mballoc.c 132.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
 * Written by Alex Tomas <alex@clusterfs.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 */


/*
 * mballoc.c contains the multiblocks allocation routines
 */

24
#include "mballoc.h"
25
#include <linux/debugfs.h>
26
#include <linux/slab.h>
27 28
#include <trace/events/ext4.h>

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * MUSTDO:
 *   - test ext4_ext_search_left() and ext4_ext_search_right()
 *   - search for metadata in few groups
 *
 * TODO v4:
 *   - normalization should take into account whether file is still open
 *   - discard preallocations if no free space left (policy?)
 *   - don't normalize tails
 *   - quota
 *   - reservation for superuser
 *
 * TODO v3:
 *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
 *   - track min/max extents in each group for better group selection
 *   - mb_mark_used() may allocate chunk right after splitting buddy
 *   - tree of groups sorted by number of free blocks
 *   - error handling
 */

/*
 * The allocation request involve request for multiple number of blocks
 * near to the goal(block) value specified.
 *
T
Theodore Ts'o 已提交
53 54 55 56 57 58 59 60 61
 * During initialization phase of the allocator we decide to use the
 * group preallocation or inode preallocation depending on the size of
 * the file. The size of the file could be the resulting file size we
 * would have after allocation, or the current file size, which ever
 * is larger. If the size is less than sbi->s_mb_stream_request we
 * select to use the group preallocation. The default value of
 * s_mb_stream_request is 16 blocks. This can also be tuned via
 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
 * terms of number of blocks.
62 63
 *
 * The main motivation for having small file use group preallocation is to
T
Theodore Ts'o 已提交
64
 * ensure that we have small files closer together on the disk.
65
 *
T
Theodore Ts'o 已提交
66 67 68 69
 * First stage the allocator looks at the inode prealloc list,
 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
 * spaces for this particular inode. The inode prealloc space is
 * represented as:
70 71 72
 *
 * pa_lstart -> the logical start block for this prealloc space
 * pa_pstart -> the physical start block for this prealloc space
73
 * pa_len    -> length for this prealloc space
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 * pa_free   ->  free space available in this prealloc space
 *
 * The inode preallocation space is used looking at the _logical_ start
 * block. If only the logical file block falls within the range of prealloc
 * space we will consume the particular prealloc space. This make sure that
 * that the we have contiguous physical blocks representing the file blocks
 *
 * The important thing to be noted in case of inode prealloc space is that
 * we don't modify the values associated to inode prealloc space except
 * pa_free.
 *
 * If we are not able to find blocks in the inode prealloc space and if we
 * have the group allocation flag set then we look at the locality group
 * prealloc space. These are per CPU prealloc list repreasented as
 *
 * ext4_sb_info.s_locality_groups[smp_processor_id()]
 *
 * The reason for having a per cpu locality group is to reduce the contention
 * between CPUs. It is possible to get scheduled at this point.
 *
 * The locality group prealloc space is used looking at whether we have
 * enough free space (pa_free) withing the prealloc space.
 *
 * If we can't allocate blocks via inode prealloc or/and locality group
 * prealloc then we look at the buddy cache. The buddy cache is represented
 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 * mapped to the buddy and bitmap information regarding different
 * groups. The buddy information is attached to buddy cache inode so that
 * we can access them through the page cache. The information regarding
 * each group is loaded via ext4_mb_load_buddy.  The information involve
 * block bitmap and buddy information. The information are stored in the
 * inode as:
 *
 *  {                        page                        }
108
 *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
 *
 *
 * one block each for bitmap and buddy information.  So for each group we
 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
 * blocksize) blocks.  So it can have information regarding groups_per_page
 * which is blocks_per_page/2
 *
 * The buddy cache inode is not stored on disk. The inode is thrown
 * away when the filesystem is unmounted.
 *
 * We look for count number of blocks in the buddy cache. If we were able
 * to locate that many free blocks we return with additional information
 * regarding rest of the contiguous physical block available
 *
 * Before allocating blocks via buddy cache we normalize the request
 * blocks. This ensure we ask for more blocks that we needed. The extra
 * blocks that we get after allocation is added to the respective prealloc
 * list. In case of inode preallocation we follow a list of heuristics
 * based on file size. This can be found in ext4_mb_normalize_request. If
 * we are doing a group prealloc we try to normalize the request to
T
Theodore Ts'o 已提交
129
 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130
 * 512 blocks. This can be tuned via
T
Theodore Ts'o 已提交
131
 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
132 133 134 135
 * terms of number of blocks. If we have mounted the file system with -O
 * stripe=<value> option the group prealloc request is normalized to the
 * stripe value (sbi->s_stripe)
 *
T
Theodore Ts'o 已提交
136
 * The regular allocator(using the buddy cache) supports few tunables.
137
 *
T
Theodore Ts'o 已提交
138 139 140
 * /sys/fs/ext4/<partition>/mb_min_to_scan
 * /sys/fs/ext4/<partition>/mb_max_to_scan
 * /sys/fs/ext4/<partition>/mb_order2_req
141
 *
T
Theodore Ts'o 已提交
142
 * The regular allocator uses buddy scan only if the request len is power of
143 144
 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
 * value of s_mb_order2_reqs can be tuned via
T
Theodore Ts'o 已提交
145
 * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
146
 * stripe size (sbi->s_stripe), we try to search for contiguous block in
T
Theodore Ts'o 已提交
147 148 149
 * stripe size. This should result in better allocation on RAID setups. If
 * not, we search in the specific group using bitmap for best extents. The
 * tunable min_to_scan and max_to_scan control the behaviour here.
150
 * min_to_scan indicate how long the mballoc __must__ look for a best
T
Theodore Ts'o 已提交
151
 * extent and max_to_scan indicates how long the mballoc __can__ look for a
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
 * best extent in the found extents. Searching for the blocks starts with
 * the group specified as the goal value in allocation context via
 * ac_g_ex. Each group is first checked based on the criteria whether it
 * can used for allocation. ext4_mb_good_group explains how the groups are
 * checked.
 *
 * Both the prealloc space are getting populated as above. So for the first
 * request we will hit the buddy cache which will result in this prealloc
 * space getting filled. The prealloc space is then later used for the
 * subsequent request.
 */

/*
 * mballoc operates on the following data:
 *  - on-disk bitmap
 *  - in-core buddy (actually includes buddy and bitmap)
 *  - preallocation descriptors (PAs)
 *
 * there are two types of preallocations:
 *  - inode
 *    assiged to specific inode and can be used for this inode only.
 *    it describes part of inode's space preallocated to specific
 *    physical blocks. any block from that preallocated can be used
 *    independent. the descriptor just tracks number of blocks left
 *    unused. so, before taking some block from descriptor, one must
 *    make sure corresponded logical block isn't allocated yet. this
 *    also means that freeing any block within descriptor's range
 *    must discard all preallocated blocks.
 *  - locality group
 *    assigned to specific locality group which does not translate to
 *    permanent set of inodes: inode can join and leave group. space
 *    from this type of preallocation can be used for any inode. thus
 *    it's consumed from the beginning to the end.
 *
 * relation between them can be expressed as:
 *    in-core buddy = on-disk bitmap + preallocation descriptors
 *
 * this mean blocks mballoc considers used are:
 *  - allocated blocks (persistent)
 *  - preallocated blocks (non-persistent)
 *
 * consistency in mballoc world means that at any time a block is either
 * free or used in ALL structures. notice: "any time" should not be read
 * literally -- time is discrete and delimited by locks.
 *
 *  to keep it simple, we don't use block numbers, instead we count number of
 *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
 *
 * all operations can be expressed as:
 *  - init buddy:			buddy = on-disk + PAs
 *  - new PA:				buddy += N; PA = N
 *  - use inode PA:			on-disk += N; PA -= N
 *  - discard inode PA			buddy -= on-disk - PA; PA = 0
 *  - use locality group PA		on-disk += N; PA -= N
 *  - discard locality group PA		buddy -= PA; PA = 0
 *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
 *        is used in real operation because we can't know actual used
 *        bits from PA, only from on-disk bitmap
 *
 * if we follow this strict logic, then all operations above should be atomic.
 * given some of them can block, we'd have to use something like semaphores
 * killing performance on high-end SMP hardware. let's try to relax it using
 * the following knowledge:
 *  1) if buddy is referenced, it's already initialized
 *  2) while block is used in buddy and the buddy is referenced,
 *     nobody can re-allocate that block
 *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
 *     bit set and PA claims same block, it's OK. IOW, one can set bit in
 *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
 *     block
 *
 * so, now we're building a concurrency table:
 *  - init buddy vs.
 *    - new PA
 *      blocks for PA are allocated in the buddy, buddy must be referenced
 *      until PA is linked to allocation group to avoid concurrent buddy init
 *    - use inode PA
 *      we need to make sure that either on-disk bitmap or PA has uptodate data
 *      given (3) we care that PA-=N operation doesn't interfere with init
 *    - discard inode PA
 *      the simplest way would be to have buddy initialized by the discard
 *    - use locality group PA
 *      again PA-=N must be serialized with init
 *    - discard locality group PA
 *      the simplest way would be to have buddy initialized by the discard
 *  - new PA vs.
 *    - use inode PA
 *      i_data_sem serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      some mutex should serialize them
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *  - use inode PA
 *    - use inode PA
 *      i_data_sem or another mutex should serializes them
 *    - discard inode PA
 *      discard process must wait until PA isn't used by another process
 *    - use locality group PA
 *      nothing wrong here -- they're different PAs covering different blocks
 *    - discard locality group PA
 *      discard process must wait until PA isn't used by another process
 *
 * now we're ready to make few consequences:
 *  - PA is referenced and while it is no discard is possible
 *  - PA is referenced until block isn't marked in on-disk bitmap
 *  - PA changes only after on-disk bitmap
 *  - discard must not compete with init. either init is done before
 *    any discard or they're serialized somehow
 *  - buddy init as sum of on-disk bitmap and PAs is done atomically
 *
 * a special case when we've used PA to emptiness. no need to modify buddy
 * in this case, but we should care about concurrent init
 *
 */

 /*
 * Logic in few words:
 *
 *  - allocation:
 *    load group
 *    find blocks
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - use preallocation:
 *    find proper PA (per-inode or group)
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *    release PA
 *
 *  - free:
 *    load group
 *    mark bits in on-disk bitmap
 *    release group
 *
 *  - discard preallocations in group:
 *    mark PAs deleted
 *    move them onto local list
 *    load on-disk bitmap
 *    load group
 *    remove PA from object (inode or locality group)
 *    mark free blocks in-core
 *
 *  - discard inode's preallocations:
 */

/*
 * Locking rules
 *
 * Locks:
 *  - bitlock on a group	(group)
 *  - object (inode/locality)	(object)
 *  - per-pa lock		(pa)
 *
 * Paths:
 *  - new pa
 *    object
 *    group
 *
 *  - find and use pa:
 *    pa
 *
 *  - release consumed pa:
 *    pa
 *    group
 *    object
 *
 *  - generate in-core bitmap:
 *    group
 *        pa
 *
 *  - discard all for given object (inode, locality group):
 *    object
 *        pa
 *    group
 *
 *  - discard all for given group:
 *    group
 *        pa
 *    group
 *        object
 *
 */
338 339 340
static struct kmem_cache *ext4_pspace_cachep;
static struct kmem_cache *ext4_ac_cachep;
static struct kmem_cache *ext4_free_ext_cachep;
341 342 343 344 345 346 347 348

/* We create slab caches for groupinfo data structures based on the
 * superblock block size.  There will be one per mounted filesystem for
 * each unique s_blocksize_bits */
#define NR_GRPINFO_CACHES	\
	(EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE + 1)
static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];

349 350
static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
					ext4_group_t group);
351 352
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group);
353 354
static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);

355 356
static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
{
357
#if BITS_PER_LONG == 64
358 359
	*bit += ((unsigned long) addr & 7UL) << 3;
	addr = (void *) ((unsigned long) addr & ~7UL);
360
#elif BITS_PER_LONG == 32
361 362
	*bit += ((unsigned long) addr & 3UL) << 3;
	addr = (void *) ((unsigned long) addr & ~3UL);
363 364 365
#else
#error "how many bits you are?!"
#endif
366 367
	return addr;
}
368 369 370 371 372 373 374

static inline int mb_test_bit(int bit, void *addr)
{
	/*
	 * ext4_test_bit on architecture like powerpc
	 * needs unsigned long aligned address
	 */
375
	addr = mb_correct_addr_and_bit(&bit, addr);
376 377 378 379 380
	return ext4_test_bit(bit, addr);
}

static inline void mb_set_bit(int bit, void *addr)
{
381
	addr = mb_correct_addr_and_bit(&bit, addr);
382 383 384 385 386
	ext4_set_bit(bit, addr);
}

static inline void mb_clear_bit(int bit, void *addr)
{
387
	addr = mb_correct_addr_and_bit(&bit, addr);
388 389 390
	ext4_clear_bit(bit, addr);
}

391 392
static inline int mb_find_next_zero_bit(void *addr, int max, int start)
{
393
	int fix = 0, ret, tmpmax;
394
	addr = mb_correct_addr_and_bit(&fix, addr);
395
	tmpmax = max + fix;
396 397
	start += fix;

398 399 400 401
	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
402 403 404 405
}

static inline int mb_find_next_bit(void *addr, int max, int start)
{
406
	int fix = 0, ret, tmpmax;
407
	addr = mb_correct_addr_and_bit(&fix, addr);
408
	tmpmax = max + fix;
409 410
	start += fix;

411 412 413 414
	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
	if (ret > max)
		return max;
	return ret;
415 416
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
{
	char *bb;

	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
	BUG_ON(max == NULL);

	if (order > e4b->bd_blkbits + 1) {
		*max = 0;
		return NULL;
	}

	/* at order 0 we see each particular block */
	*max = 1 << (e4b->bd_blkbits + 3);
	if (order == 0)
		return EXT4_MB_BITMAP(e4b);

	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];

	return bb;
}

#ifdef DOUBLE_CHECK
static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
			   int first, int count)
{
	int i;
	struct super_block *sb = e4b->bd_sb;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
449
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
450 451 452
	for (i = 0; i < count; i++) {
		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
			ext4_fsblk_t blocknr;
453 454

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
455
			blocknr += first + i;
456
			ext4_grp_locked_error(sb, e4b->bd_group,
457 458 459 460 461
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing block already freed "
					      "(bit %u)",
					      first + i);
462 463 464 465 466 467 468 469 470 471 472
		}
		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
{
	int i;

	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
		return;
473
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	for (i = 0; i < count; i++) {
		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
	}
}

static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
		unsigned char *b1, *b2;
		int i;
		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
		b2 = (unsigned char *) bitmap;
		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
			if (b1[i] != b2[i]) {
489
				printk(KERN_ERR "corruption in group %u "
490 491 492
				       "at byte %u(%u): %x in copy != %x "
				       "on disk/prealloc\n",
				       e4b->bd_group, i, i * 8, b1[i], b2[i]);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
				BUG();
			}
		}
	}
}

#else
static inline void mb_free_blocks_double(struct inode *inode,
				struct ext4_buddy *e4b, int first, int count)
{
	return;
}
static inline void mb_mark_used_double(struct ext4_buddy *e4b,
						int first, int count)
{
	return;
}
static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
{
	return;
}
#endif

#ifdef AGGRESSIVE_CHECK

#define MB_CHECK_ASSERT(assert)						\
do {									\
	if (!(assert)) {						\
		printk(KERN_EMERG					\
			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
			function, file, line, # assert);		\
		BUG();							\
	}								\
} while (0)

static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
				const char *function, int line)
{
	struct super_block *sb = e4b->bd_sb;
	int order = e4b->bd_blkbits + 1;
	int max;
	int max2;
	int i;
	int j;
	int k;
	int count;
	struct ext4_group_info *grp;
	int fragments = 0;
	int fstart;
	struct list_head *cur;
	void *buddy;
	void *buddy2;

	{
		static int mb_check_counter;
		if (mb_check_counter++ % 100 != 0)
			return 0;
	}

	while (order > 1) {
		buddy = mb_find_buddy(e4b, order, &max);
		MB_CHECK_ASSERT(buddy);
		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
		MB_CHECK_ASSERT(buddy2);
		MB_CHECK_ASSERT(buddy != buddy2);
		MB_CHECK_ASSERT(max * 2 == max2);

		count = 0;
		for (i = 0; i < max; i++) {

			if (mb_test_bit(i, buddy)) {
				/* only single bit in buddy2 may be 1 */
				if (!mb_test_bit(i << 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit((i<<1)+1, buddy2));
				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
					MB_CHECK_ASSERT(
						mb_test_bit(i << 1, buddy2));
				}
				continue;
			}

			/* both bits in buddy2 must be 0 */
			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));

			for (j = 0; j < (1 << order); j++) {
				k = (i * (1 << order)) + j;
				MB_CHECK_ASSERT(
					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
			}
			count++;
		}
		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
		order--;
	}

	fstart = -1;
	buddy = mb_find_buddy(e4b, 0, &max);
	for (i = 0; i < max; i++) {
		if (!mb_test_bit(i, buddy)) {
			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
			if (fstart == -1) {
				fragments++;
				fstart = i;
			}
			continue;
		}
		fstart = -1;
		/* check used bits only */
		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
			buddy2 = mb_find_buddy(e4b, j, &max2);
			k = i >> j;
			MB_CHECK_ASSERT(k < max2);
			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
		}
	}
	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);

	grp = ext4_get_group_info(sb, e4b->bd_group);
	buddy = mb_find_buddy(e4b, 0, &max);
	list_for_each(cur, &grp->bb_prealloc_list) {
		ext4_group_t groupnr;
		struct ext4_prealloc_space *pa;
618 619
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
620
		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
621
		for (i = 0; i < pa->pa_len; i++)
622 623 624 625 626 627
			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
	}
	return 0;
}
#undef MB_CHECK_ASSERT
#define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
628
					__FILE__, __func__, __LINE__)
629 630 631 632 633 634
#else
#define mb_check_buddy(e4b)
#endif

/* FIXME!! need more doc */
static void ext4_mb_mark_free_simple(struct super_block *sb,
635
				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
636 637 638
					struct ext4_group_info *grp)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
639 640 641
	ext4_grpblk_t min;
	ext4_grpblk_t max;
	ext4_grpblk_t chunk;
642 643
	unsigned short border;

644
	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

	border = 2 << sb->s_blocksize_bits;

	while (len > 0) {
		/* find how many blocks can be covered since this position */
		max = ffs(first | border) - 1;

		/* find how many blocks of power 2 we need to mark */
		min = fls(len) - 1;

		if (max < min)
			min = max;
		chunk = 1 << min;

		/* mark multiblock chunks only */
		grp->bb_counters[min]++;
		if (min > 0)
			mb_clear_bit(first >> min,
				     buddy + sbi->s_mb_offsets[min]);

		len -= chunk;
		first += chunk;
	}
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/*
 * Cache the order of the largest free extent we have available in this block
 * group.
 */
static void
mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
{
	int i;
	int bits;

	grp->bb_largest_free_order = -1; /* uninit */

	bits = sb->s_blocksize_bits + 1;
	for (i = bits; i >= 0; i--) {
		if (grp->bb_counters[i] > 0) {
			grp->bb_largest_free_order = i;
			break;
		}
	}
}

691 692
static noinline_for_stack
void ext4_mb_generate_buddy(struct super_block *sb,
693 694 695
				void *buddy, void *bitmap, ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
696 697 698 699
	ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
	ext4_grpblk_t i = 0;
	ext4_grpblk_t first;
	ext4_grpblk_t len;
700 701 702 703 704 705
	unsigned free = 0;
	unsigned fragments = 0;
	unsigned long long period = get_cycles();

	/* initialize buddy from bitmap which is aggregation
	 * of on-disk bitmap and preallocations */
706
	i = mb_find_next_zero_bit(bitmap, max, 0);
707 708 709 710
	grp->bb_first_free = i;
	while (i < max) {
		fragments++;
		first = i;
711
		i = mb_find_next_bit(bitmap, max, i);
712 713 714 715 716 717 718
		len = i - first;
		free += len;
		if (len > 1)
			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
		else
			grp->bb_counters[0]++;
		if (i < max)
719
			i = mb_find_next_zero_bit(bitmap, max, i);
720 721 722 723
	}
	grp->bb_fragments = fragments;

	if (free != grp->bb_free) {
724 725 726
		ext4_grp_locked_error(sb, group, 0, 0,
				      "%u blocks in bitmap, %u in gd",
				      free, grp->bb_free);
727 728 729 730
		/*
		 * If we intent to continue, we consider group descritor
		 * corrupt and update bb_free using bitmap value
		 */
731 732
		grp->bb_free = free;
	}
733
	mb_set_largest_free_order(sb, grp);
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));

	period = get_cycles() - period;
	spin_lock(&EXT4_SB(sb)->s_bal_lock);
	EXT4_SB(sb)->s_mb_buddies_generated++;
	EXT4_SB(sb)->s_mb_generation_time += period;
	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
}

/* The buddy information is attached the buddy cache inode
 * for convenience. The information regarding each group
 * is loaded via ext4_mb_load_buddy. The information involve
 * block bitmap and buddy information. The information are
 * stored in the inode as
 *
 * {                        page                        }
751
 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
752 753 754 755 756 757 758
 *
 *
 * one block each for bitmap and buddy information.
 * So for each group we take up 2 blocks. A page can
 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
 * So it can have information regarding groups_per_page which
 * is blocks_per_page/2
759 760 761
 *
 * Locking note:  This routine takes the block group lock of all groups
 * for this page; do not hold this lock when calling this routine!
762 763 764 765
 */

static int ext4_mb_init_cache(struct page *page, char *incore)
{
766
	ext4_group_t ngroups;
767 768 769 770 771 772 773 774 775 776 777 778 779 780
	int blocksize;
	int blocks_per_page;
	int groups_per_page;
	int err = 0;
	int i;
	ext4_group_t first_group;
	int first_block;
	struct super_block *sb;
	struct buffer_head *bhs;
	struct buffer_head **bh;
	struct inode *inode;
	char *data;
	char *bitmap;

781
	mb_debug(1, "init page %lu\n", page->index);
782 783 784

	inode = page->mapping->host;
	sb = inode->i_sb;
785
	ngroups = ext4_get_groups_count(sb);
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	blocksize = 1 << inode->i_blkbits;
	blocks_per_page = PAGE_CACHE_SIZE / blocksize;

	groups_per_page = blocks_per_page >> 1;
	if (groups_per_page == 0)
		groups_per_page = 1;

	/* allocate buffer_heads to read bitmaps */
	if (groups_per_page > 1) {
		err = -ENOMEM;
		i = sizeof(struct buffer_head *) * groups_per_page;
		bh = kzalloc(i, GFP_NOFS);
		if (bh == NULL)
			goto out;
	} else
		bh = &bhs;

	first_group = page->index * blocks_per_page / 2;

	/* read all groups the page covers into the cache */
	for (i = 0; i < groups_per_page; i++) {
		struct ext4_group_desc *desc;

809
		if (first_group + i >= ngroups)
810 811 812 813 814 815 816 817 818 819 820 821
			break;

		err = -EIO;
		desc = ext4_get_group_desc(sb, first_group + i, NULL);
		if (desc == NULL)
			goto out;

		err = -ENOMEM;
		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
		if (bh[i] == NULL)
			goto out;

822
		if (bitmap_uptodate(bh[i]))
823 824
			continue;

825
		lock_buffer(bh[i]);
826 827 828 829
		if (bitmap_uptodate(bh[i])) {
			unlock_buffer(bh[i]);
			continue;
		}
830
		ext4_lock_group(sb, first_group + i);
831 832 833
		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
			ext4_init_block_bitmap(sb, bh[i],
						first_group + i, desc);
834
			set_bitmap_uptodate(bh[i]);
835
			set_buffer_uptodate(bh[i]);
836
			ext4_unlock_group(sb, first_group + i);
A
Aneesh Kumar K.V 已提交
837
			unlock_buffer(bh[i]);
838 839
			continue;
		}
840
		ext4_unlock_group(sb, first_group + i);
841 842 843 844 845 846 847 848 849
		if (buffer_uptodate(bh[i])) {
			/*
			 * if not uninit if bh is uptodate,
			 * bitmap is also uptodate
			 */
			set_bitmap_uptodate(bh[i]);
			unlock_buffer(bh[i]);
			continue;
		}
850
		get_bh(bh[i]);
851 852 853 854 855 856 857
		/*
		 * submit the buffer_head for read. We can
		 * safely mark the bitmap as uptodate now.
		 * We do it here so the bitmap uptodate bit
		 * get set with buffer lock held.
		 */
		set_bitmap_uptodate(bh[i]);
858 859
		bh[i]->b_end_io = end_buffer_read_sync;
		submit_bh(READ, bh[i]);
860
		mb_debug(1, "read bitmap for group %u\n", first_group + i);
861 862 863 864 865 866 867 868 869 870 871
	}

	/* wait for I/O completion */
	for (i = 0; i < groups_per_page && bh[i]; i++)
		wait_on_buffer(bh[i]);

	err = -EIO;
	for (i = 0; i < groups_per_page && bh[i]; i++)
		if (!buffer_uptodate(bh[i]))
			goto out;

872
	err = 0;
873
	first_block = page->index * blocks_per_page;
874 875
	/* init the page  */
	memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
876 877 878 879 880
	for (i = 0; i < blocks_per_page; i++) {
		int group;
		struct ext4_group_info *grinfo;

		group = (first_block + i) >> 1;
881
		if (group >= ngroups)
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
			break;

		/*
		 * data carry information regarding this
		 * particular group in the format specified
		 * above
		 *
		 */
		data = page_address(page) + (i * blocksize);
		bitmap = bh[group - first_group]->b_data;

		/*
		 * We place the buddy block and bitmap block
		 * close together
		 */
		if ((first_block + i) & 1) {
			/* this is block of buddy */
			BUG_ON(incore == NULL);
900
			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
901
				group, page->index, i * blocksize);
902
			trace_ext4_mb_buddy_bitmap_load(sb, group);
903 904 905
			grinfo = ext4_get_group_info(sb, group);
			grinfo->bb_fragments = 0;
			memset(grinfo->bb_counters, 0,
906 907
			       sizeof(*grinfo->bb_counters) *
				(sb->s_blocksize_bits+2));
908 909 910
			/*
			 * incore got set to the group block bitmap below
			 */
911
			ext4_lock_group(sb, group);
912
			ext4_mb_generate_buddy(sb, data, incore, group);
913
			ext4_unlock_group(sb, group);
914 915 916 917
			incore = NULL;
		} else {
			/* this is block of bitmap */
			BUG_ON(incore != NULL);
918
			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
919
				group, page->index, i * blocksize);
920
			trace_ext4_mb_bitmap_load(sb, group);
921 922 923 924 925 926 927

			/* see comments in ext4_mb_put_pa() */
			ext4_lock_group(sb, group);
			memcpy(data, bitmap, blocksize);

			/* mark all preallocated blks used in in-core bitmap */
			ext4_mb_generate_from_pa(sb, data, group);
928
			ext4_mb_generate_from_freelist(sb, data, group);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
			ext4_unlock_group(sb, group);

			/* set incore so that the buddy information can be
			 * generated using this
			 */
			incore = data;
		}
	}
	SetPageUptodate(page);

out:
	if (bh) {
		for (i = 0; i < groups_per_page && bh[i]; i++)
			brelse(bh[i]);
		if (bh != &bhs)
			kfree(bh);
	}
	return err;
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/*
 * lock the group_info alloc_sem of all the groups
 * belonging to the same buddy cache page. This
 * make sure other parallel operation on the buddy
 * cache doesn't happen  whild holding the buddy cache
 * lock
 */
static int ext4_mb_get_buddy_cache_lock(struct super_block *sb,
					ext4_group_t group)
{
	int i;
	int block, pnum;
	int blocks_per_page;
	int groups_per_page;
	ext4_group_t ngroups = ext4_get_groups_count(sb);
	ext4_group_t first_group;
	struct ext4_group_info *grp;

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	first_group = pnum * blocks_per_page / 2;

	groups_per_page = blocks_per_page >> 1;
	if (groups_per_page == 0)
		groups_per_page = 1;
	/* read all groups the page covers into the cache */
	for (i = 0; i < groups_per_page; i++) {

		if ((first_group + i) >= ngroups)
			break;
		grp = ext4_get_group_info(sb, first_group + i);
		/* take all groups write allocation
		 * semaphore. This make sure there is
		 * no block allocation going on in any
		 * of that groups
		 */
		down_write_nested(&grp->alloc_sem, i);
	}
	return i;
}

static void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
					 ext4_group_t group, int locked_group)
{
	int i;
	int block, pnum;
	int blocks_per_page;
	ext4_group_t first_group;
	struct ext4_group_info *grp;

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	first_group = pnum * blocks_per_page / 2;
	/* release locks on all the groups */
	for (i = 0; i < locked_group; i++) {

		grp = ext4_get_group_info(sb, first_group + i);
		/* take all groups write allocation
		 * semaphore. This make sure there is
		 * no block allocation going on in any
		 * of that groups
		 */
		up_write(&grp->alloc_sem);
	}

}

1028 1029 1030 1031 1032
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
static noinline_for_stack
int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
{

	int ret = 0;
	void *bitmap;
	int blocks_per_page;
	int block, pnum, poff;
	int num_grp_locked = 0;
	struct ext4_group_info *this_grp;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct inode *inode = sbi->s_buddy_cache;
	struct page *page = NULL, *bitmap_page = NULL;

	mb_debug(1, "init group %u\n", group);
	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
	this_grp = ext4_get_group_info(sb, group);
	/*
1051 1052 1053 1054 1055
	 * This ensures that we don't reinit the buddy cache
	 * page which map to the group from which we are already
	 * allocating. If we are looking at the buddy cache we would
	 * have taken a reference using ext4_mb_load_buddy and that
	 * would have taken the alloc_sem lock.
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	 */
	num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
	if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
		/*
		 * somebody initialized the group
		 * return without doing anything
		 */
		ret = 0;
		goto err;
	}
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (page) {
		BUG_ON(page->mapping != inode->i_mapping);
		ret = ext4_mb_init_cache(page, NULL);
		if (ret) {
			unlock_page(page);
			goto err;
		}
		unlock_page(page);
	}
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);
	bitmap_page = page;
	bitmap = page_address(page) + (poff * sb->s_blocksize);

	/* init buddy cache */
	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;
	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
	if (page == bitmap_page) {
		/*
		 * If both the bitmap and buddy are in
		 * the same page we don't need to force
		 * init the buddy
		 */
		unlock_page(page);
	} else if (page) {
		BUG_ON(page->mapping != inode->i_mapping);
		ret = ext4_mb_init_cache(page, bitmap);
		if (ret) {
			unlock_page(page);
			goto err;
		}
		unlock_page(page);
	}
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
		goto err;
	}
	mark_page_accessed(page);
err:
	ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
	if (bitmap_page)
		page_cache_release(bitmap_page);
	if (page)
		page_cache_release(page);
	return ret;
}

1127 1128 1129 1130 1131
/*
 * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
 * block group lock of all groups for this page; do not hold the BG lock when
 * calling this routine!
 */
1132 1133 1134
static noinline_for_stack int
ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
					struct ext4_buddy *e4b)
1135 1136 1137 1138 1139 1140
{
	int blocks_per_page;
	int block;
	int pnum;
	int poff;
	struct page *page;
1141
	int ret;
1142 1143 1144
	struct ext4_group_info *grp;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct inode *inode = sbi->s_buddy_cache;
1145

1146
	mb_debug(1, "load group %u\n", group);
1147 1148

	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1149
	grp = ext4_get_group_info(sb, group);
1150 1151 1152 1153 1154 1155 1156

	e4b->bd_blkbits = sb->s_blocksize_bits;
	e4b->bd_info = ext4_get_group_info(sb, group);
	e4b->bd_sb = sb;
	e4b->bd_group = group;
	e4b->bd_buddy_page = NULL;
	e4b->bd_bitmap_page = NULL;
1157 1158 1159 1160 1161 1162 1163 1164
	e4b->alloc_semp = &grp->alloc_sem;

	/* Take the read lock on the group alloc
	 * sem. This would make sure a parallel
	 * ext4_mb_init_group happening on other
	 * groups mapped by the page is blocked
	 * till we are done with allocation
	 */
1165
repeat_load_buddy:
1166
	down_read(e4b->alloc_semp);
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		/* we need to check for group need init flag
		 * with alloc_semp held so that we can be sure
		 * that new blocks didn't get added to the group
		 * when we are loading the buddy cache
		 */
		up_read(e4b->alloc_semp);
		/*
		 * we need full data about the group
		 * to make a good selection
		 */
		ret = ext4_mb_init_group(sb, group);
		if (ret)
			return ret;
		goto repeat_load_buddy;
	}

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	/*
	 * the buddy cache inode stores the block bitmap
	 * and buddy information in consecutive blocks.
	 * So for each group we need two blocks.
	 */
	block = group * 2;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	/* we could use find_or_create_page(), but it locks page
	 * what we'd like to avoid in fast path ... */
	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
1199 1200 1201 1202 1203 1204 1205 1206
			/*
			 * drop the page reference and try
			 * to get the page with lock. If we
			 * are not uptodate that implies
			 * somebody just created the page but
			 * is yet to initialize the same. So
			 * wait for it to initialize.
			 */
1207 1208 1209 1210 1211
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
			if (!PageUptodate(page)) {
1212 1213 1214 1215 1216
				ret = ext4_mb_init_cache(page, NULL);
				if (ret) {
					unlock_page(page);
					goto err;
				}
1217 1218 1219 1220 1221 1222
				mb_cmp_bitmaps(e4b, page_address(page) +
					       (poff * sb->s_blocksize));
			}
			unlock_page(page);
		}
	}
1223 1224
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1225
		goto err;
1226
	}
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	e4b->bd_bitmap_page = page;
	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	block++;
	pnum = block / blocks_per_page;
	poff = block % blocks_per_page;

	page = find_get_page(inode->i_mapping, pnum);
	if (page == NULL || !PageUptodate(page)) {
		if (page)
			page_cache_release(page);
		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
		if (page) {
			BUG_ON(page->mapping != inode->i_mapping);
1242 1243 1244 1245 1246 1247 1248
			if (!PageUptodate(page)) {
				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
				if (ret) {
					unlock_page(page);
					goto err;
				}
			}
1249 1250 1251
			unlock_page(page);
		}
	}
1252 1253
	if (page == NULL || !PageUptodate(page)) {
		ret = -EIO;
1254
		goto err;
1255
	}
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	e4b->bd_buddy_page = page;
	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
	mark_page_accessed(page);

	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

	return 0;

err:
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
	e4b->bd_buddy = NULL;
	e4b->bd_bitmap = NULL;
1272 1273 1274

	/* Done with the buddy cache */
	up_read(e4b->alloc_semp);
1275
	return ret;
1276 1277
}

1278
static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1279 1280 1281 1282 1283
{
	if (e4b->bd_bitmap_page)
		page_cache_release(e4b->bd_bitmap_page);
	if (e4b->bd_buddy_page)
		page_cache_release(e4b->bd_buddy_page);
1284
	/* Done with the buddy cache */
1285 1286
	if (e4b->alloc_semp)
		up_read(e4b->alloc_semp);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
}


static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
{
	int order = 1;
	void *bb;

	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));

	bb = EXT4_MB_BUDDY(e4b);
	while (order <= e4b->bd_blkbits + 1) {
		block = block >> 1;
		if (!mb_test_bit(block, bb)) {
			/* this block is part of buddy of order 'order' */
			return order;
		}
		bb += 1 << (e4b->bd_blkbits - order);
		order++;
	}
	return 0;
}

1311
static void mb_clear_bits(void *bm, int cur, int len)
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: clear whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0;
			cur += 32;
			continue;
		}
1324
		mb_clear_bit(cur, bm);
1325 1326 1327 1328
		cur++;
	}
}

1329
static void mb_set_bits(void *bm, int cur, int len)
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
{
	__u32 *addr;

	len = cur + len;
	while (cur < len) {
		if ((cur & 31) == 0 && (len - cur) >= 32) {
			/* fast path: set whole word at once */
			addr = bm + (cur >> 3);
			*addr = 0xffffffff;
			cur += 32;
			continue;
		}
1342
		mb_set_bit(cur, bm);
1343 1344 1345 1346
		cur++;
	}
}

1347
static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
			  int first, int count)
{
	int block = 0;
	int max = 0;
	int order;
	void *buddy;
	void *buddy2;
	struct super_block *sb = e4b->bd_sb;

	BUG_ON(first + count > (sb->s_blocksize << 3));
1358
	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	mb_check_buddy(e4b);
	mb_free_blocks_double(inode, e4b, first, count);

	e4b->bd_info->bb_free += count;
	if (first < e4b->bd_info->bb_first_free)
		e4b->bd_info->bb_first_free = first;

	/* let's maintain fragments counter */
	if (first != 0)
		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
	if (block && max)
		e4b->bd_info->bb_fragments--;
	else if (!block && !max)
		e4b->bd_info->bb_fragments++;

	/* let's maintain buddy itself */
	while (count-- > 0) {
		block = first++;
		order = 0;

		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
			ext4_fsblk_t blocknr;
1383 1384

			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1385
			blocknr += block;
1386
			ext4_grp_locked_error(sb, e4b->bd_group,
1387 1388 1389 1390
					      inode ? inode->i_ino : 0,
					      blocknr,
					      "freeing already freed block "
					      "(bit %u)", block);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
		}
		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
		e4b->bd_info->bb_counters[order]++;

		/* start of the buddy */
		buddy = mb_find_buddy(e4b, order, &max);

		do {
			block &= ~1UL;
			if (mb_test_bit(block, buddy) ||
					mb_test_bit(block + 1, buddy))
				break;

			/* both the buddies are free, try to coalesce them */
			buddy2 = mb_find_buddy(e4b, order + 1, &max);

			if (!buddy2)
				break;

			if (order > 0) {
				/* for special purposes, we don't set
				 * free bits in bitmap */
				mb_set_bit(block, buddy);
				mb_set_bit(block + 1, buddy);
			}
			e4b->bd_info->bb_counters[order]--;
			e4b->bd_info->bb_counters[order]--;

			block = block >> 1;
			order++;
			e4b->bd_info->bb_counters[order]++;

			mb_clear_bit(block, buddy2);
			buddy = buddy2;
		} while (1);
	}
1427
	mb_set_largest_free_order(sb, e4b->bd_info);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	mb_check_buddy(e4b);
}

static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
				int needed, struct ext4_free_extent *ex)
{
	int next = block;
	int max;
	int ord;
	void *buddy;

1439
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	BUG_ON(ex == NULL);

	buddy = mb_find_buddy(e4b, order, &max);
	BUG_ON(buddy == NULL);
	BUG_ON(block >= max);
	if (mb_test_bit(block, buddy)) {
		ex->fe_len = 0;
		ex->fe_start = 0;
		ex->fe_group = 0;
		return 0;
	}

	/* FIXME dorp order completely ? */
	if (likely(order == 0)) {
		/* find actual order */
		order = mb_find_order_for_block(e4b, block);
		block = block >> order;
	}

	ex->fe_len = 1 << order;
	ex->fe_start = block << order;
	ex->fe_group = e4b->bd_group;

	/* calc difference from given start */
	next = next - ex->fe_start;
	ex->fe_len -= next;
	ex->fe_start += next;

	while (needed > ex->fe_len &&
	       (buddy = mb_find_buddy(e4b, order, &max))) {

		if (block + 1 >= max)
			break;

		next = (block + 1) * (1 << order);
		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
			break;

		ord = mb_find_order_for_block(e4b, next);

		order = ord;
		block = next >> order;
		ex->fe_len += 1 << order;
	}

	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
	return ex->fe_len;
}

static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
{
	int ord;
	int mlen = 0;
	int max = 0;
	int cur;
	int start = ex->fe_start;
	int len = ex->fe_len;
	unsigned ret = 0;
	int len0 = len;
	void *buddy;

	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
	BUG_ON(e4b->bd_group != ex->fe_group);
1503
	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	mb_check_buddy(e4b);
	mb_mark_used_double(e4b, start, len);

	e4b->bd_info->bb_free -= len;
	if (e4b->bd_info->bb_first_free == start)
		e4b->bd_info->bb_first_free += len;

	/* let's maintain fragments counter */
	if (start != 0)
		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
	if (mlen && max)
		e4b->bd_info->bb_fragments++;
	else if (!mlen && !max)
		e4b->bd_info->bb_fragments--;

	/* let's maintain buddy itself */
	while (len) {
		ord = mb_find_order_for_block(e4b, start);

		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
			/* the whole chunk may be allocated at once! */
			mlen = 1 << ord;
			buddy = mb_find_buddy(e4b, ord, &max);
			BUG_ON((start >> ord) >= max);
			mb_set_bit(start >> ord, buddy);
			e4b->bd_info->bb_counters[ord]--;
			start += mlen;
			len -= mlen;
			BUG_ON(len < 0);
			continue;
		}

		/* store for history */
		if (ret == 0)
			ret = len | (ord << 16);

		/* we have to split large buddy */
		BUG_ON(ord <= 0);
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_set_bit(start >> ord, buddy);
		e4b->bd_info->bb_counters[ord]--;

		ord--;
		cur = (start >> ord) & ~1U;
		buddy = mb_find_buddy(e4b, ord, &max);
		mb_clear_bit(cur, buddy);
		mb_clear_bit(cur + 1, buddy);
		e4b->bd_info->bb_counters[ord]++;
		e4b->bd_info->bb_counters[ord]++;
	}
1556
	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1557

1558
	mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	mb_check_buddy(e4b);

	return ret;
}

/*
 * Must be called under group lock!
 */
static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int ret;

	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
	ret = mb_mark_used(e4b, &ac->ac_b_ex);

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_tail = ret & 0xffff;
	ac->ac_buddy = ret >> 16;

1588 1589 1590 1591 1592 1593 1594
	/*
	 * take the page reference. We want the page to be pinned
	 * so that we don't get a ext4_mb_init_cache_call for this
	 * group until we update the bitmap. That would mean we
	 * double allocate blocks. The reference is dropped
	 * in ext4_mb_release_context
	 */
1595 1596 1597 1598
	ac->ac_bitmap_page = e4b->bd_bitmap_page;
	get_page(ac->ac_bitmap_page);
	ac->ac_buddy_page = e4b->bd_buddy_page;
	get_page(ac->ac_buddy_page);
1599 1600 1601
	/* on allocation we use ac to track the held semaphore */
	ac->alloc_semp =  e4b->alloc_semp;
	e4b->alloc_semp = NULL;
1602
	/* store last allocated for subsequent stream allocation */
1603
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		spin_lock(&sbi->s_md_lock);
		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
		spin_unlock(&sbi->s_md_lock);
	}
}

/*
 * regular allocator, for general purposes allocation
 */

static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
					struct ext4_buddy *e4b,
					int finish_group)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;
	struct ext4_free_extent ex;
	int max;

1625 1626
	if (ac->ac_status == AC_STATUS_FOUND)
		return;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	/*
	 * We don't want to scan for a whole year
	 */
	if (ac->ac_found > sbi->s_mb_max_to_scan &&
			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		ac->ac_status = AC_STATUS_BREAK;
		return;
	}

	/*
	 * Haven't found good chunk so far, let's continue
	 */
	if (bex->fe_len < gex->fe_len)
		return;

	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
			&& bex->fe_group == e4b->bd_group) {
		/* recheck chunk's availability - we don't know
		 * when it was found (within this lock-unlock
		 * period or not) */
		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
		if (max >= gex->fe_len) {
			ext4_mb_use_best_found(ac, e4b);
			return;
		}
	}
}

/*
 * The routine checks whether found extent is good enough. If it is,
 * then the extent gets marked used and flag is set to the context
 * to stop scanning. Otherwise, the extent is compared with the
 * previous found extent and if new one is better, then it's stored
 * in the context. Later, the best found extent will be used, if
 * mballoc can't find good enough extent.
 *
 * FIXME: real allocation policy is to be designed yet!
 */
static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
					struct ext4_free_extent *ex,
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent *bex = &ac->ac_b_ex;
	struct ext4_free_extent *gex = &ac->ac_g_ex;

	BUG_ON(ex->fe_len <= 0);
1673
	BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);

	ac->ac_found++;

	/*
	 * The special case - take what you catch first
	 */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * Let's check whether the chuck is good enough
	 */
	if (ex->fe_len == gex->fe_len) {
		*bex = *ex;
		ext4_mb_use_best_found(ac, e4b);
		return;
	}

	/*
	 * If this is first found extent, just store it in the context
	 */
	if (bex->fe_len == 0) {
		*bex = *ex;
		return;
	}

	/*
	 * If new found extent is better, store it in the context
	 */
	if (bex->fe_len < gex->fe_len) {
		/* if the request isn't satisfied, any found extent
		 * larger than previous best one is better */
		if (ex->fe_len > bex->fe_len)
			*bex = *ex;
	} else if (ex->fe_len > gex->fe_len) {
		/* if the request is satisfied, then we try to find
		 * an extent that still satisfy the request, but is
		 * smaller than previous one */
		if (ex->fe_len < bex->fe_len)
			*bex = *ex;
	}

	ext4_mb_check_limits(ac, e4b, 0);
}

1724 1725
static noinline_for_stack
int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
					struct ext4_buddy *e4b)
{
	struct ext4_free_extent ex = ac->ac_b_ex;
	ext4_group_t group = ex.fe_group;
	int max;
	int err;

	BUG_ON(ex.fe_len <= 0);
	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);

	if (max > 0) {
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}

	ext4_unlock_group(ac->ac_sb, group);
1747
	ext4_mb_unload_buddy(e4b);
1748 1749 1750 1751

	return 0;
}

1752 1753
static noinline_for_stack
int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
				struct ext4_buddy *e4b)
{
	ext4_group_t group = ac->ac_g_ex.fe_group;
	int max;
	int err;
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	struct ext4_free_extent ex;

	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
		return 0;

	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
	if (err)
		return err;

	ext4_lock_group(ac->ac_sb, group);
	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
			     ac->ac_g_ex.fe_len, &ex);

	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
		ext4_fsblk_t start;

1776 1777
		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
			ex.fe_start;
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		/* use do_div to get remainder (would be 64-bit modulo) */
		if (do_div(start, sbi->s_stripe) == 0) {
			ac->ac_found++;
			ac->ac_b_ex = ex;
			ext4_mb_use_best_found(ac, e4b);
		}
	} else if (max >= ac->ac_g_ex.fe_len) {
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
		/* Sometimes, caller may want to merge even small
		 * number of blocks to an existing extent */
		BUG_ON(ex.fe_len <= 0);
		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
		ac->ac_found++;
		ac->ac_b_ex = ex;
		ext4_mb_use_best_found(ac, e4b);
	}
	ext4_unlock_group(ac->ac_sb, group);
1802
	ext4_mb_unload_buddy(e4b);
1803 1804 1805 1806 1807 1808 1809 1810

	return 0;
}

/*
 * The routine scans buddy structures (not bitmap!) from given order
 * to max order and tries to find big enough chunk to satisfy the req
 */
1811 1812
static noinline_for_stack
void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_group_info *grp = e4b->bd_info;
	void *buddy;
	int i;
	int k;
	int max;

	BUG_ON(ac->ac_2order <= 0);
	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
		if (grp->bb_counters[i] == 0)
			continue;

		buddy = mb_find_buddy(e4b, i, &max);
		BUG_ON(buddy == NULL);

1830
		k = mb_find_next_zero_bit(buddy, max, 0);
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
		BUG_ON(k >= max);

		ac->ac_found++;

		ac->ac_b_ex.fe_len = 1 << i;
		ac->ac_b_ex.fe_start = k << i;
		ac->ac_b_ex.fe_group = e4b->bd_group;

		ext4_mb_use_best_found(ac, e4b);

		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);

		if (EXT4_SB(sb)->s_mb_stats)
			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);

		break;
	}
}

/*
 * The routine scans the group and measures all found extents.
 * In order to optimize scanning, caller must pass number of
 * free blocks in the group, so the routine can know upper limit.
 */
1855 1856
static noinline_for_stack
void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
					struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	void *bitmap = EXT4_MB_BITMAP(e4b);
	struct ext4_free_extent ex;
	int i;
	int free;

	free = e4b->bd_info->bb_free;
	BUG_ON(free <= 0);

	i = e4b->bd_info->bb_first_free;

	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1871
		i = mb_find_next_zero_bit(bitmap,
1872 1873
						EXT4_BLOCKS_PER_GROUP(sb), i);
		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1874
			/*
1875
			 * IF we have corrupt bitmap, we won't find any
1876 1877 1878
			 * free blocks even though group info says we
			 * we have free blocks
			 */
1879 1880
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
					"%d free blocks as per "
1881
					"group info. But bitmap says 0",
1882
					free);
1883 1884 1885 1886 1887
			break;
		}

		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
		BUG_ON(ex.fe_len <= 0);
1888
		if (free < ex.fe_len) {
1889 1890
			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
					"%d free blocks as per "
1891
					"group info. But got %d blocks",
1892
					free, ex.fe_len);
1893 1894 1895 1896 1897 1898
			/*
			 * The number of free blocks differs. This mostly
			 * indicate that the bitmap is corrupt. So exit
			 * without claiming the space.
			 */
			break;
1899
		}
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

		ext4_mb_measure_extent(ac, &ex, e4b);

		i += ex.fe_len;
		free -= ex.fe_len;
	}

	ext4_mb_check_limits(ac, e4b, 1);
}

/*
 * This is a special case for storages like raid5
1912
 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1913
 */
1914 1915
static noinline_for_stack
void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
				 struct ext4_buddy *e4b)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	void *bitmap = EXT4_MB_BITMAP(e4b);
	struct ext4_free_extent ex;
	ext4_fsblk_t first_group_block;
	ext4_fsblk_t a;
	ext4_grpblk_t i;
	int max;

	BUG_ON(sbi->s_stripe == 0);

	/* find first stripe-aligned block in group */
1930 1931
	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	a = first_group_block + sbi->s_stripe - 1;
	do_div(a, sbi->s_stripe);
	i = (a * sbi->s_stripe) - first_group_block;

	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
		if (!mb_test_bit(i, bitmap)) {
			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
			if (max >= sbi->s_stripe) {
				ac->ac_found++;
				ac->ac_b_ex = ex;
				ext4_mb_use_best_found(ac, e4b);
				break;
			}
		}
		i += sbi->s_stripe;
	}
}

1950
/* This is now called BEFORE we load the buddy bitmap. */
1951 1952 1953 1954
static int ext4_mb_good_group(struct ext4_allocation_context *ac,
				ext4_group_t group, int cr)
{
	unsigned free, fragments;
1955
	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1956 1957 1958
	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);

	BUG_ON(cr < 0 || cr >= 4);
1959 1960 1961 1962 1963 1964 1965

	/* We only do this if the grp has never been initialized */
	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
		int ret = ext4_mb_init_group(ac->ac_sb, group);
		if (ret)
			return 0;
	}
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

	free = grp->bb_free;
	fragments = grp->bb_fragments;
	if (free == 0)
		return 0;
	if (fragments == 0)
		return 0;

	switch (cr) {
	case 0:
		BUG_ON(ac->ac_2order == 0);

1978 1979 1980
		if (grp->bb_largest_free_order < ac->ac_2order)
			return 0;

1981 1982 1983 1984 1985 1986
		/* Avoid using the first bg of a flexgroup for data files */
		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
		    ((group % flex_size) == 0))
			return 0;

1987
		return 1;
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	case 1:
		if ((free / fragments) >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 2:
		if (free >= ac->ac_g_ex.fe_len)
			return 1;
		break;
	case 3:
		return 1;
	default:
		BUG();
	}

	return 0;
}

2005 2006
static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2007
{
2008
	ext4_group_t ngroups, group, i;
2009 2010 2011 2012 2013 2014 2015 2016
	int cr;
	int err = 0;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	struct ext4_buddy e4b;

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);
2017
	ngroups = ext4_get_groups_count(sb);
2018
	/* non-extent files are limited to low blocks/groups */
2019
	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2020 2021
		ngroups = sbi->s_blockfile_groups;

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	BUG_ON(ac->ac_status == AC_STATUS_FOUND);

	/* first, try the goal */
	err = ext4_mb_find_by_goal(ac, &e4b);
	if (err || ac->ac_status == AC_STATUS_FOUND)
		goto out;

	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		goto out;

	/*
	 * ac->ac2_order is set only if the fe_len is a power of 2
	 * if ac2_order is set we also set criteria to 0 so that we
	 * try exact allocation using buddy.
	 */
	i = fls(ac->ac_g_ex.fe_len);
	ac->ac_2order = 0;
	/*
	 * We search using buddy data only if the order of the request
	 * is greater than equal to the sbi_s_mb_order2_reqs
T
Theodore Ts'o 已提交
2042
	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2043 2044 2045 2046 2047 2048 2049 2050 2051
	 */
	if (i >= sbi->s_mb_order2_reqs) {
		/*
		 * This should tell if fe_len is exactly power of 2
		 */
		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
			ac->ac_2order = i - 1;
	}

2052 2053
	/* if stream allocation is enabled, use global goal */
	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2054 2055 2056 2057 2058 2059
		/* TBD: may be hot point */
		spin_lock(&sbi->s_md_lock);
		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
		spin_unlock(&sbi->s_md_lock);
	}
2060

2061 2062 2063 2064 2065 2066 2067 2068 2069
	/* Let's just scan groups to find more-less suitable blocks */
	cr = ac->ac_2order ? 0 : 1;
	/*
	 * cr == 0 try to get exact allocation,
	 * cr == 3  try to get anything
	 */
repeat:
	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
		ac->ac_criteria = cr;
2070 2071 2072 2073 2074 2075
		/*
		 * searching for the right group start
		 * from the goal value specified
		 */
		group = ac->ac_g_ex.fe_group;

2076 2077
		for (i = 0; i < ngroups; group++, i++) {
			if (group == ngroups)
2078 2079
				group = 0;

2080 2081
			/* This now checks without needing the buddy page */
			if (!ext4_mb_good_group(ac, group, cr))
2082 2083 2084 2085 2086 2087 2088
				continue;

			err = ext4_mb_load_buddy(sb, group, &e4b);
			if (err)
				goto out;

			ext4_lock_group(sb, group);
2089 2090 2091 2092 2093

			/*
			 * We need to check again after locking the
			 * block group
			 */
2094 2095
			if (!ext4_mb_good_group(ac, group, cr)) {
				ext4_unlock_group(sb, group);
2096
				ext4_mb_unload_buddy(&e4b);
2097 2098 2099 2100
				continue;
			}

			ac->ac_groups_scanned++;
2101
			if (cr == 0)
2102
				ext4_mb_simple_scan_group(ac, &e4b);
2103 2104
			else if (cr == 1 && sbi->s_stripe &&
					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2105 2106 2107 2108 2109
				ext4_mb_scan_aligned(ac, &e4b);
			else
				ext4_mb_complex_scan_group(ac, &e4b);

			ext4_unlock_group(sb, group);
2110
			ext4_mb_unload_buddy(&e4b);
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

			if (ac->ac_status != AC_STATUS_CONTINUE)
				break;
		}
	}

	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
		/*
		 * We've been searching too long. Let's try to allocate
		 * the best chunk we've found so far
		 */

		ext4_mb_try_best_found(ac, &e4b);
		if (ac->ac_status != AC_STATUS_FOUND) {
			/*
			 * Someone more lucky has already allocated it.
			 * The only thing we can do is just take first
			 * found block(s)
			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
			 */
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			ac->ac_flags |= EXT4_MB_HINT_FIRST;
			cr = 3;
			atomic_inc(&sbi->s_mb_lost_chunks);
			goto repeat;
		}
	}
out:
	return err;
}

static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

2151
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2152 2153
		return NULL;
	group = *pos + 1;
2154
	return (void *) ((unsigned long) group);
2155 2156 2157 2158 2159 2160 2161 2162
}

static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct super_block *sb = seq->private;
	ext4_group_t group;

	++*pos;
2163
	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2164 2165
		return NULL;
	group = *pos + 1;
2166
	return (void *) ((unsigned long) group);
2167 2168 2169 2170 2171
}

static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
{
	struct super_block *sb = seq->private;
2172
	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2173 2174 2175 2176 2177
	int i;
	int err;
	struct ext4_buddy e4b;
	struct sg {
		struct ext4_group_info info;
2178
		ext4_grpblk_t counters[16];
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	} sg;

	group--;
	if (group == 0)
		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
			   "group", "free", "frags", "first",
			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");

	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
		sizeof(struct ext4_group_info);
	err = ext4_mb_load_buddy(sb, group, &e4b);
	if (err) {
2194
		seq_printf(seq, "#%-5u: I/O error\n", group);
2195 2196 2197 2198 2199
		return 0;
	}
	ext4_lock_group(sb, group);
	memcpy(&sg, ext4_get_group_info(sb, group), i);
	ext4_unlock_group(sb, group);
2200
	ext4_mb_unload_buddy(&e4b);
2201

2202
	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
			sg.info.bb_fragments, sg.info.bb_first_free);
	for (i = 0; i <= 13; i++)
		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
				sg.info.bb_counters[i] : 0);
	seq_printf(seq, " ]\n");

	return 0;
}

static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
{
}

2216
static const struct seq_operations ext4_mb_seq_groups_ops = {
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	.start  = ext4_mb_seq_groups_start,
	.next   = ext4_mb_seq_groups_next,
	.stop   = ext4_mb_seq_groups_stop,
	.show   = ext4_mb_seq_groups_show,
};

static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
{
	struct super_block *sb = PDE(inode)->data;
	int rc;

	rc = seq_open(file, &ext4_mb_seq_groups_ops);
	if (rc == 0) {
2230
		struct seq_file *m = file->private_data;
2231 2232 2233 2234 2235 2236
		m->private = sb;
	}
	return rc;

}

2237
static const struct file_operations ext4_mb_seq_groups_fops = {
2238 2239 2240 2241 2242 2243 2244
	.owner		= THIS_MODULE,
	.open		= ext4_mb_seq_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

2245 2246 2247 2248 2249 2250 2251 2252
static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
{
	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];

	BUG_ON(!cachep);
	return cachep;
}
2253 2254

/* Create and initialize ext4_group_info data for the given group. */
2255
int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2256 2257
			  struct ext4_group_desc *desc)
{
2258
	int i;
2259 2260 2261
	int metalen = 0;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_group_info **meta_group_info;
2262
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

	/*
	 * First check if this group is the first of a reserved block.
	 * If it's true, we have to allocate a new table of pointers
	 * to ext4_group_info structures
	 */
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
		metalen = sizeof(*meta_group_info) <<
			EXT4_DESC_PER_BLOCK_BITS(sb);
		meta_group_info = kmalloc(metalen, GFP_KERNEL);
		if (meta_group_info == NULL) {
			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
			       "buddy group\n");
			goto exit_meta_group_info;
		}
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
			meta_group_info;
	}

	meta_group_info =
		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);

2286
	meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2287 2288 2289 2290
	if (meta_group_info[i] == NULL) {
		printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
		goto exit_group_info;
	}
2291
	memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
		&(meta_group_info[i]->bb_state));

	/*
	 * initialize bb_free to be able to skip
	 * empty groups without initialization
	 */
	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		meta_group_info[i]->bb_free =
			ext4_free_blocks_after_init(sb, group, desc);
	} else {
		meta_group_info[i]->bb_free =
2304
			ext4_free_blks_count(sb, desc);
2305 2306 2307
	}

	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2308
	init_rwsem(&meta_group_info[i]->alloc_sem);
2309
	meta_group_info[i]->bb_free_root = RB_ROOT;
2310
	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

#ifdef DOUBLE_CHECK
	{
		struct buffer_head *bh;
		meta_group_info[i]->bb_bitmap =
			kmalloc(sb->s_blocksize, GFP_KERNEL);
		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
		bh = ext4_read_block_bitmap(sb, group);
		BUG_ON(bh == NULL);
		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
			sb->s_blocksize);
		put_bh(bh);
	}
#endif

	return 0;

exit_group_info:
	/* If a meta_group_info table has been allocated, release it now */
	if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
exit_meta_group_info:
	return -ENOMEM;
} /* ext4_mb_add_groupinfo */

2336 2337
static int ext4_mb_init_backend(struct super_block *sb)
{
2338
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2339 2340
	ext4_group_t i;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2341 2342 2343 2344 2345
	struct ext4_super_block *es = sbi->s_es;
	int num_meta_group_infos;
	int num_meta_group_infos_max;
	int array_size;
	struct ext4_group_desc *desc;
2346
	struct kmem_cache *cachep;
2347 2348

	/* This is the number of blocks used by GDT */
2349
	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);

	/*
	 * This is the total number of blocks used by GDT including
	 * the number of reserved blocks for GDT.
	 * The s_group_info array is allocated with this value
	 * to allow a clean online resize without a complex
	 * manipulation of pointer.
	 * The drawback is the unused memory when no resize
	 * occurs but it's very low in terms of pages
	 * (see comments below)
	 * Need to handle this properly when META_BG resizing is allowed
	 */
	num_meta_group_infos_max = num_meta_group_infos +
				le16_to_cpu(es->s_reserved_gdt_blocks);
2365

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	/*
	 * array_size is the size of s_group_info array. We round it
	 * to the next power of two because this approximation is done
	 * internally by kmalloc so we can have some more memory
	 * for free here (e.g. may be used for META_BG resize).
	 */
	array_size = 1;
	while (array_size < sizeof(*sbi->s_group_info) *
	       num_meta_group_infos_max)
		array_size = array_size << 1;
2376 2377 2378
	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
	 * So a two level scheme suffices for now. */
2379
	sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2380 2381 2382 2383 2384 2385 2386 2387 2388
	if (sbi->s_group_info == NULL) {
		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
		return -ENOMEM;
	}
	sbi->s_buddy_cache = new_inode(sb);
	if (sbi->s_buddy_cache == NULL) {
		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
		goto err_freesgi;
	}
2389
	sbi->s_buddy_cache->i_ino = get_next_ino();
2390
	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2391
	for (i = 0; i < ngroups; i++) {
2392 2393 2394
		desc = ext4_get_group_desc(sb, i, NULL);
		if (desc == NULL) {
			printk(KERN_ERR
2395
				"EXT4-fs: can't read descriptor %u\n", i);
2396 2397
			goto err_freebuddy;
		}
2398 2399
		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
			goto err_freebuddy;
2400 2401 2402 2403 2404
	}

	return 0;

err_freebuddy:
2405
	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2406
	while (i-- > 0)
2407
		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2408
	i = num_meta_group_infos;
2409
	while (i-- > 0)
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
		kfree(sbi->s_group_info[i]);
	iput(sbi->s_buddy_cache);
err_freesgi:
	kfree(sbi->s_group_info);
	return -ENOMEM;
}

int ext4_mb_init(struct super_block *sb, int needs_recovery)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2420
	unsigned i, j;
2421 2422
	unsigned offset;
	unsigned max;
2423
	int ret;
2424 2425 2426
	int cache_index;
	struct kmem_cache *cachep;
	char *namep = NULL;
2427

2428
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2429 2430 2431

	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_offsets == NULL) {
2432 2433
		ret = -ENOMEM;
		goto out;
2434
	}
2435

2436
	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2437 2438
	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
	if (sbi->s_mb_maxs == NULL) {
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
		ret = -ENOMEM;
		goto out;
	}

	cache_index = sb->s_blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
	cachep = ext4_groupinfo_caches[cache_index];
	if (!cachep) {
		char name[32];
		int len = offsetof(struct ext4_group_info,
					bb_counters[sb->s_blocksize_bits + 2]);

		sprintf(name, "ext4_groupinfo_%d", sb->s_blocksize_bits);
		namep = kstrdup(name, GFP_KERNEL);
		if (!namep) {
			ret = -ENOMEM;
			goto out;
		}

		/* Need to free the kmem_cache_name() when we
		 * destroy the slab */
		cachep = kmem_cache_create(namep, len, 0,
					     SLAB_RECLAIM_ACCOUNT, NULL);
		if (!cachep) {
			ret = -ENOMEM;
			goto out;
		}
		ext4_groupinfo_caches[cache_index] = cachep;
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	}

	/* order 0 is regular bitmap */
	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
	sbi->s_mb_offsets[0] = 0;

	i = 1;
	offset = 0;
	max = sb->s_blocksize << 2;
	do {
		sbi->s_mb_offsets[i] = offset;
		sbi->s_mb_maxs[i] = max;
		offset += 1 << (sb->s_blocksize_bits - i);
		max = max >> 1;
		i++;
	} while (i <= sb->s_blocksize_bits + 1);

	/* init file for buddy data */
2484 2485
	ret = ext4_mb_init_backend(sb);
	if (ret != 0) {
2486
		goto out;
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	}

	spin_lock_init(&sbi->s_md_lock);
	spin_lock_init(&sbi->s_bal_lock);

	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
	sbi->s_mb_stats = MB_DEFAULT_STATS;
	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;

2499
	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2500
	if (sbi->s_locality_groups == NULL) {
2501 2502
		ret = -ENOMEM;
		goto out;
2503
	}
2504
	for_each_possible_cpu(i) {
2505
		struct ext4_locality_group *lg;
2506
		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2507
		mutex_init(&lg->lg_mutex);
2508 2509
		for (j = 0; j < PREALLOC_TB_SIZE; j++)
			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2510 2511 2512
		spin_lock_init(&lg->lg_prealloc_lock);
	}

2513 2514 2515
	if (sbi->s_proc)
		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
				 &ext4_mb_seq_groups_fops, sb);
2516

2517 2518
	if (sbi->s_journal)
		sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2519 2520 2521 2522 2523 2524 2525
out:
	if (ret) {
		kfree(sbi->s_mb_offsets);
		kfree(sbi->s_mb_maxs);
		kfree(namep);
	}
	return ret;
2526 2527
}

2528
/* need to called with the ext4 group lock held */
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
{
	struct ext4_prealloc_space *pa;
	struct list_head *cur, *tmp;
	int count = 0;

	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		list_del(&pa->pa_group_list);
		count++;
2539
		kmem_cache_free(ext4_pspace_cachep, pa);
2540 2541
	}
	if (count)
2542
		mb_debug(1, "mballoc: %u PAs left\n", count);
2543 2544 2545 2546 2547

}

int ext4_mb_release(struct super_block *sb)
{
2548
	ext4_group_t ngroups = ext4_get_groups_count(sb);
2549 2550 2551 2552
	ext4_group_t i;
	int num_meta_group_infos;
	struct ext4_group_info *grinfo;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
2553
	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2554 2555

	if (sbi->s_group_info) {
2556
		for (i = 0; i < ngroups; i++) {
2557 2558 2559 2560 2561 2562 2563
			grinfo = ext4_get_group_info(sb, i);
#ifdef DOUBLE_CHECK
			kfree(grinfo->bb_bitmap);
#endif
			ext4_lock_group(sb, i);
			ext4_mb_cleanup_pa(grinfo);
			ext4_unlock_group(sb, i);
2564
			kmem_cache_free(cachep, grinfo);
2565
		}
2566
		num_meta_group_infos = (ngroups +
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
				EXT4_DESC_PER_BLOCK(sb) - 1) >>
			EXT4_DESC_PER_BLOCK_BITS(sb);
		for (i = 0; i < num_meta_group_infos; i++)
			kfree(sbi->s_group_info[i]);
		kfree(sbi->s_group_info);
	}
	kfree(sbi->s_mb_offsets);
	kfree(sbi->s_mb_maxs);
	if (sbi->s_buddy_cache)
		iput(sbi->s_buddy_cache);
	if (sbi->s_mb_stats) {
		printk(KERN_INFO
		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
				atomic_read(&sbi->s_bal_allocated),
				atomic_read(&sbi->s_bal_reqs),
				atomic_read(&sbi->s_bal_success));
		printk(KERN_INFO
		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
				"%u 2^N hits, %u breaks, %u lost\n",
				atomic_read(&sbi->s_bal_ex_scanned),
				atomic_read(&sbi->s_bal_goals),
				atomic_read(&sbi->s_bal_2orders),
				atomic_read(&sbi->s_bal_breaks),
				atomic_read(&sbi->s_mb_lost_chunks));
		printk(KERN_INFO
		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
				sbi->s_mb_buddies_generated++,
				sbi->s_mb_generation_time);
		printk(KERN_INFO
		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
				atomic_read(&sbi->s_mb_preallocated),
				atomic_read(&sbi->s_mb_discarded));
	}

2601
	free_percpu(sbi->s_locality_groups);
2602 2603
	if (sbi->s_proc)
		remove_proc_entry("mb_groups", sbi->s_proc);
2604 2605 2606 2607

	return 0;
}

2608
static inline int ext4_issue_discard(struct super_block *sb,
2609 2610 2611 2612 2613 2614 2615
		ext4_group_t block_group, ext4_grpblk_t block, int count)
{
	ext4_fsblk_t discard_block;

	discard_block = block + ext4_group_first_block_no(sb, block_group);
	trace_ext4_discard_blocks(sb,
			(unsigned long long) discard_block, count);
2616
	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2617 2618
}

2619 2620 2621 2622 2623
/*
 * This function is called by the jbd2 layer once the commit has finished,
 * so we know we can free the blocks that were released with that commit.
 */
static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2624
{
2625
	struct super_block *sb = journal->j_private;
2626
	struct ext4_buddy e4b;
2627
	struct ext4_group_info *db;
2628
	int err, ret, count = 0, count2 = 0;
2629
	struct ext4_free_data *entry;
2630
	struct list_head *l, *ltmp;
2631

2632 2633
	list_for_each_safe(l, ltmp, &txn->t_private_list) {
		entry = list_entry(l, struct ext4_free_data, list);
2634

2635
		mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2636
			 entry->count, entry->group, entry);
2637

2638 2639
		if (test_opt(sb, DISCARD)) {
			ret = ext4_issue_discard(sb, entry->group,
2640
					entry->start_blk, entry->count);
2641 2642 2643 2644 2645 2646
			if (unlikely(ret == -EOPNOTSUPP)) {
				ext4_warning(sb, "discard not supported, "
						 "disabling");
				clear_opt(sb, DISCARD);
			}
		}
2647

2648
		err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2649 2650 2651
		/* we expect to find existing buddy because it's pinned */
		BUG_ON(err != 0);

2652
		db = e4b.bd_info;
2653
		/* there are blocks to put in buddy to make them really free */
2654
		count += entry->count;
2655
		count2++;
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		ext4_lock_group(sb, entry->group);
		/* Take it out of per group rb tree */
		rb_erase(&entry->node, &(db->bb_free_root));
		mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);

		if (!db->bb_free_root.rb_node) {
			/* No more items in the per group rb tree
			 * balance refcounts from ext4_mb_free_metadata()
			 */
			page_cache_release(e4b.bd_buddy_page);
			page_cache_release(e4b.bd_bitmap_page);
2667
		}
2668 2669
		ext4_unlock_group(sb, entry->group);
		kmem_cache_free(ext4_free_ext_cachep, entry);
2670
		ext4_mb_unload_buddy(&e4b);
2671
	}
2672

2673
	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2674 2675
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
#ifdef CONFIG_EXT4_DEBUG
u8 mb_enable_debug __read_mostly;

static struct dentry *debugfs_dir;
static struct dentry *debugfs_debug;

static void __init ext4_create_debugfs_entry(void)
{
	debugfs_dir = debugfs_create_dir("ext4", NULL);
	if (debugfs_dir)
		debugfs_debug = debugfs_create_u8("mballoc-debug",
						  S_IRUGO | S_IWUSR,
						  debugfs_dir,
						  &mb_enable_debug);
}

static void ext4_remove_debugfs_entry(void)
{
	debugfs_remove(debugfs_debug);
	debugfs_remove(debugfs_dir);
}

#else

static void __init ext4_create_debugfs_entry(void)
{
}

static void ext4_remove_debugfs_entry(void)
{
}

#endif

2710
int __init ext4_init_mballoc(void)
2711
{
2712 2713
	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
					SLAB_RECLAIM_ACCOUNT);
2714 2715 2716
	if (ext4_pspace_cachep == NULL)
		return -ENOMEM;

2717 2718
	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
				    SLAB_RECLAIM_ACCOUNT);
2719 2720 2721 2722
	if (ext4_ac_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		return -ENOMEM;
	}
2723

2724 2725
	ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data,
					  SLAB_RECLAIM_ACCOUNT);
2726 2727 2728 2729 2730
	if (ext4_free_ext_cachep == NULL) {
		kmem_cache_destroy(ext4_pspace_cachep);
		kmem_cache_destroy(ext4_ac_cachep);
		return -ENOMEM;
	}
2731
	ext4_create_debugfs_entry();
2732 2733 2734
	return 0;
}

2735
void ext4_exit_mballoc(void)
2736
{
2737
	int i;
2738
	/*
2739 2740 2741 2742
	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
	 * before destroying the slab cache.
	 */
	rcu_barrier();
2743
	kmem_cache_destroy(ext4_pspace_cachep);
2744
	kmem_cache_destroy(ext4_ac_cachep);
2745
	kmem_cache_destroy(ext4_free_ext_cachep);
2746 2747 2748 2749 2750 2751 2752 2753 2754

	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
		struct kmem_cache *cachep = ext4_groupinfo_caches[i];
		if (cachep) {
			char *name = (char *)kmem_cache_name(cachep);
			kmem_cache_destroy(cachep);
			kfree(name);
		}
	}
2755
	ext4_remove_debugfs_entry();
2756 2757 2758 2759
}


/*
2760
 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2761 2762
 * Returns 0 if success or error code
 */
2763 2764
static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2765
				handle_t *handle, unsigned int reserv_blks)
2766 2767 2768 2769 2770 2771 2772
{
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_group_desc *gdp;
	struct buffer_head *gdp_bh;
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block;
2773
	int err, len;
2774 2775 2776 2777 2778 2779 2780 2781

	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(ac->ac_b_ex.fe_len <= 0);

	sb = ac->ac_sb;
	sbi = EXT4_SB(sb);

	err = -EIO;
2782
	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	if (!bitmap_bh)
		goto out_err;

	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto out_err;

	err = -EIO;
	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
	if (!gdp)
		goto out_err;

2795
	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2796
			ext4_free_blks_count(sb, gdp));
2797

2798 2799 2800 2801
	err = ext4_journal_get_write_access(handle, gdp_bh);
	if (err)
		goto out_err;

2802
	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2803

2804
	len = ac->ac_b_ex.fe_len;
2805
	if (!ext4_data_block_valid(sbi, block, len)) {
2806
		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2807
			   "fs metadata\n", block, block+len);
2808 2809 2810 2811
		/* File system mounted not to panic on error
		 * Fix the bitmap and repeat the block allocation
		 * We leak some of the blocks here.
		 */
2812 2813 2814 2815
		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
			    ac->ac_b_ex.fe_len);
		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2816
		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2817 2818 2819
		if (!err)
			err = -EAGAIN;
		goto out_err;
2820
	}
2821 2822

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2823 2824 2825 2826 2827 2828 2829 2830 2831
#ifdef AGGRESSIVE_CHECK
	{
		int i;
		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
						bitmap_bh->b_data));
		}
	}
#endif
2832
	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2833 2834
	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2835 2836 2837
		ext4_free_blks_set(sb, gdp,
					ext4_free_blocks_after_init(sb,
					ac->ac_b_ex.fe_group, gdp));
2838
	}
2839 2840
	len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
	ext4_free_blks_set(sb, gdp, len);
2841
	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2842 2843

	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2844
	percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2845
	/*
2846
	 * Now reduce the dirty block count also. Should not go negative
2847
	 */
2848 2849 2850
	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
		/* release all the reserved blocks if non delalloc */
		percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2851

2852 2853 2854
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi,
							  ac->ac_b_ex.fe_group);
2855 2856
		atomic_sub(ac->ac_b_ex.fe_len,
			   &sbi->s_flex_groups[flex_group].free_blocks);
2857 2858
	}

2859
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2860 2861
	if (err)
		goto out_err;
2862
	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2863 2864

out_err:
T
Theodore Ts'o 已提交
2865
	ext4_mark_super_dirty(sb);
2866
	brelse(bitmap_bh);
2867 2868 2869 2870 2871 2872 2873
	return err;
}

/*
 * here we normalize request for locality group
 * Group request are normalized to s_strip size if we set the same via mount
 * option. If not we set it to s_mb_group_prealloc which can be configured via
T
Theodore Ts'o 已提交
2874
 * /sys/fs/ext4/<partition>/mb_group_prealloc
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
 *
 * XXX: should we try to preallocate more than the group has now?
 */
static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;

	BUG_ON(lg == NULL);
	if (EXT4_SB(sb)->s_stripe)
		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
	else
		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2888
	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2889 2890 2891 2892 2893 2894 2895
		current->pid, ac->ac_g_ex.fe_len);
}

/*
 * Normalization means making request better in terms of
 * size and alignment
 */
2896 2897
static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2898 2899 2900 2901 2902
				struct ext4_allocation_request *ar)
{
	int bsbits, max;
	ext4_lblk_t end;
	loff_t size, orig_size, start_off;
2903
	ext4_lblk_t start;
2904
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2905
	struct ext4_prealloc_space *pa;
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933

	/* do normalize only data requests, metadata requests
	   do not need preallocation */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

	/* sometime caller may want exact blocks */
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

	/* caller may indicate that preallocation isn't
	 * required (it's a tail, for example) */
	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
		return;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
		ext4_mb_normalize_group_request(ac);
		return ;
	}

	bsbits = ac->ac_sb->s_blocksize_bits;

	/* first, let's learn actual file size
	 * given current request is allocated */
	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
	size = size << bsbits;
	if (size < i_size_read(ac->ac_inode))
		size = i_size_read(ac->ac_inode);
2934
	orig_size = size;
2935

2936 2937
	/* max size of free chunks */
	max = 2 << bsbits;
2938

2939 2940
#define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
		(req <= (size) || max <= (chunk_size))
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958

	/* first, try to predict filesize */
	/* XXX: should this table be tunable? */
	start_off = 0;
	if (size <= 16 * 1024) {
		size = 16 * 1024;
	} else if (size <= 32 * 1024) {
		size = 32 * 1024;
	} else if (size <= 64 * 1024) {
		size = 64 * 1024;
	} else if (size <= 128 * 1024) {
		size = 128 * 1024;
	} else if (size <= 256 * 1024) {
		size = 256 * 1024;
	} else if (size <= 512 * 1024) {
		size = 512 * 1024;
	} else if (size <= 1024 * 1024) {
		size = 1024 * 1024;
2959
	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2960
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2961 2962 2963
						(21 - bsbits)) << 21;
		size = 2 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2964 2965 2966 2967
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(22 - bsbits)) << 22;
		size = 4 * 1024 * 1024;
	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2968
					(8<<20)>>bsbits, max, 8 * 1024)) {
2969 2970 2971 2972 2973 2974 2975
		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
							(23 - bsbits)) << 23;
		size = 8 * 1024 * 1024;
	} else {
		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
		size	  = ac->ac_o_ex.fe_len << bsbits;
	}
2976 2977
	size = size >> bsbits;
	start = start_off >> bsbits;
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990

	/* don't cover already allocated blocks in selected range */
	if (ar->pleft && start <= ar->lleft) {
		size -= ar->lleft + 1 - start;
		start = ar->lleft + 1;
	}
	if (ar->pright && start + size - 1 >= ar->lright)
		size -= start + size - ar->lright;

	end = start + size;

	/* check we don't cross already preallocated blocks */
	rcu_read_lock();
2991
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2992
		ext4_lblk_t pa_end;
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

		if (pa->pa_deleted)
			continue;
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

		pa_end = pa->pa_lstart + pa->pa_len;

		/* PA must not overlap original request */
		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
			ac->ac_o_ex.fe_logical < pa->pa_lstart));

3008 3009
		/* skip PAs this normalized request doesn't overlap with */
		if (pa->pa_lstart >= end || pa_end <= start) {
3010 3011 3012 3013 3014
			spin_unlock(&pa->pa_lock);
			continue;
		}
		BUG_ON(pa->pa_lstart <= start && pa_end >= end);

3015
		/* adjust start or end to be adjacent to this pa */
3016 3017 3018
		if (pa_end <= ac->ac_o_ex.fe_logical) {
			BUG_ON(pa_end < start);
			start = pa_end;
3019
		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
			BUG_ON(pa->pa_lstart > end);
			end = pa->pa_lstart;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();
	size = end - start;

	/* XXX: extra loop to check we really don't overlap preallocations */
	rcu_read_lock();
3030
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3031
		ext4_lblk_t pa_end;
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0) {
			pa_end = pa->pa_lstart + pa->pa_len;
			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	if (start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical) {
		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
			(unsigned long) start, (unsigned long) size,
			(unsigned long) ac->ac_o_ex.fe_logical);
	}
	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
			start > ac->ac_o_ex.fe_logical);
3049
	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073

	/* now prepare goal request */

	/* XXX: is it better to align blocks WRT to logical
	 * placement or satisfy big request as is */
	ac->ac_g_ex.fe_logical = start;
	ac->ac_g_ex.fe_len = size;

	/* define goal start in order to merge */
	if (ar->pright && (ar->lright == (start + size))) {
		/* merge to the right */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}
	if (ar->pleft && (ar->lleft + 1 == start)) {
		/* merge to the left */
		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
						&ac->ac_f_ex.fe_group,
						&ac->ac_f_ex.fe_start);
		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
	}

3074
	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
		(unsigned) orig_size, (unsigned) start);
}

static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);

	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
		atomic_inc(&sbi->s_bal_reqs);
		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3085
		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3086 3087 3088 3089 3090 3091 3092 3093 3094
			atomic_inc(&sbi->s_bal_success);
		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
			atomic_inc(&sbi->s_bal_goals);
		if (ac->ac_found > sbi->s_mb_max_to_scan)
			atomic_inc(&sbi->s_bal_breaks);
	}

3095 3096 3097 3098
	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
		trace_ext4_mballoc_alloc(ac);
	else
		trace_ext4_mballoc_prealloc(ac);
3099 3100
}

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
/*
 * Called on failure; free up any blocks from the inode PA for this
 * context.  We don't need this for MB_GROUP_PA because we only change
 * pa_free in ext4_mb_release_context(), but on failure, we've already
 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
 */
static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
{
	struct ext4_prealloc_space *pa = ac->ac_pa;
	int len;

	if (pa && pa->pa_type == MB_INODE_PA) {
		len = ac->ac_b_ex.fe_len;
		pa->pa_free += len;
	}

}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
/*
 * use blocks preallocated to inode
 */
static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
	ext4_fsblk_t start;
	ext4_fsblk_t end;
	int len;

	/* found preallocated blocks, use them */
	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
	len = end - start;
	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	BUG_ON(start < pa->pa_pstart);
	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
	BUG_ON(pa->pa_free < len);
	pa->pa_free -= len;

3144
	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3145 3146 3147 3148 3149 3150 3151 3152
}

/*
 * use blocks preallocated to locality group
 */
static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
				struct ext4_prealloc_space *pa)
{
3153
	unsigned int len = ac->ac_o_ex.fe_len;
3154

3155 3156 3157 3158 3159 3160 3161 3162
	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
					&ac->ac_b_ex.fe_group,
					&ac->ac_b_ex.fe_start);
	ac->ac_b_ex.fe_len = len;
	ac->ac_status = AC_STATUS_FOUND;
	ac->ac_pa = pa;

	/* we don't correct pa_pstart or pa_plen here to avoid
3163
	 * possible race when the group is being loaded concurrently
3164
	 * instead we correct pa later, after blocks are marked
3165 3166
	 * in on-disk bitmap -- see ext4_mb_release_context()
	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3167
	 */
3168
	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3169 3170
}

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
/*
 * Return the prealloc space that have minimal distance
 * from the goal block. @cpa is the prealloc
 * space that is having currently known minimal distance
 * from the goal block.
 */
static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
			struct ext4_prealloc_space *pa,
			struct ext4_prealloc_space *cpa)
{
	ext4_fsblk_t cur_distance, new_distance;

	if (cpa == NULL) {
		atomic_inc(&pa->pa_count);
		return pa;
	}
	cur_distance = abs(goal_block - cpa->pa_pstart);
	new_distance = abs(goal_block - pa->pa_pstart);

	if (cur_distance < new_distance)
		return cpa;

	/* drop the previous reference */
	atomic_dec(&cpa->pa_count);
	atomic_inc(&pa->pa_count);
	return pa;
}

3200 3201 3202
/*
 * search goal blocks in preallocated space
 */
3203 3204
static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3205
{
3206
	int order, i;
3207 3208
	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
	struct ext4_locality_group *lg;
3209 3210
	struct ext4_prealloc_space *pa, *cpa = NULL;
	ext4_fsblk_t goal_block;
3211 3212 3213 3214 3215 3216 3217

	/* only data can be preallocated */
	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return 0;

	/* first, try per-file preallocation */
	rcu_read_lock();
3218
	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3219 3220 3221 3222 3223 3224 3225

		/* all fields in this condition don't change,
		 * so we can skip locking for them */
		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
			continue;

3226
		/* non-extent files can't have physical blocks past 2^32 */
3227
		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3228 3229 3230
			pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
			continue;

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		/* found preallocated blocks, use them */
		spin_lock(&pa->pa_lock);
		if (pa->pa_deleted == 0 && pa->pa_free) {
			atomic_inc(&pa->pa_count);
			ext4_mb_use_inode_pa(ac, pa);
			spin_unlock(&pa->pa_lock);
			ac->ac_criteria = 10;
			rcu_read_unlock();
			return 1;
		}
		spin_unlock(&pa->pa_lock);
	}
	rcu_read_unlock();

	/* can we use group allocation? */
	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
		return 0;

	/* inode may have no locality group for some reason */
	lg = ac->ac_lg;
	if (lg == NULL)
		return 0;
3253 3254 3255 3256 3257
	order  = fls(ac->ac_o_ex.fe_len) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;

3258
	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3259 3260 3261 3262
	/*
	 * search for the prealloc space that is having
	 * minimal distance from the goal block.
	 */
3263 3264 3265 3266 3267 3268 3269
	for (i = order; i < PREALLOC_TB_SIZE; i++) {
		rcu_read_lock();
		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
					pa_inode_list) {
			spin_lock(&pa->pa_lock);
			if (pa->pa_deleted == 0 &&
					pa->pa_free >= ac->ac_o_ex.fe_len) {
3270 3271 3272

				cpa = ext4_mb_check_group_pa(goal_block,
								pa, cpa);
3273
			}
3274 3275
			spin_unlock(&pa->pa_lock);
		}
3276
		rcu_read_unlock();
3277
	}
3278 3279 3280 3281 3282
	if (cpa) {
		ext4_mb_use_group_pa(ac, cpa);
		ac->ac_criteria = 20;
		return 1;
	}
3283 3284 3285
	return 0;
}

3286 3287 3288 3289
/*
 * the function goes through all block freed in the group
 * but not yet committed and marks them used in in-core bitmap.
 * buddy must be generated from this bitmap
3290
 * Need to be called with the ext4 group lock held
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
 */
static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
						ext4_group_t group)
{
	struct rb_node *n;
	struct ext4_group_info *grp;
	struct ext4_free_data *entry;

	grp = ext4_get_group_info(sb, group);
	n = rb_first(&(grp->bb_free_root));

	while (n) {
		entry = rb_entry(n, struct ext4_free_data, node);
3304
		mb_set_bits(bitmap, entry->start_blk, entry->count);
3305 3306 3307 3308 3309
		n = rb_next(n);
	}
	return;
}

3310 3311 3312
/*
 * the function goes through all preallocation in this group and marks them
 * used in in-core bitmap. buddy must be generated from this bitmap
3313
 * Need to be called with ext4 group lock held
3314
 */
3315 3316
static noinline_for_stack
void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
					ext4_group_t group)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct ext4_prealloc_space *pa;
	struct list_head *cur;
	ext4_group_t groupnr;
	ext4_grpblk_t start;
	int preallocated = 0;
	int count = 0;
	int len;

	/* all form of preallocation discards first load group,
	 * so the only competing code is preallocation use.
	 * we don't need any locking here
	 * notice we do NOT ignore preallocations with pa_deleted
	 * otherwise we could leave used blocks available for
	 * allocation in buddy when concurrent ext4_mb_put_pa()
	 * is dropping preallocation
	 */
	list_for_each(cur, &grp->bb_prealloc_list) {
		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
		spin_lock(&pa->pa_lock);
		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
					     &groupnr, &start);
		len = pa->pa_len;
		spin_unlock(&pa->pa_lock);
		if (unlikely(len == 0))
			continue;
		BUG_ON(groupnr != group);
3346
		mb_set_bits(bitmap, start, len);
3347 3348 3349
		preallocated += len;
		count++;
	}
3350
	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
}

static void ext4_mb_pa_callback(struct rcu_head *head)
{
	struct ext4_prealloc_space *pa;
	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
	kmem_cache_free(ext4_pspace_cachep, pa);
}

/*
 * drops a reference to preallocated space descriptor
 * if this was the last reference and the space is consumed
 */
static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
			struct super_block *sb, struct ext4_prealloc_space *pa)
{
3367
	ext4_group_t grp;
3368
	ext4_fsblk_t grp_blk;
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382

	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
		return;

	/* in this short window concurrent discard can set pa_deleted */
	spin_lock(&pa->pa_lock);
	if (pa->pa_deleted == 1) {
		spin_unlock(&pa->pa_lock);
		return;
	}

	pa->pa_deleted = 1;
	spin_unlock(&pa->pa_lock);

3383
	grp_blk = pa->pa_pstart;
3384
	/*
3385 3386 3387 3388
	 * If doing group-based preallocation, pa_pstart may be in the
	 * next group when pa is used up
	 */
	if (pa->pa_type == MB_GROUP_PA)
3389 3390 3391
		grp_blk--;

	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420

	/*
	 * possible race:
	 *
	 *  P1 (buddy init)			P2 (regular allocation)
	 *					find block B in PA
	 *  copy on-disk bitmap to buddy
	 *  					mark B in on-disk bitmap
	 *					drop PA from group
	 *  mark all PAs in buddy
	 *
	 * thus, P1 initializes buddy with B available. to prevent this
	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
	 * against that pair
	 */
	ext4_lock_group(sb, grp);
	list_del(&pa->pa_group_list);
	ext4_unlock_group(sb, grp);

	spin_lock(pa->pa_obj_lock);
	list_del_rcu(&pa->pa_inode_list);
	spin_unlock(pa->pa_obj_lock);

	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
}

/*
 * creates new preallocated space for given inode
 */
3421 3422
static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;
	struct ext4_inode_info *ei;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
		int winl;
		int wins;
		int win;
		int offs;

		/* we can't allocate as much as normalizer wants.
		 * so, found space must get proper lstart
		 * to cover original request */
		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);

		/* we're limited by original request in that
		 * logical block must be covered any way
		 * winl is window we can move our chunk within */
		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;

		/* also, we should cover whole original request */
		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;

		/* the smallest one defines real window */
		win = min(winl, wins);

		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
		if (offs && offs < win)
			win = offs;

		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
	}

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_lstart = ac->ac_b_ex.fe_logical;
	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3480 3481
	INIT_LIST_HEAD(&pa->pa_inode_list);
	INIT_LIST_HEAD(&pa->pa_group_list);
3482
	pa->pa_deleted = 0;
3483
	pa->pa_type = MB_INODE_PA;
3484

3485
	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3486
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3487
	trace_ext4_mb_new_inode_pa(ac, pa);
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511

	ext4_mb_use_inode_pa(ac, pa);
	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);

	ei = EXT4_I(ac->ac_inode);
	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);

	pa->pa_obj_lock = &ei->i_prealloc_lock;
	pa->pa_inode = ac->ac_inode;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

	spin_lock(pa->pa_obj_lock);
	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
	spin_unlock(pa->pa_obj_lock);

	return 0;
}

/*
 * creates new preallocated space for locality group inodes belongs to
 */
3512 3513
static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
{
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg;
	struct ext4_prealloc_space *pa;
	struct ext4_group_info *grp;

	/* preallocate only when found space is larger then requested */
	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));

	BUG_ON(ext4_pspace_cachep == NULL);
	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
	if (pa == NULL)
		return -ENOMEM;

	/* preallocation can change ac_b_ex, thus we store actually
	 * allocated blocks for history */
	ac->ac_f_ex = ac->ac_b_ex;

	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
	pa->pa_lstart = pa->pa_pstart;
	pa->pa_len = ac->ac_b_ex.fe_len;
	pa->pa_free = pa->pa_len;
	atomic_set(&pa->pa_count, 1);
	spin_lock_init(&pa->pa_lock);
3540
	INIT_LIST_HEAD(&pa->pa_inode_list);
3541
	INIT_LIST_HEAD(&pa->pa_group_list);
3542
	pa->pa_deleted = 0;
3543
	pa->pa_type = MB_GROUP_PA;
3544

3545
	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3546 3547
			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
	trace_ext4_mb_new_group_pa(ac, pa);
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562

	ext4_mb_use_group_pa(ac, pa);
	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);

	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
	lg = ac->ac_lg;
	BUG_ON(lg == NULL);

	pa->pa_obj_lock = &lg->lg_prealloc_lock;
	pa->pa_inode = NULL;

	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);

3563 3564 3565 3566
	/*
	 * We will later add the new pa to the right bucket
	 * after updating the pa_free in ext4_mb_release_context
	 */
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
	return 0;
}

static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
{
	int err;

	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		err = ext4_mb_new_group_pa(ac);
	else
		err = ext4_mb_new_inode_pa(ac);
	return err;
}

/*
 * finds all unused blocks in on-disk bitmap, frees them in
 * in-core bitmap and buddy.
 * @pa must be unlinked from inode and group lists, so that
 * nobody else can find/use it.
 * the caller MUST hold group/inode locks.
 * TODO: optimize the case when there are no in-core structures yet
 */
3589 3590
static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3591
			struct ext4_prealloc_space *pa)
3592 3593 3594
{
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
3595 3596
	unsigned int end;
	unsigned int next;
3597 3598
	ext4_group_t group;
	ext4_grpblk_t bit;
3599
	unsigned long long grp_blk_start;
3600 3601 3602 3603 3604
	int err = 0;
	int free = 0;

	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3605
	grp_blk_start = pa->pa_pstart - bit;
3606 3607 3608 3609
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	end = bit + pa->pa_len;

	while (bit < end) {
3610
		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3611 3612
		if (bit >= end)
			break;
3613
		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3614
		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3615 3616
			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
			 (unsigned) next - bit, (unsigned) group);
3617 3618
		free += next - bit;

3619 3620 3621
		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
		trace_ext4_mb_release_inode_pa(sb, pa->pa_inode, pa,
					       grp_blk_start + bit, next - bit);
3622 3623 3624 3625
		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
		bit = next + 1;
	}
	if (free != pa->pa_free) {
3626
		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3627 3628 3629
			pa, (unsigned long) pa->pa_lstart,
			(unsigned long) pa->pa_pstart,
			(unsigned long) pa->pa_len);
3630
		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3631
					free, pa->pa_free);
3632 3633 3634 3635
		/*
		 * pa is already deleted so we use the value obtained
		 * from the bitmap and continue.
		 */
3636 3637 3638 3639 3640 3641
	}
	atomic_add(free, &sbi->s_mb_discarded);

	return err;
}

3642 3643
static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3644
				struct ext4_prealloc_space *pa)
3645 3646 3647 3648 3649
{
	struct super_block *sb = e4b->bd_sb;
	ext4_group_t group;
	ext4_grpblk_t bit;

3650
	trace_ext4_mb_release_group_pa(sb, pa);
3651 3652 3653 3654 3655
	BUG_ON(pa->pa_deleted == 0);
	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3656
	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

	return 0;
}

/*
 * releases all preallocations in given group
 *
 * first, we need to decide discard policy:
 * - when do we discard
 *   1) ENOSPC
 * - how many do we discard
 *   1) how many requested
 */
3670 3671
static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block *sb,
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
					ext4_group_t group, int needed)
{
	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;
	int busy = 0;
	int free = 0;

3683
	mb_debug(1, "discard preallocation for group %u\n", group);
3684 3685 3686 3687

	if (list_empty(&grp->bb_prealloc_list))
		return 0;

3688
	bitmap_bh = ext4_read_block_bitmap(sb, group);
3689
	if (bitmap_bh == NULL) {
3690
		ext4_error(sb, "Error reading block bitmap for %u", group);
3691
		return 0;
3692 3693 3694
	}

	err = ext4_mb_load_buddy(sb, group, &e4b);
3695
	if (err) {
3696
		ext4_error(sb, "Error loading buddy information for %u", group);
3697 3698 3699
		put_bh(bitmap_bh);
		return 0;
	}
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757

	if (needed == 0)
		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;

	INIT_LIST_HEAD(&list);
repeat:
	ext4_lock_group(sb, group);
	list_for_each_entry_safe(pa, tmp,
				&grp->bb_prealloc_list, pa_group_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			spin_unlock(&pa->pa_lock);
			busy = 1;
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;

		/* we can trust pa_free ... */
		free += pa->pa_free;

		spin_unlock(&pa->pa_lock);

		list_del(&pa->pa_group_list);
		list_add(&pa->u.pa_tmp_list, &list);
	}

	/* if we still need more blocks and some PAs were used, try again */
	if (free < needed && busy) {
		busy = 0;
		ext4_unlock_group(sb, group);
		/*
		 * Yield the CPU here so that we don't get soft lockup
		 * in non preempt case.
		 */
		yield();
		goto repeat;
	}

	/* found anything to free? */
	if (list_empty(&list)) {
		BUG_ON(free != 0);
		goto out;
	}

	/* now free all selected PAs */
	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {

		/* remove from object (inode or locality group) */
		spin_lock(pa->pa_obj_lock);
		list_del_rcu(&pa->pa_inode_list);
		spin_unlock(pa->pa_obj_lock);

3758
		if (pa->pa_type == MB_GROUP_PA)
3759
			ext4_mb_release_group_pa(&e4b, pa);
3760
		else
3761
			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3762 3763 3764 3765 3766 3767 3768

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}

out:
	ext4_unlock_group(sb, group);
3769
	ext4_mb_unload_buddy(&e4b);
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
	put_bh(bitmap_bh);
	return free;
}

/*
 * releases all non-used preallocated blocks for given inode
 *
 * It's important to discard preallocations under i_data_sem
 * We don't want another block to be served from the prealloc
 * space when we are discarding the inode prealloc space.
 *
 * FIXME!! Make sure it is valid at all the call sites
 */
3783
void ext4_discard_preallocations(struct inode *inode)
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
{
	struct ext4_inode_info *ei = EXT4_I(inode);
	struct super_block *sb = inode->i_sb;
	struct buffer_head *bitmap_bh = NULL;
	struct ext4_prealloc_space *pa, *tmp;
	ext4_group_t group = 0;
	struct list_head list;
	struct ext4_buddy e4b;
	int err;

3794
	if (!S_ISREG(inode->i_mode)) {
3795 3796 3797 3798
		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
		return;
	}

3799
	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3800
	trace_ext4_discard_preallocations(inode);
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852

	INIT_LIST_HEAD(&list);

repeat:
	/* first, collect all pa's in the inode */
	spin_lock(&ei->i_prealloc_lock);
	while (!list_empty(&ei->i_prealloc_list)) {
		pa = list_entry(ei->i_prealloc_list.next,
				struct ext4_prealloc_space, pa_inode_list);
		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/* this shouldn't happen often - nobody should
			 * use preallocation while we're discarding it */
			spin_unlock(&pa->pa_lock);
			spin_unlock(&ei->i_prealloc_lock);
			printk(KERN_ERR "uh-oh! used pa while discarding\n");
			WARN_ON(1);
			schedule_timeout_uninterruptible(HZ);
			goto repeat;

		}
		if (pa->pa_deleted == 0) {
			pa->pa_deleted = 1;
			spin_unlock(&pa->pa_lock);
			list_del_rcu(&pa->pa_inode_list);
			list_add(&pa->u.pa_tmp_list, &list);
			continue;
		}

		/* someone is deleting pa right now */
		spin_unlock(&pa->pa_lock);
		spin_unlock(&ei->i_prealloc_lock);

		/* we have to wait here because pa_deleted
		 * doesn't mean pa is already unlinked from
		 * the list. as we might be called from
		 * ->clear_inode() the inode will get freed
		 * and concurrent thread which is unlinking
		 * pa from inode's list may access already
		 * freed memory, bad-bad-bad */

		/* XXX: if this happens too often, we can
		 * add a flag to force wait only in case
		 * of ->clear_inode(), but not in case of
		 * regular truncate */
		schedule_timeout_uninterruptible(HZ);
		goto repeat;
	}
	spin_unlock(&ei->i_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3853
		BUG_ON(pa->pa_type != MB_INODE_PA);
3854 3855 3856
		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);

		err = ext4_mb_load_buddy(sb, group, &e4b);
3857
		if (err) {
3858 3859
			ext4_error(sb, "Error loading buddy information for %u",
					group);
3860 3861
			continue;
		}
3862

3863
		bitmap_bh = ext4_read_block_bitmap(sb, group);
3864
		if (bitmap_bh == NULL) {
3865 3866
			ext4_error(sb, "Error reading block bitmap for %u",
					group);
3867
			ext4_mb_unload_buddy(&e4b);
3868
			continue;
3869 3870 3871 3872
		}

		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
3873
		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3874 3875
		ext4_unlock_group(sb, group);

3876
		ext4_mb_unload_buddy(&e4b);
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
		put_bh(bitmap_bh);

		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

/*
 * finds all preallocated spaces and return blocks being freed to them
 * if preallocated space becomes full (no block is used from the space)
 * then the function frees space in buddy
 * XXX: at the moment, truncate (which is the only way to free blocks)
 * discards all preallocations
 */
static void ext4_mb_return_to_preallocation(struct inode *inode,
					struct ext4_buddy *e4b,
					sector_t block, int count)
{
	BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
}
3897
#ifdef CONFIG_EXT4_DEBUG
3898 3899 3900
static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	struct super_block *sb = ac->ac_sb;
3901
	ext4_group_t ngroups, i;
3902

3903 3904 3905
	if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
		return;

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	printk(KERN_ERR "EXT4-fs: Can't allocate:"
			" Allocation context details:\n");
	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
			ac->ac_status, ac->ac_flags);
	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
			"best %lu/%lu/%lu@%lu cr %d\n",
			(unsigned long)ac->ac_o_ex.fe_group,
			(unsigned long)ac->ac_o_ex.fe_start,
			(unsigned long)ac->ac_o_ex.fe_len,
			(unsigned long)ac->ac_o_ex.fe_logical,
			(unsigned long)ac->ac_g_ex.fe_group,
			(unsigned long)ac->ac_g_ex.fe_start,
			(unsigned long)ac->ac_g_ex.fe_len,
			(unsigned long)ac->ac_g_ex.fe_logical,
			(unsigned long)ac->ac_b_ex.fe_group,
			(unsigned long)ac->ac_b_ex.fe_start,
			(unsigned long)ac->ac_b_ex.fe_len,
			(unsigned long)ac->ac_b_ex.fe_logical,
			(int)ac->ac_criteria);
	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
		ac->ac_found);
	printk(KERN_ERR "EXT4-fs: groups: \n");
3928 3929
	ngroups = ext4_get_groups_count(sb);
	for (i = 0; i < ngroups; i++) {
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
		struct ext4_prealloc_space *pa;
		ext4_grpblk_t start;
		struct list_head *cur;
		ext4_lock_group(sb, i);
		list_for_each(cur, &grp->bb_prealloc_list) {
			pa = list_entry(cur, struct ext4_prealloc_space,
					pa_group_list);
			spin_lock(&pa->pa_lock);
			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
						     NULL, &start);
			spin_unlock(&pa->pa_lock);
3942 3943
			printk(KERN_ERR "PA:%u:%d:%u \n", i,
			       start, pa->pa_len);
3944
		}
3945
		ext4_unlock_group(sb, i);
3946 3947 3948

		if (grp->bb_free == 0)
			continue;
3949
		printk(KERN_ERR "%u: %d/%d \n",
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
		       i, grp->bb_free, grp->bb_fragments);
	}
	printk(KERN_ERR "\n");
}
#else
static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
{
	return;
}
#endif

/*
 * We use locality group preallocation for small size file. The size of the
 * file is determined by the current size or the resulting size after
 * allocation which ever is larger
 *
T
Theodore Ts'o 已提交
3966
 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
 */
static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
{
	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
	int bsbits = ac->ac_sb->s_blocksize_bits;
	loff_t size, isize;

	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
		return;

3977 3978 3979
	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
		return;

3980
	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3981 3982
	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
		>> bsbits;
3983

3984 3985 3986 3987 3988 3989 3990
	if ((size == isize) &&
	    !ext4_fs_is_busy(sbi) &&
	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
		return;
	}

3991
	/* don't use group allocation for large files */
3992
	size = max(size, isize);
3993
	if (size > sbi->s_mb_stream_request) {
3994
		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3995
		return;
3996
	}
3997 3998 3999 4000 4001 4002 4003

	BUG_ON(ac->ac_lg != NULL);
	/*
	 * locality group prealloc space are per cpu. The reason for having
	 * per cpu locality group is to reduce the contention between block
	 * request from multiple CPUs.
	 */
4004
	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4005 4006 4007 4008 4009 4010 4011 4012

	/* we're going to use group allocation */
	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;

	/* serialize all allocations in the group */
	mutex_lock(&ac->ac_lg->lg_mutex);
}

4013 4014
static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4015 4016 4017 4018 4019 4020
				struct ext4_allocation_request *ar)
{
	struct super_block *sb = ar->inode->i_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_super_block *es = sbi->s_es;
	ext4_group_t group;
4021 4022
	unsigned int len;
	ext4_fsblk_t goal;
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
	ext4_grpblk_t block;

	/* we can't allocate > group size */
	len = ar->len;

	/* just a dirty hack to filter too big requests  */
	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;

	/* start searching from the goal */
	goal = ar->goal;
	if (goal < le32_to_cpu(es->s_first_data_block) ||
			goal >= ext4_blocks_count(es))
		goal = le32_to_cpu(es->s_first_data_block);
	ext4_get_group_no_and_offset(sb, goal, &group, &block);

	/* set up allocation goals */
4040
	memset(ac, 0, sizeof(struct ext4_allocation_context));
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
	ac->ac_b_ex.fe_logical = ar->logical;
	ac->ac_status = AC_STATUS_CONTINUE;
	ac->ac_sb = sb;
	ac->ac_inode = ar->inode;
	ac->ac_o_ex.fe_logical = ar->logical;
	ac->ac_o_ex.fe_group = group;
	ac->ac_o_ex.fe_start = block;
	ac->ac_o_ex.fe_len = len;
	ac->ac_g_ex.fe_logical = ar->logical;
	ac->ac_g_ex.fe_group = group;
	ac->ac_g_ex.fe_start = block;
	ac->ac_g_ex.fe_len = len;
	ac->ac_flags = ar->flags;

	/* we have to define context: we'll we work with a file or
	 * locality group. this is a policy, actually */
	ext4_mb_group_or_file(ac);

4059
	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
			"left: %u/%u, right %u/%u to %swritable\n",
			(unsigned) ar->len, (unsigned) ar->logical,
			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
			(unsigned) ar->lleft, (unsigned) ar->pleft,
			(unsigned) ar->lright, (unsigned) ar->pright,
			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
	return 0;

}

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block *sb,
					struct ext4_locality_group *lg,
					int order, int total_entries)
{
	ext4_group_t group = 0;
	struct ext4_buddy e4b;
	struct list_head discard_list;
	struct ext4_prealloc_space *pa, *tmp;

4080
	mb_debug(1, "discard locality group preallocation\n");
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101

	INIT_LIST_HEAD(&discard_list);

	spin_lock(&lg->lg_prealloc_lock);
	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&pa->pa_lock);
		if (atomic_read(&pa->pa_count)) {
			/*
			 * This is the pa that we just used
			 * for block allocation. So don't
			 * free that
			 */
			spin_unlock(&pa->pa_lock);
			continue;
		}
		if (pa->pa_deleted) {
			spin_unlock(&pa->pa_lock);
			continue;
		}
		/* only lg prealloc space */
4102
		BUG_ON(pa->pa_type != MB_GROUP_PA);
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127

		/* seems this one can be freed ... */
		pa->pa_deleted = 1;
		spin_unlock(&pa->pa_lock);

		list_del_rcu(&pa->pa_inode_list);
		list_add(&pa->u.pa_tmp_list, &discard_list);

		total_entries--;
		if (total_entries <= 5) {
			/*
			 * we want to keep only 5 entries
			 * allowing it to grow to 8. This
			 * mak sure we don't call discard
			 * soon for this list.
			 */
			break;
		}
	}
	spin_unlock(&lg->lg_prealloc_lock);

	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {

		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4128 4129
			ext4_error(sb, "Error loading buddy information for %u",
					group);
4130 4131 4132 4133
			continue;
		}
		ext4_lock_group(sb, group);
		list_del(&pa->pa_group_list);
4134
		ext4_mb_release_group_pa(&e4b, pa);
4135 4136
		ext4_unlock_group(sb, group);

4137
		ext4_mb_unload_buddy(&e4b);
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
		list_del(&pa->u.pa_tmp_list);
		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
	}
}

/*
 * We have incremented pa_count. So it cannot be freed at this
 * point. Also we hold lg_mutex. So no parallel allocation is
 * possible from this lg. That means pa_free cannot be updated.
 *
 * A parallel ext4_mb_discard_group_preallocations is possible.
 * which can cause the lg_prealloc_list to be updated.
 */

static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
{
	int order, added = 0, lg_prealloc_count = 1;
	struct super_block *sb = ac->ac_sb;
	struct ext4_locality_group *lg = ac->ac_lg;
	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;

	order = fls(pa->pa_free) - 1;
	if (order > PREALLOC_TB_SIZE - 1)
		/* The max size of hash table is PREALLOC_TB_SIZE */
		order = PREALLOC_TB_SIZE - 1;
	/* Add the prealloc space to lg */
	rcu_read_lock();
	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
						pa_inode_list) {
		spin_lock(&tmp_pa->pa_lock);
		if (tmp_pa->pa_deleted) {
4169
			spin_unlock(&tmp_pa->pa_lock);
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
			continue;
		}
		if (!added && pa->pa_free < tmp_pa->pa_free) {
			/* Add to the tail of the previous entry */
			list_add_tail_rcu(&pa->pa_inode_list,
						&tmp_pa->pa_inode_list);
			added = 1;
			/*
			 * we want to count the total
			 * number of entries in the list
			 */
		}
		spin_unlock(&tmp_pa->pa_lock);
		lg_prealloc_count++;
	}
	if (!added)
		list_add_tail_rcu(&pa->pa_inode_list,
					&lg->lg_prealloc_list[order]);
	rcu_read_unlock();

	/* Now trim the list to be not more than 8 elements */
	if (lg_prealloc_count > 8) {
		ext4_mb_discard_lg_preallocations(sb, lg,
						order, lg_prealloc_count);
		return;
	}
	return ;
}

4199 4200 4201 4202 4203
/*
 * release all resource we used in allocation
 */
static int ext4_mb_release_context(struct ext4_allocation_context *ac)
{
4204 4205
	struct ext4_prealloc_space *pa = ac->ac_pa;
	if (pa) {
4206
		if (pa->pa_type == MB_GROUP_PA) {
4207
			/* see comment in ext4_mb_use_group_pa() */
4208 4209 4210 4211 4212 4213
			spin_lock(&pa->pa_lock);
			pa->pa_pstart += ac->ac_b_ex.fe_len;
			pa->pa_lstart += ac->ac_b_ex.fe_len;
			pa->pa_free -= ac->ac_b_ex.fe_len;
			pa->pa_len -= ac->ac_b_ex.fe_len;
			spin_unlock(&pa->pa_lock);
4214 4215
		}
	}
4216 4217
	if (ac->alloc_semp)
		up_read(ac->alloc_semp);
A
Aneesh Kumar K.V 已提交
4218 4219 4220 4221 4222 4223 4224 4225
	if (pa) {
		/*
		 * We want to add the pa to the right bucket.
		 * Remove it from the list and while adding
		 * make sure the list to which we are adding
		 * doesn't grow big.  We need to release
		 * alloc_semp before calling ext4_mb_add_n_trim()
		 */
4226
		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
A
Aneesh Kumar K.V 已提交
4227 4228 4229 4230 4231 4232 4233
			spin_lock(pa->pa_obj_lock);
			list_del_rcu(&pa->pa_inode_list);
			spin_unlock(pa->pa_obj_lock);
			ext4_mb_add_n_trim(ac);
		}
		ext4_mb_put_pa(ac, ac->ac_sb, pa);
	}
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
	if (ac->ac_bitmap_page)
		page_cache_release(ac->ac_bitmap_page);
	if (ac->ac_buddy_page)
		page_cache_release(ac->ac_buddy_page);
	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
		mutex_unlock(&ac->ac_lg->lg_mutex);
	ext4_mb_collect_stats(ac);
	return 0;
}

static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
{
4246
	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4247 4248 4249
	int ret;
	int freed = 0;

4250
	trace_ext4_mb_discard_preallocations(sb, needed);
4251
	for (i = 0; i < ngroups && needed > 0; i++) {
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
		freed += ret;
		needed -= ret;
	}

	return freed;
}

/*
 * Main entry point into mballoc to allocate blocks
 * it tries to use preallocation first, then falls back
 * to usual allocation
 */
ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4266
				struct ext4_allocation_request *ar, int *errp)
4267
{
4268
	int freed;
4269
	struct ext4_allocation_context *ac = NULL;
4270 4271 4272
	struct ext4_sb_info *sbi;
	struct super_block *sb;
	ext4_fsblk_t block = 0;
4273
	unsigned int inquota = 0;
4274
	unsigned int reserv_blks = 0;
4275 4276 4277 4278

	sb = ar->inode->i_sb;
	sbi = EXT4_SB(sb);

4279
	trace_ext4_request_blocks(ar);
4280

4281 4282 4283 4284 4285
	/*
	 * For delayed allocation, we could skip the ENOSPC and
	 * EDQUOT check, as blocks and quotas have been already
	 * reserved when data being copied into pagecache.
	 */
4286
	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4287 4288 4289 4290 4291
		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
	else {
		/* Without delayed allocation we need to verify
		 * there is enough free blocks to do block allocation
		 * and verify allocation doesn't exceed the quota limits.
4292
		 */
A
Aneesh Kumar K.V 已提交
4293 4294 4295 4296 4297 4298
		while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
			/* let others to free the space */
			yield();
			ar->len = ar->len >> 1;
		}
		if (!ar->len) {
4299 4300 4301
			*errp = -ENOSPC;
			return 0;
		}
4302
		reserv_blks = ar->len;
4303
		while (ar->len && dquot_alloc_block(ar->inode, ar->len)) {
4304 4305 4306 4307 4308 4309
			ar->flags |= EXT4_MB_HINT_NOPREALLOC;
			ar->len--;
		}
		inquota = ar->len;
		if (ar->len == 0) {
			*errp = -EDQUOT;
4310
			goto out;
4311
		}
4312
	}
4313

4314
	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4315
	if (!ac) {
4316
		ar->len = 0;
4317
		*errp = -ENOMEM;
4318
		goto out;
4319 4320 4321
	}

	*errp = ext4_mb_initialize_context(ac, ar);
4322 4323
	if (*errp) {
		ar->len = 0;
4324
		goto out;
4325 4326
	}

4327 4328 4329 4330
	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
	if (!ext4_mb_use_preallocated(ac)) {
		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
		ext4_mb_normalize_request(ac, ar);
4331 4332
repeat:
		/* allocate space in core */
4333 4334 4335
		*errp = ext4_mb_regular_allocator(ac);
		if (*errp)
			goto errout;
4336 4337 4338 4339

		/* as we've just preallocated more space than
		 * user requested orinally, we store allocated
		 * space in a special descriptor */
4340 4341 4342
		if (ac->ac_status == AC_STATUS_FOUND &&
				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
			ext4_mb_new_preallocation(ac);
4343
	}
4344
	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4345
		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4346
		if (*errp == -EAGAIN) {
4347 4348 4349 4350 4351
			/*
			 * drop the reference that we took
			 * in ext4_mb_use_best_found
			 */
			ext4_mb_release_context(ac);
4352 4353 4354 4355 4356
			ac->ac_b_ex.fe_group = 0;
			ac->ac_b_ex.fe_start = 0;
			ac->ac_b_ex.fe_len = 0;
			ac->ac_status = AC_STATUS_CONTINUE;
			goto repeat;
4357 4358
		} else if (*errp)
		errout:
4359
			ext4_discard_allocated_blocks(ac);
4360
		else {
4361 4362 4363
			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
			ar->len = ac->ac_b_ex.fe_len;
		}
4364
	} else {
4365
		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4366 4367 4368
		if (freed)
			goto repeat;
		*errp = -ENOSPC;
4369 4370 4371
	}

	if (*errp) {
4372
		ac->ac_b_ex.fe_len = 0;
4373
		ar->len = 0;
4374
		ext4_mb_show_ac(ac);
4375
	}
4376
	ext4_mb_release_context(ac);
4377 4378 4379
out:
	if (ac)
		kmem_cache_free(ext4_ac_cachep, ac);
4380
	if (inquota && ar->len < inquota)
4381
		dquot_free_block(ar->inode, inquota - ar->len);
4382
	if (!ar->len) {
4383 4384
		if (!ext4_test_inode_state(ar->inode,
					   EXT4_STATE_DELALLOC_RESERVED))
4385 4386 4387 4388
			/* release all the reserved blocks if non delalloc */
			percpu_counter_sub(&sbi->s_dirtyblocks_counter,
						reserv_blks);
	}
4389

4390
	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4391

4392 4393 4394
	return block;
}

4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
/*
 * We can merge two free data extents only if the physical blocks
 * are contiguous, AND the extents were freed by the same transaction,
 * AND the blocks are associated with the same group.
 */
static int can_merge(struct ext4_free_data *entry1,
			struct ext4_free_data *entry2)
{
	if ((entry1->t_tid == entry2->t_tid) &&
	    (entry1->group == entry2->group) &&
	    ((entry1->start_blk + entry1->count) == entry2->start_blk))
		return 1;
	return 0;
}

4410 4411
static noinline_for_stack int
ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4412
		      struct ext4_free_data *new_entry)
4413
{
4414
	ext4_group_t group = e4b->bd_group;
4415 4416
	ext4_grpblk_t block;
	struct ext4_free_data *entry;
4417 4418 4419
	struct ext4_group_info *db = e4b->bd_info;
	struct super_block *sb = e4b->bd_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
4420 4421 4422
	struct rb_node **n = &db->bb_free_root.rb_node, *node;
	struct rb_node *parent = NULL, *new_node;

4423
	BUG_ON(!ext4_handle_valid(handle));
4424 4425 4426
	BUG_ON(e4b->bd_bitmap_page == NULL);
	BUG_ON(e4b->bd_buddy_page == NULL);

4427
	new_node = &new_entry->node;
4428
	block = new_entry->start_blk;
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446

	if (!*n) {
		/* first free block exent. We need to
		   protect buddy cache from being freed,
		 * otherwise we'll refresh it from
		 * on-disk bitmap and lose not-yet-available
		 * blocks */
		page_cache_get(e4b->bd_buddy_page);
		page_cache_get(e4b->bd_bitmap_page);
	}
	while (*n) {
		parent = *n;
		entry = rb_entry(parent, struct ext4_free_data, node);
		if (block < entry->start_blk)
			n = &(*n)->rb_left;
		else if (block >= (entry->start_blk + entry->count))
			n = &(*n)->rb_right;
		else {
4447 4448 4449
			ext4_grp_locked_error(sb, group, 0,
				ext4_group_first_block_no(sb, group) + block,
				"Block already on to-be-freed list");
4450
			return 0;
4451
		}
4452
	}
4453

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
	rb_link_node(new_node, parent, n);
	rb_insert_color(new_node, &db->bb_free_root);

	/* Now try to see the extent can be merged to left and right */
	node = rb_prev(new_node);
	if (node) {
		entry = rb_entry(node, struct ext4_free_data, node);
		if (can_merge(entry, new_entry)) {
			new_entry->start_blk = entry->start_blk;
			new_entry->count += entry->count;
			rb_erase(node, &(db->bb_free_root));
			spin_lock(&sbi->s_md_lock);
			list_del(&entry->list);
			spin_unlock(&sbi->s_md_lock);
			kmem_cache_free(ext4_free_ext_cachep, entry);
4469
		}
4470
	}
4471

4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	node = rb_next(new_node);
	if (node) {
		entry = rb_entry(node, struct ext4_free_data, node);
		if (can_merge(new_entry, entry)) {
			new_entry->count += entry->count;
			rb_erase(node, &(db->bb_free_root));
			spin_lock(&sbi->s_md_lock);
			list_del(&entry->list);
			spin_unlock(&sbi->s_md_lock);
			kmem_cache_free(ext4_free_ext_cachep, entry);
4482 4483
		}
	}
4484
	/* Add the extent to transaction's private list */
4485
	spin_lock(&sbi->s_md_lock);
4486
	list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4487
	spin_unlock(&sbi->s_md_lock);
4488 4489 4490
	return 0;
}

4491 4492 4493 4494 4495 4496 4497
/**
 * ext4_free_blocks() -- Free given blocks and update quota
 * @handle:		handle for this transaction
 * @inode:		inode
 * @block:		start physical block to free
 * @count:		number of blocks to count
 * @metadata: 		Are these metadata blocks
4498
 */
4499
void ext4_free_blocks(handle_t *handle, struct inode *inode,
4500 4501
		      struct buffer_head *bh, ext4_fsblk_t block,
		      unsigned long count, int flags)
4502
{
4503
	struct buffer_head *bitmap_bh = NULL;
4504 4505
	struct super_block *sb = inode->i_sb;
	struct ext4_group_desc *gdp;
4506
	unsigned long freed = 0;
4507
	unsigned int overflow;
4508 4509 4510 4511 4512 4513 4514 4515
	ext4_grpblk_t bit;
	struct buffer_head *gd_bh;
	ext4_group_t block_group;
	struct ext4_sb_info *sbi;
	struct ext4_buddy e4b;
	int err = 0;
	int ret;

4516 4517 4518 4519 4520 4521
	if (bh) {
		if (block)
			BUG_ON(block != bh->b_blocknr);
		else
			block = bh->b_blocknr;
	}
4522 4523

	sbi = EXT4_SB(sb);
4524 4525
	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
	    !ext4_data_block_valid(sbi, block, count)) {
4526
		ext4_error(sb, "Freeing blocks not in datazone - "
4527
			   "block = %llu, count = %lu", block, count);
4528 4529 4530
		goto error_return;
	}

4531
	ext4_debug("freeing block %llu\n", block);
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
	trace_ext4_free_blocks(inode, block, count, flags);

	if (flags & EXT4_FREE_BLOCKS_FORGET) {
		struct buffer_head *tbh = bh;
		int i;

		BUG_ON(bh && (count > 1));

		for (i = 0; i < count; i++) {
			if (!bh)
				tbh = sb_find_get_block(inode->i_sb,
							block + i);
4544 4545
			if (unlikely(!tbh))
				continue;
4546
			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4547 4548 4549 4550
				    inode, tbh, block + i);
		}
	}

4551
	/*
4552 4553 4554 4555 4556 4557 4558 4559
	 * We need to make sure we don't reuse the freed block until
	 * after the transaction is committed, which we can do by
	 * treating the block as metadata, below.  We make an
	 * exception if the inode is to be written in writeback mode
	 * since writeback mode has weak data consistency guarantees.
	 */
	if (!ext4_should_writeback_data(inode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572

do_more:
	overflow = 0;
	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);

	/*
	 * Check to see if we are freeing blocks across a group
	 * boundary.
	 */
	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
		count -= overflow;
	}
4573
	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4574 4575
	if (!bitmap_bh) {
		err = -EIO;
4576
		goto error_return;
4577
	}
4578
	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4579 4580
	if (!gdp) {
		err = -EIO;
4581
		goto error_return;
4582
	}
4583 4584 4585 4586 4587 4588 4589 4590

	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
	    in_range(block, ext4_inode_table(sb, gdp),
		      EXT4_SB(sb)->s_itb_per_group) ||
	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
		      EXT4_SB(sb)->s_itb_per_group)) {

4591
		ext4_error(sb, "Freeing blocks in system zone - "
4592
			   "Block = %llu, count = %lu", block, count);
4593 4594
		/* err = 0. ext4_std_error should be a no op */
		goto error_return;
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
	}

	BUFFER_TRACE(bitmap_bh, "getting write access");
	err = ext4_journal_get_write_access(handle, bitmap_bh);
	if (err)
		goto error_return;

	/*
	 * We are about to modify some metadata.  Call the journal APIs
	 * to unshare ->b_data if a currently-committing transaction is
	 * using it
	 */
	BUFFER_TRACE(gd_bh, "get_write_access");
	err = ext4_journal_get_write_access(handle, gd_bh);
	if (err)
		goto error_return;
#ifdef AGGRESSIVE_CHECK
	{
		int i;
		for (i = 0; i < count; i++)
			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
	}
#endif
4618
	trace_ext4_mballoc_free(sb, inode, block_group, bit, count);
4619

4620 4621 4622
	err = ext4_mb_load_buddy(sb, block_group, &e4b);
	if (err)
		goto error_return;
4623 4624

	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4625 4626 4627 4628 4629
		struct ext4_free_data *new_entry;
		/*
		 * blocks being freed are metadata. these blocks shouldn't
		 * be used until this transaction is committed
		 */
4630 4631 4632 4633 4634
		new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
		if (!new_entry) {
			err = -ENOMEM;
			goto error_return;
		}
4635 4636 4637 4638
		new_entry->start_blk = bit;
		new_entry->group  = block_group;
		new_entry->count = count;
		new_entry->t_tid = handle->h_transaction->t_tid;
4639

4640
		ext4_lock_group(sb, block_group);
4641
		mb_clear_bits(bitmap_bh->b_data, bit, count);
4642
		ext4_mb_free_metadata(handle, &e4b, new_entry);
4643
	} else {
4644 4645 4646 4647
		/* need to update group_info->bb_free and bitmap
		 * with group lock held. generate_buddy look at
		 * them with group lock_held
		 */
4648 4649
		ext4_lock_group(sb, block_group);
		mb_clear_bits(bitmap_bh->b_data, bit, count);
4650
		mb_free_blocks(inode, &e4b, bit, count);
4651 4652 4653
		ext4_mb_return_to_preallocation(inode, &e4b, block, count);
	}

4654 4655
	ret = ext4_free_blks_count(sb, gdp) + count;
	ext4_free_blks_set(sb, gdp, ret);
4656
	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4657
	ext4_unlock_group(sb, block_group);
4658 4659
	percpu_counter_add(&sbi->s_freeblocks_counter, count);

4660 4661
	if (sbi->s_log_groups_per_flex) {
		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4662
		atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4663 4664
	}

4665
	ext4_mb_unload_buddy(&e4b);
4666

4667
	freed += count;
4668

4669 4670 4671 4672
	/* We dirtied the bitmap block */
	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);

4673 4674
	/* And the group descriptor block */
	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4675
	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4676 4677 4678 4679 4680 4681 4682 4683 4684
	if (!err)
		err = ret;

	if (overflow && !err) {
		block += count;
		count = overflow;
		put_bh(bitmap_bh);
		goto do_more;
	}
T
Theodore Ts'o 已提交
4685
	ext4_mark_super_dirty(sb);
4686
error_return:
4687
	if (freed)
4688
		dquot_free_block(inode, freed);
4689 4690 4691 4692
	brelse(bitmap_bh);
	ext4_std_error(sb, err);
	return;
}
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820

/**
 * ext4_trim_extent -- function to TRIM one single free extent in the group
 * @sb:		super block for the file system
 * @start:	starting block of the free extent in the alloc. group
 * @count:	number of blocks to TRIM
 * @group:	alloc. group we are working with
 * @e4b:	ext4 buddy for the group
 *
 * Trim "count" blocks starting at "start" in the "group". To assure that no
 * one will allocate those blocks, mark it as used in buddy bitmap. This must
 * be called with under the group lock.
 */
static int ext4_trim_extent(struct super_block *sb, int start, int count,
		ext4_group_t group, struct ext4_buddy *e4b)
{
	struct ext4_free_extent ex;
	int ret = 0;

	assert_spin_locked(ext4_group_lock_ptr(sb, group));

	ex.fe_start = start;
	ex.fe_group = group;
	ex.fe_len = count;

	/*
	 * Mark blocks used, so no one can reuse them while
	 * being trimmed.
	 */
	mb_mark_used(e4b, &ex);
	ext4_unlock_group(sb, group);

	ret = ext4_issue_discard(sb, group, start, count);

	ext4_lock_group(sb, group);
	mb_free_blocks(NULL, e4b, start, ex.fe_len);
	return ret;
}

/**
 * ext4_trim_all_free -- function to trim all free space in alloc. group
 * @sb:			super block for file system
 * @e4b:		ext4 buddy
 * @start:		first group block to examine
 * @max:		last group block to examine
 * @minblocks:		minimum extent block count
 *
 * ext4_trim_all_free walks through group's buddy bitmap searching for free
 * extents. When the free block is found, ext4_trim_extent is called to TRIM
 * the extent.
 *
 *
 * ext4_trim_all_free walks through group's block bitmap searching for free
 * extents. When the free extent is found, mark it as used in group buddy
 * bitmap. Then issue a TRIM command on this extent and free the extent in
 * the group buddy bitmap. This is done until whole group is scanned.
 */
ext4_grpblk_t ext4_trim_all_free(struct super_block *sb, struct ext4_buddy *e4b,
		ext4_grpblk_t start, ext4_grpblk_t max, ext4_grpblk_t minblocks)
{
	void *bitmap;
	ext4_grpblk_t next, count = 0;
	ext4_group_t group;
	int ret = 0;

	BUG_ON(e4b == NULL);

	bitmap = e4b->bd_bitmap;
	group = e4b->bd_group;
	start = (e4b->bd_info->bb_first_free > start) ?
		e4b->bd_info->bb_first_free : start;
	ext4_lock_group(sb, group);

	while (start < max) {
		start = mb_find_next_zero_bit(bitmap, max, start);
		if (start >= max)
			break;
		next = mb_find_next_bit(bitmap, max, start);

		if ((next - start) >= minblocks) {
			ret = ext4_trim_extent(sb, start,
				next - start, group, e4b);
			if (ret < 0)
				break;
			count += next - start;
		}
		start = next + 1;

		if (fatal_signal_pending(current)) {
			count = -ERESTARTSYS;
			break;
		}

		if (need_resched()) {
			ext4_unlock_group(sb, group);
			cond_resched();
			ext4_lock_group(sb, group);
		}

		if ((e4b->bd_info->bb_free - count) < minblocks)
			break;
	}
	ext4_unlock_group(sb, group);

	ext4_debug("trimmed %d blocks in the group %d\n",
		count, group);

	if (ret < 0)
		count = ret;

	return count;
}

/**
 * ext4_trim_fs() -- trim ioctl handle function
 * @sb:			superblock for filesystem
 * @range:		fstrim_range structure
 *
 * start:	First Byte to trim
 * len:		number of Bytes to trim from start
 * minlen:	minimum extent length in Bytes
 * ext4_trim_fs goes through all allocation groups containing Bytes from
 * start to start+len. For each such a group ext4_trim_all_free function
 * is invoked to trim all free space.
 */
int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
{
	struct ext4_buddy e4b;
4821
	ext4_fsblk_t blocks_count = ext4_blocks_count(EXT4_SB(sb)->s_es);
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
	ext4_group_t first_group, last_group;
	ext4_group_t group, ngroups = ext4_get_groups_count(sb);
	ext4_grpblk_t cnt = 0, first_block, last_block;
	uint64_t start, len, minlen, trimmed;
	int ret = 0;

	start = range->start >> sb->s_blocksize_bits;
	len = range->len >> sb->s_blocksize_bits;
	minlen = range->minlen >> sb->s_blocksize_bits;
	trimmed = 0;

4833 4834 4835 4836 4837
	if (start >= blocks_count)
		return -EINVAL;
	if (start + len > blocks_count)
		len = blocks_count - start;

4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
	if (unlikely(minlen > EXT4_BLOCKS_PER_GROUP(sb)))
		return -EINVAL;

	/* Determine first and last group to examine based on start and len */
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
				     &first_group, &first_block);
	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len),
				     &last_group, &last_block);
	last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
	last_block = EXT4_BLOCKS_PER_GROUP(sb);

	if (first_group > last_group)
		return -EINVAL;

	for (group = first_group; group <= last_group; group++) {
		ret = ext4_mb_load_buddy(sb, group, &e4b);
		if (ret) {
			ext4_error(sb, "Error in loading buddy "
					"information for %u", group);
			break;
		}

		if (len >= EXT4_BLOCKS_PER_GROUP(sb))
			len -= (EXT4_BLOCKS_PER_GROUP(sb) - first_block);
		else
			last_block = len;

		if (e4b.bd_info->bb_free >= minlen) {
			cnt = ext4_trim_all_free(sb, &e4b, first_block,
						last_block, minlen);
			if (cnt < 0) {
				ret = cnt;
				ext4_mb_unload_buddy(&e4b);
				break;
			}
		}
		ext4_mb_unload_buddy(&e4b);
		trimmed += cnt;
		first_block = 0;
	}
	range->len = trimmed * sb->s_blocksize;

	return ret;
}