsigned int i;
	int rc;

	/* Read/Write and Reset EEPROM Value Jesse20040128EEPROM_VALUE */
	/* Read LED Mode Configuration from EEPROM */
	sp->LED_Mode = read_eeprom(dev, 6);

	/* Reset all functions within the IPG. Do not assert
	 * RST_OUT as not compatible with some PHYs.
	 */
	rc = ipg_reset(dev, IPG_RESET_MASK);
	if (rc < 0)
		goto out;

	ipg_init_mii(dev);

	/* Read MAC Address from EEPROM */
	for (i = 0; i < 3; i++)
		sp->station_addr[i] = read_eeprom(dev, 16 + i);

	for (i = 0; i < 3; i++)
		ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);

	/* Set station address in ethernet_device structure. */
	dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
	dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
	dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
	dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
	dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
	dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
out:
	return rc;
}

static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
{
	/* Function to accomodate changes to Maximum Transfer Unit
	 * (or MTU) of IPG NIC. Cannot use default function since
	 * the default will not allow for MTU > 1500 bytes.
	 */

	IPG_DEBUG_MSG("_nic_change_mtu\n");

	/* Check that the new MTU value is between 68 (14 byte header, 46
	 * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
	 * corresponds to the MAXFRAMESIZE register in the IPG.
	 */
	if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE))
		return -EINVAL;

	dev->mtu = new_mtu;

	return 0;
}

static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = mii_ethtool_gset(&sp->mii_if, cmd);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = mii_ethtool_sset(&sp->mii_if, cmd);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static int ipg_nway_reset(struct net_device *dev)
{
	struct ipg_nic_private *sp = netdev_priv(dev);
	int rc;

	mutex_lock(&sp->mii_mutex);
	rc = mii_nway_restart(&sp->mii_if);
	mutex_unlock(&sp->mii_mutex);

	return rc;
}

static struct ethtool_ops ipg_ethtool_ops = {
	.get_settings = ipg_get_settings,
	.set_settings = ipg_set_settings,
	.nway_reset   = ipg_nway_reset,
};

static void ipg_remove(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct ipg_nic_private *sp = netdev_priv(dev);

	IPG_DEBUG_MSG("_remove\n");

	/* Un-register Ethernet device. */
	unregister_netdev(dev);

	pci_iounmap(pdev, sp->ioaddr);

	pci_release_regions(pdev);

	free_netdev(dev);
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
}

static int __devinit ipg_probe(struct pci_dev *pdev,
			       const struct pci_device_id *id)
{
	unsigned int i = id->driver_data;
	struct ipg_nic_private *sp;
	struct net_device *dev;
	void __iomem *ioaddr;
	int rc;

	rc = pci_enable_device(pdev);
	if (rc < 0)
		goto out;

	printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);

	pci_set_master(pdev);

	rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
	if (rc < 0) {
		rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
		if (rc < 0) {
			printk(KERN_ERR "%s: DMA config failed.\n",
			       pci_name(pdev));
			goto err_disable_0;
		}
	}

	/*
	 * Initialize net device.
	 */
	dev = alloc_etherdev(sizeof(struct ipg_nic_private));
	if (!dev) {
		printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
		rc = -ENOMEM;
		goto err_disable_0;
	}

	sp = netdev_priv(dev);
	spin_lock_init(&sp->lock);
	mutex_init(&sp->mii_mutex);

	/* Declare IPG NIC functions for Ethernet device methods.
	 */
	dev->open = &ipg_nic_open;
	dev->stop = &ipg_nic_stop;
	dev->hard_start_xmit = &ipg_nic_hard_start_xmit;
	dev->get_stats = &ipg_nic_get_stats;
	dev->set_multicast_list = &ipg_nic_set_multicast_list;
	dev->do_ioctl = ipg_ioctl;
	dev->tx_timeout = ipg_tx_timeout;
	dev->change_mtu = &ipg_nic_change_mtu;

	SET_NETDEV_DEV(dev, &pdev->dev);
	SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);

	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc)
		goto err_free_dev_1;

	ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
	if (!ioaddr) {
		printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
		rc = -EIO;
		goto err_release_regions_2;
	}

	/* Save the pointer to the PCI device information. */
	sp->ioaddr = ioaddr;
	sp->pdev = pdev;
	sp->dev = dev;

	INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);

	pci_set_drvdata(pdev, dev);

	rc = ipg_hw_init(dev);
	if (rc < 0)
		goto err_unmap_3;

	rc = register_netdev(dev);
	if (rc < 0)
		goto err_unmap_3;

	printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
out:
	return rc;

err_unmap_3:
	pci_iounmap(pdev, ioaddr);
err_release_regions_2:
	pci_release_regions(pdev);
err_free_dev_1:
	free_netdev(dev);
err_disable_0:
	pci_disable_device(pdev);
	goto out;
}

static struct pci_driver ipg_pci_driver = {
	.name		= IPG_DRIVER_NAME,
	.id_table	= ipg_pci_tbl,
	.probe		= ipg_probe,
	.remove		= __devexit_p(ipg_remove),
};

static int __init ipg_init_module(void)
{
	return pci_register_driver(&ipg_pci_driver);
}

static void __exit ipg_exit_module(void)
{
	pci_unregister_driver(&ipg_pci_driver);
}

module_init(ipg_init_module);
module_exit(ipg_exit_module);