intel_ddi.c 90.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

#include "i915_drv.h"
#include "intel_drv.h"

31 32 33
struct ddi_buf_trans {
	u32 trans1;	/* balance leg enable, de-emph level */
	u32 trans2;	/* vref sel, vswing */
34
	u8 i_boost;	/* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 36
};

37 38 39 40
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
 * them for both DP and FDI transports, allowing those ports to
 * automatically adapt to HDMI connections as well
 */
41
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 43 44 45 46 47 48 49 50
	{ 0x00FFFFFF, 0x0006000E, 0x0 },
	{ 0x00D75FFF, 0x0005000A, 0x0 },
	{ 0x00C30FFF, 0x00040006, 0x0 },
	{ 0x80AAAFFF, 0x000B0000, 0x0 },
	{ 0x00FFFFFF, 0x0005000A, 0x0 },
	{ 0x00D75FFF, 0x000C0004, 0x0 },
	{ 0x80C30FFF, 0x000B0000, 0x0 },
	{ 0x00FFFFFF, 0x00040006, 0x0 },
	{ 0x80D75FFF, 0x000B0000, 0x0 },
51 52
};

53
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 55 56 57 58 59 60 61 62
	{ 0x00FFFFFF, 0x0007000E, 0x0 },
	{ 0x00D75FFF, 0x000F000A, 0x0 },
	{ 0x00C30FFF, 0x00060006, 0x0 },
	{ 0x00AAAFFF, 0x001E0000, 0x0 },
	{ 0x00FFFFFF, 0x000F000A, 0x0 },
	{ 0x00D75FFF, 0x00160004, 0x0 },
	{ 0x00C30FFF, 0x001E0000, 0x0 },
	{ 0x00FFFFFF, 0x00060006, 0x0 },
	{ 0x00D75FFF, 0x001E0000, 0x0 },
63 64
};

65 66
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV d	db	*/
67 68 69 70 71 72 73 74 75 76 77 78
	{ 0x00FFFFFF, 0x0006000E, 0x0 },/* 0:	400	400	0	*/
	{ 0x00E79FFF, 0x000E000C, 0x0 },/* 1:	400	500	2	*/
	{ 0x00D75FFF, 0x0005000A, 0x0 },/* 2:	400	600	3.5	*/
	{ 0x00FFFFFF, 0x0005000A, 0x0 },/* 3:	600	600	0	*/
	{ 0x00E79FFF, 0x001D0007, 0x0 },/* 4:	600	750	2	*/
	{ 0x00D75FFF, 0x000C0004, 0x0 },/* 5:	600	900	3.5	*/
	{ 0x00FFFFFF, 0x00040006, 0x0 },/* 6:	800	800	0	*/
	{ 0x80E79FFF, 0x00030002, 0x0 },/* 7:	800	1000	2	*/
	{ 0x00FFFFFF, 0x00140005, 0x0 },/* 8:	850	850	0	*/
	{ 0x00FFFFFF, 0x000C0004, 0x0 },/* 9:	900	900	0	*/
	{ 0x00FFFFFF, 0x001C0003, 0x0 },/* 10:	950	950	0	*/
	{ 0x80FFFFFF, 0x00030002, 0x0 },/* 11:	1000	1000	0	*/
79 80
};

81
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 83 84 85 86 87 88 89 90
	{ 0x00FFFFFF, 0x00000012, 0x0 },
	{ 0x00EBAFFF, 0x00020011, 0x0 },
	{ 0x00C71FFF, 0x0006000F, 0x0 },
	{ 0x00AAAFFF, 0x000E000A, 0x0 },
	{ 0x00FFFFFF, 0x00020011, 0x0 },
	{ 0x00DB6FFF, 0x0005000F, 0x0 },
	{ 0x00BEEFFF, 0x000A000C, 0x0 },
	{ 0x00FFFFFF, 0x0005000F, 0x0 },
	{ 0x00DB6FFF, 0x000A000C, 0x0 },
91 92
};

93
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 95 96 97 98 99 100 101 102
	{ 0x00FFFFFF, 0x0007000E, 0x0 },
	{ 0x00D75FFF, 0x000E000A, 0x0 },
	{ 0x00BEFFFF, 0x00140006, 0x0 },
	{ 0x80B2CFFF, 0x001B0002, 0x0 },
	{ 0x00FFFFFF, 0x000E000A, 0x0 },
	{ 0x00DB6FFF, 0x00160005, 0x0 },
	{ 0x80C71FFF, 0x001A0002, 0x0 },
	{ 0x00F7DFFF, 0x00180004, 0x0 },
	{ 0x80D75FFF, 0x001B0002, 0x0 },
103 104
};

105
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 107 108 109 110 111 112 113 114
	{ 0x00FFFFFF, 0x0001000E, 0x0 },
	{ 0x00D75FFF, 0x0004000A, 0x0 },
	{ 0x00C30FFF, 0x00070006, 0x0 },
	{ 0x00AAAFFF, 0x000C0000, 0x0 },
	{ 0x00FFFFFF, 0x0004000A, 0x0 },
	{ 0x00D75FFF, 0x00090004, 0x0 },
	{ 0x00C30FFF, 0x000C0000, 0x0 },
	{ 0x00FFFFFF, 0x00070006, 0x0 },
	{ 0x00D75FFF, 0x000C0000, 0x0 },
115 116
};

117 118
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV df	db	*/
119 120 121 122 123 124 125 126 127 128
	{ 0x00FFFFFF, 0x0007000E, 0x0 },/* 0:	400	400	0	*/
	{ 0x00D75FFF, 0x000E000A, 0x0 },/* 1:	400	600	3.5	*/
	{ 0x00BEFFFF, 0x00140006, 0x0 },/* 2:	400	800	6	*/
	{ 0x00FFFFFF, 0x0009000D, 0x0 },/* 3:	450	450	0	*/
	{ 0x00FFFFFF, 0x000E000A, 0x0 },/* 4:	600	600	0	*/
	{ 0x00D7FFFF, 0x00140006, 0x0 },/* 5:	600	800	2.5	*/
	{ 0x80CB2FFF, 0x001B0002, 0x0 },/* 6:	600	1000	4.5	*/
	{ 0x00FFFFFF, 0x00140006, 0x0 },/* 7:	800	800	0	*/
	{ 0x80E79FFF, 0x001B0002, 0x0 },/* 8:	800	1000	2	*/
	{ 0x80FFFFFF, 0x001B0002, 0x0 },/* 9:	1000	1000	0	*/
129 130
};

131
/* Skylake H and S */
132
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133 134 135 136 137 138 139 140 141
	{ 0x00002016, 0x000000A0, 0x0 },
	{ 0x00005012, 0x0000009B, 0x0 },
	{ 0x00007011, 0x00000088, 0x0 },
	{ 0x00009010, 0x000000C7, 0x0 },
	{ 0x00002016, 0x0000009B, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
	{ 0x00007011, 0x000000C7, 0x0 },
	{ 0x00002016, 0x000000DF, 0x0 },
	{ 0x00005012, 0x000000C7, 0x0 },
142 143
};

144 145
/* Skylake U */
static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
146
	{ 0x0000201B, 0x000000A2, 0x0 },
147 148
	{ 0x00005012, 0x00000088, 0x0 },
	{ 0x00007011, 0x00000087, 0x0 },
149 150
	{ 0x80009010, 0x000000C7, 0x1 },	/* Uses I_boost level 0x1 */
	{ 0x0000201B, 0x0000009D, 0x0 },
151 152 153 154 155 156
	{ 0x00005012, 0x000000C7, 0x0 },
	{ 0x00007011, 0x000000C7, 0x0 },
	{ 0x00002016, 0x00000088, 0x0 },
	{ 0x00005012, 0x000000C7, 0x0 },
};

157 158
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
159 160 161
	{ 0x00000018, 0x000000A2, 0x0 },
	{ 0x00005012, 0x00000088, 0x0 },
	{ 0x00007011, 0x00000087, 0x0 },
162
	{ 0x80009010, 0x000000C7, 0x3 },	/* Uses I_boost level 0x3 */
163 164 165 166 167 168 169 170
	{ 0x00000018, 0x0000009D, 0x0 },
	{ 0x00005012, 0x000000C7, 0x0 },
	{ 0x00007011, 0x000000C7, 0x0 },
	{ 0x00000018, 0x00000088, 0x0 },
	{ 0x00005012, 0x000000C7, 0x0 },
};

/*
171
 * Skylake H and S
172 173
 * eDP 1.4 low vswing translation parameters
 */
174
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000A9, 0x0 },
	{ 0x00007011, 0x000000A2, 0x0 },
	{ 0x00009010, 0x0000009C, 0x0 },
	{ 0x00000018, 0x000000A9, 0x0 },
	{ 0x00006013, 0x000000A2, 0x0 },
	{ 0x00007011, 0x000000A6, 0x0 },
	{ 0x00000018, 0x000000AB, 0x0 },
	{ 0x00007013, 0x0000009F, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
};

/*
 * Skylake U
 * eDP 1.4 low vswing translation parameters
 */
static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000A9, 0x0 },
	{ 0x00007011, 0x000000A2, 0x0 },
	{ 0x00009010, 0x0000009C, 0x0 },
	{ 0x00000018, 0x000000A9, 0x0 },
	{ 0x00006013, 0x000000A2, 0x0 },
	{ 0x00007011, 0x000000A6, 0x0 },
	{ 0x00002016, 0x000000AB, 0x0 },
	{ 0x00005013, 0x0000009F, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
202 203
};

204
/*
205
 * Skylake Y
206 207
 * eDP 1.4 low vswing translation parameters
 */
208
static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
209 210 211 212 213 214 215 216 217 218 219
	{ 0x00000018, 0x000000A8, 0x0 },
	{ 0x00004013, 0x000000AB, 0x0 },
	{ 0x00007011, 0x000000A4, 0x0 },
	{ 0x00009010, 0x000000DF, 0x0 },
	{ 0x00000018, 0x000000AA, 0x0 },
	{ 0x00006013, 0x000000A4, 0x0 },
	{ 0x00007011, 0x0000009D, 0x0 },
	{ 0x00000018, 0x000000A0, 0x0 },
	{ 0x00006012, 0x000000DF, 0x0 },
	{ 0x00000018, 0x0000008A, 0x0 },
};
220

221
/* Skylake U, H and S */
222
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223 224 225 226 227 228 229 230 231 232 233 234 235
	{ 0x00000018, 0x000000AC, 0x0 },
	{ 0x00005012, 0x0000009D, 0x0 },
	{ 0x00007011, 0x00000088, 0x0 },
	{ 0x00000018, 0x000000A1, 0x0 },
	{ 0x00000018, 0x00000098, 0x0 },
	{ 0x00004013, 0x00000088, 0x0 },
	{ 0x00006012, 0x00000087, 0x0 },
	{ 0x00000018, 0x000000DF, 0x0 },
	{ 0x00003015, 0x00000087, 0x0 },	/* Default */
	{ 0x00003015, 0x000000C7, 0x0 },
	{ 0x00000018, 0x000000C7, 0x0 },
};

236 237
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
238 239 240 241 242 243 244 245 246
	{ 0x00000018, 0x000000A1, 0x0 },
	{ 0x00005012, 0x000000DF, 0x0 },
	{ 0x00007011, 0x00000084, 0x0 },
	{ 0x00000018, 0x000000A4, 0x0 },
	{ 0x00000018, 0x0000009D, 0x0 },
	{ 0x00004013, 0x00000080, 0x0 },
	{ 0x00006013, 0x000000C7, 0x0 },
	{ 0x00000018, 0x0000008A, 0x0 },
	{ 0x00003015, 0x000000C7, 0x0 },	/* Default */
247
	{ 0x80003015, 0x000000C7, 0x7 },	/* Uses I_boost level 0x7 */
248
	{ 0x00000018, 0x000000C7, 0x0 },
249 250
};

251 252 253 254 255 256 257 258 259 260
struct bxt_ddi_buf_trans {
	u32 margin;	/* swing value */
	u32 scale;	/* scale value */
	u32 enable;	/* scale enable */
	u32 deemphasis;
	bool default_index; /* true if the entry represents default value */
};

static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
					/* Idx	NT mV diff	db  */
261 262 263 264 265 266 267 268 269
	{ 52,  0x9A, 0, 128, true  },	/* 0:	400		0   */
	{ 78,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
	{ 104, 0x9A, 0, 64,  false },	/* 2:	400		6   */
	{ 154, 0x9A, 0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
	{ 116, 0x9A, 0, 85,  false },	/* 5:	600		3.5 */
	{ 154, 0x9A, 0, 64,  false },	/* 6:	600		6   */
	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
	{ 154, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
270
	{ 154, 0x9A, 1, 128, false },	/* 9:	1200		0   */
271 272
};

273 274 275 276 277 278 279 280 281 282 283 284 285 286
static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
					/* Idx	NT mV diff	db  */
	{ 26, 0, 0, 128, false },	/* 0:	200		0   */
	{ 38, 0, 0, 112, false },	/* 1:	200		1.5 */
	{ 48, 0, 0, 96,  false },	/* 2:	200		4   */
	{ 54, 0, 0, 69,  false },	/* 3:	200		6   */
	{ 32, 0, 0, 128, false },	/* 4:	250		0   */
	{ 48, 0, 0, 104, false },	/* 5:	250		1.5 */
	{ 54, 0, 0, 85,  false },	/* 6:	250		4   */
	{ 43, 0, 0, 128, false },	/* 7:	300		0   */
	{ 54, 0, 0, 101, false },	/* 8:	300		1.5 */
	{ 48, 0, 0, 128, false },	/* 9:	300		0   */
};

287 288 289 290 291
/* BSpec has 2 recommended values - entries 0 and 8.
 * Using the entry with higher vswing.
 */
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
					/* Idx	NT mV diff	db  */
292 293 294 295 296 297 298 299 300
	{ 52,  0x9A, 0, 128, false },	/* 0:	400		0   */
	{ 52,  0x9A, 0, 85,  false },	/* 1:	400		3.5 */
	{ 52,  0x9A, 0, 64,  false },	/* 2:	400		6   */
	{ 42,  0x9A, 0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0x9A, 0, 128, false },	/* 4:	600		0   */
	{ 77,  0x9A, 0, 85,  false },	/* 5:	600		3.5 */
	{ 77,  0x9A, 0, 64,  false },	/* 6:	600		6   */
	{ 102, 0x9A, 0, 128, false },	/* 7:	800		0   */
	{ 102, 0x9A, 0, 85,  false },	/* 8:	800		3.5 */
301 302 303
	{ 154, 0x9A, 1, 128, true },	/* 9:	1200		0   */
};

304 305 306
static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
				    enum port port, int type);

307 308 309
static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
				 struct intel_digital_port **dig_port,
				 enum port *port)
310
{
311
	struct drm_encoder *encoder = &intel_encoder->base;
312

313 314
	switch (intel_encoder->type) {
	case INTEL_OUTPUT_DP_MST:
315 316
		*dig_port = enc_to_mst(encoder)->primary;
		*port = (*dig_port)->port;
317 318 319 320 321
		break;
	case INTEL_OUTPUT_DISPLAYPORT:
	case INTEL_OUTPUT_EDP:
	case INTEL_OUTPUT_HDMI:
	case INTEL_OUTPUT_UNKNOWN:
322 323
		*dig_port = enc_to_dig_port(encoder);
		*port = (*dig_port)->port;
324 325
		break;
	case INTEL_OUTPUT_ANALOG:
326 327
		*dig_port = NULL;
		*port = PORT_E;
328 329 330 331
		break;
	default:
		WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
		break;
332 333 334
	}
}

335 336 337 338 339 340 341 342 343 344
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
{
	struct intel_digital_port *dig_port;
	enum port port;

	ddi_get_encoder_port(intel_encoder, &dig_port, &port);

	return port;
}

345 346 347 348 349 350
static bool
intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
{
	return intel_dig_port->hdmi.hdmi_reg;
}

351 352 353 354 355
static const struct ddi_buf_trans *skl_get_buf_trans_dp(struct drm_device *dev,
							int *n_entries)
{
	const struct ddi_buf_trans *ddi_translations;

356 357 358
	if (IS_SKL_ULX(dev)) {
		ddi_translations = skl_y_ddi_translations_dp;
		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
	} else if (IS_SKL_ULT(dev)) {
		ddi_translations = skl_u_ddi_translations_dp;
		*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
	} else {
		ddi_translations = skl_ddi_translations_dp;
		*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
	}

	return ddi_translations;
}

static const struct ddi_buf_trans *skl_get_buf_trans_edp(struct drm_device *dev,
							 int *n_entries)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct ddi_buf_trans *ddi_translations;

376
	if (IS_SKL_ULX(dev)) {
377
		if (dev_priv->edp_low_vswing) {
378 379
			ddi_translations = skl_y_ddi_translations_edp;
			*n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
380
		} else {
381 382
			ddi_translations = skl_y_ddi_translations_dp;
			*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
		}
	} else if (IS_SKL_ULT(dev)) {
		if (dev_priv->edp_low_vswing) {
			ddi_translations = skl_u_ddi_translations_edp;
			*n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
		} else {
			ddi_translations = skl_u_ddi_translations_dp;
			*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
		}
	} else {
		if (dev_priv->edp_low_vswing) {
			ddi_translations = skl_ddi_translations_edp;
			*n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
		} else {
			ddi_translations = skl_ddi_translations_dp;
			*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
		}
	}

	return ddi_translations;
}

static const struct ddi_buf_trans *
skl_get_buf_trans_hdmi(struct drm_device *dev,
		       int *n_entries)
{
	const struct ddi_buf_trans *ddi_translations;

411 412 413
	if (IS_SKL_ULX(dev)) {
		ddi_translations = skl_y_ddi_translations_hdmi;
		*n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
414 415 416 417 418 419 420 421
	} else {
		ddi_translations = skl_ddi_translations_hdmi;
		*n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
	}

	return ddi_translations;
}

422 423 424
/*
 * Starting with Haswell, DDI port buffers must be programmed with correct
 * values in advance. The buffer values are different for FDI and DP modes,
425 426 427 428
 * but the HDMI/DVI fields are shared among those. So we program the DDI
 * in either FDI or DP modes only, as HDMI connections will work with both
 * of those
 */
I
Imre Deak 已提交
429 430
static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
				      bool supports_hdmi)
431 432
{
	struct drm_i915_private *dev_priv = dev->dev_private;
433
	u32 iboost_bit = 0;
434
	int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
435
	    size;
436
	int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
437 438 439 440 441
	const struct ddi_buf_trans *ddi_translations_fdi;
	const struct ddi_buf_trans *ddi_translations_dp;
	const struct ddi_buf_trans *ddi_translations_edp;
	const struct ddi_buf_trans *ddi_translations_hdmi;
	const struct ddi_buf_trans *ddi_translations;
442

443
	if (IS_BROXTON(dev)) {
I
Imre Deak 已提交
444
		if (!supports_hdmi)
445 446 447 448 449 450
			return;

		/* Vswing programming for HDMI */
		bxt_ddi_vswing_sequence(dev, hdmi_level, port,
					INTEL_OUTPUT_HDMI);
		return;
451
	} else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
452
		ddi_translations_fdi = NULL;
453 454 455 456 457 458 459
		ddi_translations_dp =
				skl_get_buf_trans_dp(dev, &n_dp_entries);
		ddi_translations_edp =
				skl_get_buf_trans_edp(dev, &n_edp_entries);
		ddi_translations_hdmi =
				skl_get_buf_trans_hdmi(dev, &n_hdmi_entries);
		hdmi_default_entry = 8;
460 461 462 463
		/* If we're boosting the current, set bit 31 of trans1 */
		if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
		    dev_priv->vbt.ddi_port_info[port].dp_boost_level)
			iboost_bit = 1<<31;
464
	} else if (IS_BROADWELL(dev)) {
465 466
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
467
		ddi_translations_edp = bdw_ddi_translations_edp;
468
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
469 470
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
471
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
472
		hdmi_default_entry = 7;
473 474 475
	} else if (IS_HASWELL(dev)) {
		ddi_translations_fdi = hsw_ddi_translations_fdi;
		ddi_translations_dp = hsw_ddi_translations_dp;
476
		ddi_translations_edp = hsw_ddi_translations_dp;
477
		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
478
		n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
479
		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
480
		hdmi_default_entry = 6;
481 482
	} else {
		WARN(1, "ddi translation table missing\n");
483
		ddi_translations_edp = bdw_ddi_translations_dp;
484 485
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
486
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
487 488
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
489
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
490
		hdmi_default_entry = 7;
491 492
	}

493 494 495
	switch (port) {
	case PORT_A:
		ddi_translations = ddi_translations_edp;
496
		size = n_edp_entries;
497 498 499 500
		break;
	case PORT_B:
	case PORT_C:
		ddi_translations = ddi_translations_dp;
501
		size = n_dp_entries;
502
		break;
503
	case PORT_D:
504
		if (intel_dp_is_edp(dev, PORT_D)) {
505
			ddi_translations = ddi_translations_edp;
506 507
			size = n_edp_entries;
		} else {
508
			ddi_translations = ddi_translations_dp;
509 510
			size = n_dp_entries;
		}
511
		break;
512
	case PORT_E:
513 514 515 516
		if (ddi_translations_fdi)
			ddi_translations = ddi_translations_fdi;
		else
			ddi_translations = ddi_translations_dp;
517
		size = n_dp_entries;
518 519 520 521
		break;
	default:
		BUG();
	}
522

523 524 525 526 527
	for (i = 0; i < size; i++) {
		I915_WRITE(DDI_BUF_TRANS_LO(port, i),
			   ddi_translations[i].trans1 | iboost_bit);
		I915_WRITE(DDI_BUF_TRANS_HI(port, i),
			   ddi_translations[i].trans2);
528
	}
529

I
Imre Deak 已提交
530
	if (!supports_hdmi)
531 532
		return;

533 534 535
	/* Choose a good default if VBT is badly populated */
	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
	    hdmi_level >= n_hdmi_entries)
536
		hdmi_level = hdmi_default_entry;
537

538
	/* Entry 9 is for HDMI: */
539 540 541 542
	I915_WRITE(DDI_BUF_TRANS_LO(port, i),
		   ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
	I915_WRITE(DDI_BUF_TRANS_HI(port, i),
		   ddi_translations_hdmi[hdmi_level].trans2);
543 544 545 546 547 548 549
}

/* Program DDI buffers translations for DP. By default, program ports A-D in DP
 * mode and port E for FDI.
 */
void intel_prepare_ddi(struct drm_device *dev)
{
I
Imre Deak 已提交
550
	struct intel_encoder *intel_encoder;
551
	bool visited[I915_MAX_PORTS] = { 0, };
552

553 554
	if (!HAS_DDI(dev))
		return;
555

I
Imre Deak 已提交
556 557 558 559 560
	for_each_intel_encoder(dev, intel_encoder) {
		struct intel_digital_port *intel_dig_port;
		enum port port;
		bool supports_hdmi;

561 562
		if (intel_encoder->type == INTEL_OUTPUT_DSI)
			continue;
I
Imre Deak 已提交
563

564
		ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
I
Imre Deak 已提交
565
		if (visited[port])
566 567
			continue;

I
Imre Deak 已提交
568 569 570 571 572
		supports_hdmi = intel_dig_port &&
				intel_dig_port_supports_hdmi(intel_dig_port);

		intel_prepare_ddi_buffers(dev, port, supports_hdmi);
		visited[port] = true;
573
	}
574
}
575

576 577 578 579 580 581
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
				    enum port port)
{
	uint32_t reg = DDI_BUF_CTL(port);
	int i;

582
	for (i = 0; i < 16; i++) {
583 584 585 586 587 588
		udelay(1);
		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
			return;
	}
	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

/* Starting with Haswell, different DDI ports can work in FDI mode for
 * connection to the PCH-located connectors. For this, it is necessary to train
 * both the DDI port and PCH receiver for the desired DDI buffer settings.
 *
 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
 * please note that when FDI mode is active on DDI E, it shares 2 lines with
 * DDI A (which is used for eDP)
 */

void hsw_fdi_link_train(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
604
	u32 temp, i, rx_ctl_val;
605

606 607 608 609
	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
	 * mode set "sequence for CRT port" document:
	 * - TP1 to TP2 time with the default value
	 * - FDI delay to 90h
610 611
	 *
	 * WaFDIAutoLinkSetTimingOverrride:hsw
612
	 */
613
	I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
614 615 616 617
				  FDI_RX_PWRDN_LANE0_VAL(2) |
				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);

	/* Enable the PCH Receiver FDI PLL */
618
	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
619
		     FDI_RX_PLL_ENABLE |
620
		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
621 622
	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
	POSTING_READ(FDI_RX_CTL(PIPE_A));
623 624 625 626
	udelay(220);

	/* Switch from Rawclk to PCDclk */
	rx_ctl_val |= FDI_PCDCLK;
627
	I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
628 629

	/* Configure Port Clock Select */
630 631
	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
632 633 634

	/* Start the training iterating through available voltages and emphasis,
	 * testing each value twice. */
635
	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
636 637 638 639 640 641 642
		/* Configure DP_TP_CTL with auto-training */
		I915_WRITE(DP_TP_CTL(PORT_E),
					DP_TP_CTL_FDI_AUTOTRAIN |
					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
					DP_TP_CTL_LINK_TRAIN_PAT1 |
					DP_TP_CTL_ENABLE);

643 644 645 646
		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
		 * DDI E does not support port reversal, the functionality is
		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
		 * port reversal bit */
647
		I915_WRITE(DDI_BUF_CTL(PORT_E),
648
			   DDI_BUF_CTL_ENABLE |
649
			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
650
			   DDI_BUF_TRANS_SELECT(i / 2));
651
		POSTING_READ(DDI_BUF_CTL(PORT_E));
652 653 654

		udelay(600);

655
		/* Program PCH FDI Receiver TU */
656
		I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
657 658 659

		/* Enable PCH FDI Receiver with auto-training */
		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
660 661
		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
		POSTING_READ(FDI_RX_CTL(PIPE_A));
662 663 664 665 666

		/* Wait for FDI receiver lane calibration */
		udelay(30);

		/* Unset FDI_RX_MISC pwrdn lanes */
667
		temp = I915_READ(FDI_RX_MISC(PIPE_A));
668
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
669 670
		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
		POSTING_READ(FDI_RX_MISC(PIPE_A));
671 672 673

		/* Wait for FDI auto training time */
		udelay(5);
674 675 676

		temp = I915_READ(DP_TP_STATUS(PORT_E));
		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
677
			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
678 679 680

			/* Enable normal pixel sending for FDI */
			I915_WRITE(DP_TP_CTL(PORT_E),
681 682 683 684
				   DP_TP_CTL_FDI_AUTOTRAIN |
				   DP_TP_CTL_LINK_TRAIN_NORMAL |
				   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
				   DP_TP_CTL_ENABLE);
685

686
			return;
687
		}
688

689 690 691 692 693
		temp = I915_READ(DDI_BUF_CTL(PORT_E));
		temp &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
		POSTING_READ(DDI_BUF_CTL(PORT_E));

694
		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
695 696 697 698 699 700 701
		temp = I915_READ(DP_TP_CTL(PORT_E));
		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(PORT_E), temp);
		POSTING_READ(DP_TP_CTL(PORT_E));

		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
702 703

		rx_ctl_val &= ~FDI_RX_ENABLE;
704 705
		I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
		POSTING_READ(FDI_RX_CTL(PIPE_A));
706 707

		/* Reset FDI_RX_MISC pwrdn lanes */
708
		temp = I915_READ(FDI_RX_MISC(PIPE_A));
709 710
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
711 712
		I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
		POSTING_READ(FDI_RX_MISC(PIPE_A));
713 714
	}

715
	DRM_ERROR("FDI link training failed!\n");
716
}
717

718 719 720 721 722 723 724
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *intel_dig_port =
		enc_to_dig_port(&encoder->base);

	intel_dp->DP = intel_dig_port->saved_port_bits |
725
		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
726
	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
727 728
}

729 730 731 732 733 734 735 736 737 738 739 740 741 742
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder, *ret = NULL;
	int num_encoders = 0;

	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
		ret = intel_encoder;
		num_encoders++;
	}

	if (num_encoders != 1)
743 744
		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
		     pipe_name(intel_crtc->pipe));
745 746 747 748 749

	BUG_ON(ret == NULL);
	return ret;
}

750
struct intel_encoder *
751
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
752
{
753 754 755
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_encoder *ret = NULL;
	struct drm_atomic_state *state;
756 757
	struct drm_connector *connector;
	struct drm_connector_state *connector_state;
758
	int num_encoders = 0;
759
	int i;
760

761 762
	state = crtc_state->base.state;

763 764
	for_each_connector_in_state(state, connector, connector_state, i) {
		if (connector_state->crtc != crtc_state->base.crtc)
765 766
			continue;

767
		ret = to_intel_encoder(connector_state->best_encoder);
768
		num_encoders++;
769 770 771 772 773 774 775 776 777
	}

	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
	     pipe_name(crtc->pipe));

	BUG_ON(ret == NULL);
	return ret;
}

778
#define LC_FREQ 2700
779
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
780 781 782 783 784 785 786 787 788 789 790

#define P_MIN 2
#define P_MAX 64
#define P_INC 2

/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800

791 792 793 794 795
#define abs_diff(a, b) ({			\
	typeof(a) __a = (a);			\
	typeof(b) __b = (b);			\
	(void) (&__a == &__b);			\
	__a > __b ? (__a - __b) : (__b - __a); })
796

797
struct hsw_wrpll_rnp {
798 799 800
	unsigned p, n2, r2;
};

801
static unsigned hsw_wrpll_get_budget_for_freq(int clock)
802
{
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	unsigned budget;

	switch (clock) {
	case 25175000:
	case 25200000:
	case 27000000:
	case 27027000:
	case 37762500:
	case 37800000:
	case 40500000:
	case 40541000:
	case 54000000:
	case 54054000:
	case 59341000:
	case 59400000:
	case 72000000:
	case 74176000:
	case 74250000:
	case 81000000:
	case 81081000:
	case 89012000:
	case 89100000:
	case 108000000:
	case 108108000:
	case 111264000:
	case 111375000:
	case 148352000:
	case 148500000:
	case 162000000:
	case 162162000:
	case 222525000:
	case 222750000:
	case 296703000:
	case 297000000:
		budget = 0;
		break;
	case 233500000:
	case 245250000:
	case 247750000:
	case 253250000:
	case 298000000:
		budget = 1500;
		break;
	case 169128000:
	case 169500000:
	case 179500000:
	case 202000000:
		budget = 2000;
		break;
	case 256250000:
	case 262500000:
	case 270000000:
	case 272500000:
	case 273750000:
	case 280750000:
	case 281250000:
	case 286000000:
	case 291750000:
		budget = 4000;
		break;
	case 267250000:
	case 268500000:
		budget = 5000;
		break;
	default:
		budget = 1000;
		break;
	}
871

872 873 874
	return budget;
}

875 876 877
static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
				 unsigned r2, unsigned n2, unsigned p,
				 struct hsw_wrpll_rnp *best)
878 879
{
	uint64_t a, b, c, d, diff, diff_best;
880

881 882 883 884 885 886 887
	/* No best (r,n,p) yet */
	if (best->p == 0) {
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
		return;
	}
888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	/*
	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
	 * freq2k.
	 *
	 * delta = 1e6 *
	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
	 *	   freq2k;
	 *
	 * and we would like delta <= budget.
	 *
	 * If the discrepancy is above the PPM-based budget, always prefer to
	 * improve upon the previous solution.  However, if you're within the
	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
	 */
	a = freq2k * budget * p * r2;
	b = freq2k * budget * best->p * best->r2;
905 906 907
	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
	diff_best = abs_diff(freq2k * best->p * best->r2,
			     LC_FREQ_2K * best->n2);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
	c = 1000000 * diff;
	d = 1000000 * diff_best;

	if (a < c && b < d) {
		/* If both are above the budget, pick the closer */
		if (best->p * best->r2 * diff < p * r2 * diff_best) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	} else if (a >= c && b < d) {
		/* If A is below the threshold but B is above it?  Update. */
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
	} else if (a >= c && b >= d) {
		/* Both are below the limit, so pick the higher n2/(r2*r2) */
		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	}
	/* Otherwise a < c && b >= d, do nothing */
}

934
static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv, int reg)
935 936 937 938 939 940
{
	int refclk = LC_FREQ;
	int n, p, r;
	u32 wrpll;

	wrpll = I915_READ(reg);
941 942 943
	switch (wrpll & WRPLL_PLL_REF_MASK) {
	case WRPLL_PLL_SSC:
	case WRPLL_PLL_NON_SSC:
944 945 946 947 948 949 950
		/*
		 * We could calculate spread here, but our checking
		 * code only cares about 5% accuracy, and spread is a max of
		 * 0.5% downspread.
		 */
		refclk = 135;
		break;
951
	case WRPLL_PLL_LCPLL:
952 953 954 955 956 957 958 959 960 961 962
		refclk = LC_FREQ;
		break;
	default:
		WARN(1, "bad wrpll refclk\n");
		return 0;
	}

	r = wrpll & WRPLL_DIVIDER_REF_MASK;
	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;

963 964
	/* Convert to KHz, p & r have a fixed point portion */
	return (refclk * n * 100) / (p * r);
965 966
}

967 968 969 970 971 972 973
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
			       uint32_t dpll)
{
	uint32_t cfgcr1_reg, cfgcr2_reg;
	uint32_t cfgcr1_val, cfgcr2_val;
	uint32_t p0, p1, p2, dco_freq;

974 975
	cfgcr1_reg = DPLL_CFGCR1(dpll);
	cfgcr2_reg = DPLL_CFGCR2(dpll);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

	cfgcr1_val = I915_READ(cfgcr1_reg);
	cfgcr2_val = I915_READ(cfgcr2_reg);

	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;

	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
	else
		p1 = 1;


	switch (p0) {
	case DPLL_CFGCR2_PDIV_1:
		p0 = 1;
		break;
	case DPLL_CFGCR2_PDIV_2:
		p0 = 2;
		break;
	case DPLL_CFGCR2_PDIV_3:
		p0 = 3;
		break;
	case DPLL_CFGCR2_PDIV_7:
		p0 = 7;
		break;
	}

	switch (p2) {
	case DPLL_CFGCR2_KDIV_5:
		p2 = 5;
		break;
	case DPLL_CFGCR2_KDIV_2:
		p2 = 2;
		break;
	case DPLL_CFGCR2_KDIV_3:
		p2 = 3;
		break;
	case DPLL_CFGCR2_KDIV_1:
		p2 = 1;
		break;
	}

	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;

	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
		1000) / 0x8000;

	return dco_freq / (p0 * p1 * p2 * 5);
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
{
	int dotclock;

	if (pipe_config->has_pch_encoder)
		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
						    &pipe_config->fdi_m_n);
	else if (pipe_config->has_dp_encoder)
		dotclock = intel_dotclock_calculate(pipe_config->port_clock,
						    &pipe_config->dp_m_n);
	else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
		dotclock = pipe_config->port_clock * 2 / 3;
	else
		dotclock = pipe_config->port_clock;

	if (pipe_config->pixel_multiplier)
		dotclock /= pipe_config->pixel_multiplier;

	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
}
1047 1048

static void skl_ddi_clock_get(struct intel_encoder *encoder,
1049
				struct intel_crtc_state *pipe_config)
1050 1051 1052 1053 1054
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	uint32_t dpll_ctl1, dpll;

1055
	dpll = pipe_config->ddi_pll_sel;
1056 1057 1058 1059 1060 1061

	dpll_ctl1 = I915_READ(DPLL_CTRL1);

	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
	} else {
1062 1063
		link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
		link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
1064 1065

		switch (link_clock) {
1066
		case DPLL_CTRL1_LINK_RATE_810:
1067 1068
			link_clock = 81000;
			break;
1069
		case DPLL_CTRL1_LINK_RATE_1080:
1070 1071
			link_clock = 108000;
			break;
1072
		case DPLL_CTRL1_LINK_RATE_1350:
1073 1074
			link_clock = 135000;
			break;
1075
		case DPLL_CTRL1_LINK_RATE_1620:
1076 1077
			link_clock = 162000;
			break;
1078
		case DPLL_CTRL1_LINK_RATE_2160:
1079 1080
			link_clock = 216000;
			break;
1081
		case DPLL_CTRL1_LINK_RATE_2700:
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
			link_clock = 270000;
			break;
		default:
			WARN(1, "Unsupported link rate\n");
			break;
		}
		link_clock *= 2;
	}

	pipe_config->port_clock = link_clock;

1093
	ddi_dotclock_get(pipe_config);
1094 1095
}

1096
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
1097
			      struct intel_crtc_state *pipe_config)
1098 1099 1100 1101 1102
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	u32 val, pll;

1103
	val = pipe_config->ddi_pll_sel;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	switch (val & PORT_CLK_SEL_MASK) {
	case PORT_CLK_SEL_LCPLL_810:
		link_clock = 81000;
		break;
	case PORT_CLK_SEL_LCPLL_1350:
		link_clock = 135000;
		break;
	case PORT_CLK_SEL_LCPLL_2700:
		link_clock = 270000;
		break;
	case PORT_CLK_SEL_WRPLL1:
1115
		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
1116 1117
		break;
	case PORT_CLK_SEL_WRPLL2:
1118
		link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		break;
	case PORT_CLK_SEL_SPLL:
		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
		if (pll == SPLL_PLL_FREQ_810MHz)
			link_clock = 81000;
		else if (pll == SPLL_PLL_FREQ_1350MHz)
			link_clock = 135000;
		else if (pll == SPLL_PLL_FREQ_2700MHz)
			link_clock = 270000;
		else {
			WARN(1, "bad spll freq\n");
			return;
		}
		break;
	default:
		WARN(1, "bad port clock sel\n");
		return;
	}

	pipe_config->port_clock = link_clock * 2;

1140
	ddi_dotclock_get(pipe_config);
1141 1142
}

1143 1144 1145
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
				enum intel_dpll_id dpll)
{
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	struct intel_shared_dpll *pll;
	struct intel_dpll_hw_state *state;
	intel_clock_t clock;

	/* For DDI ports we always use a shared PLL. */
	if (WARN_ON(dpll == DPLL_ID_PRIVATE))
		return 0;

	pll = &dev_priv->shared_dplls[dpll];
	state = &pll->config.hw_state;

	clock.m1 = 2;
	clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
	if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
		clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
	clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
	clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
	clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;

	return chv_calc_dpll_params(100000, &clock);
1166 1167 1168 1169 1170 1171 1172 1173 1174
}

static void bxt_ddi_clock_get(struct intel_encoder *encoder,
				struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	enum port port = intel_ddi_get_encoder_port(encoder);
	uint32_t dpll = port;

1175
	pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
1176

1177
	ddi_dotclock_get(pipe_config);
1178 1179
}

1180
void intel_ddi_clock_get(struct intel_encoder *encoder,
1181
			 struct intel_crtc_state *pipe_config)
1182
{
1183 1184 1185 1186
	struct drm_device *dev = encoder->base.dev;

	if (INTEL_INFO(dev)->gen <= 8)
		hsw_ddi_clock_get(encoder, pipe_config);
1187
	else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1188
		skl_ddi_clock_get(encoder, pipe_config);
1189 1190
	else if (IS_BROXTON(dev))
		bxt_ddi_clock_get(encoder, pipe_config);
1191 1192
}

1193
static void
1194 1195
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1196 1197 1198
{
	uint64_t freq2k;
	unsigned p, n2, r2;
1199
	struct hsw_wrpll_rnp best = { 0, 0, 0 };
1200 1201 1202 1203
	unsigned budget;

	freq2k = clock / 100;

1204
	budget = hsw_wrpll_get_budget_for_freq(clock);
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
	 * and directly pass the LC PLL to it. */
	if (freq2k == 5400000) {
		*n2_out = 2;
		*p_out = 1;
		*r2_out = 2;
		return;
	}

	/*
	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
	 * the WR PLL.
	 *
	 * We want R so that REF_MIN <= Ref <= REF_MAX.
	 * Injecting R2 = 2 * R gives:
	 *   REF_MAX * r2 > LC_FREQ * 2 and
	 *   REF_MIN * r2 < LC_FREQ * 2
	 *
	 * Which means the desired boundaries for r2 are:
	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
	 *
	 */
	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
	     r2 <= LC_FREQ * 2 / REF_MIN;
	     r2++) {

		/*
		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
		 *
		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
		 *   VCO_MAX * r2 > n2 * LC_FREQ and
		 *   VCO_MIN * r2 < n2 * LC_FREQ)
		 *
		 * Which means the desired boundaries for n2 are:
		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
		 */
		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
		     n2 <= VCO_MAX * r2 / LC_FREQ;
		     n2++) {

			for (p = P_MIN; p <= P_MAX; p += P_INC)
1248 1249
				hsw_wrpll_update_rnp(freq2k, budget,
						     r2, n2, p, &best);
1250 1251
		}
	}
1252

1253 1254 1255
	*n2_out = best.n2;
	*p_out = best.p;
	*r2_out = best.r2;
1256 1257
}

1258
static bool
1259
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1260
		   struct intel_crtc_state *crtc_state,
1261
		   struct intel_encoder *intel_encoder)
1262
{
1263 1264
	int clock = crtc_state->port_clock;

1265
	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1266
		struct intel_shared_dpll *pll;
1267
		uint32_t val;
1268
		unsigned p, n2, r2;
1269

1270
		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
P
Paulo Zanoni 已提交
1271

1272
		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
P
Paulo Zanoni 已提交
1273 1274 1275
		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
		      WRPLL_DIVIDER_POST(p);

1276 1277 1278
		memset(&crtc_state->dpll_hw_state, 0,
		       sizeof(crtc_state->dpll_hw_state));

1279
		crtc_state->dpll_hw_state.wrpll = val;
1280

1281
		pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1282 1283 1284 1285
		if (pll == NULL) {
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
					 pipe_name(intel_crtc->pipe));
			return false;
P
Paulo Zanoni 已提交
1286
		}
1287

1288
		crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1289 1290 1291 1292 1293
	}

	return true;
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
struct skl_wrpll_context {
	uint64_t min_deviation;		/* current minimal deviation */
	uint64_t central_freq;		/* chosen central freq */
	uint64_t dco_freq;		/* chosen dco freq */
	unsigned int p;			/* chosen divider */
};

static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
	memset(ctx, 0, sizeof(*ctx));

	ctx->min_deviation = U64_MAX;
}

/* DCO freq must be within +1%/-6%  of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION	100
#define SKL_DCO_MAX_NDEVIATION	600

static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
				  uint64_t central_freq,
				  uint64_t dco_freq,
				  unsigned int divider)
{
	uint64_t deviation;

	deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
			      central_freq);

	/* positive deviation */
	if (dco_freq >= central_freq) {
		if (deviation < SKL_DCO_MAX_PDEVIATION &&
		    deviation < ctx->min_deviation) {
			ctx->min_deviation = deviation;
			ctx->central_freq = central_freq;
			ctx->dco_freq = dco_freq;
			ctx->p = divider;
		}
	/* negative deviation */
	} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
		   deviation < ctx->min_deviation) {
		ctx->min_deviation = deviation;
		ctx->central_freq = central_freq;
		ctx->dco_freq = dco_freq;
		ctx->p = divider;
	}
}

static void skl_wrpll_get_multipliers(unsigned int p,
				      unsigned int *p0 /* out */,
				      unsigned int *p1 /* out */,
				      unsigned int *p2 /* out */)
{
	/* even dividers */
	if (p % 2 == 0) {
		unsigned int half = p / 2;

		if (half == 1 || half == 2 || half == 3 || half == 5) {
			*p0 = 2;
			*p1 = 1;
			*p2 = half;
		} else if (half % 2 == 0) {
			*p0 = 2;
			*p1 = half / 2;
			*p2 = 2;
		} else if (half % 3 == 0) {
			*p0 = 3;
			*p1 = half / 3;
			*p2 = 2;
		} else if (half % 7 == 0) {
			*p0 = 7;
			*p1 = half / 7;
			*p2 = 2;
		}
	} else if (p == 3 || p == 9) {  /* 3, 5, 7, 9, 15, 21, 35 */
		*p0 = 3;
		*p1 = 1;
		*p2 = p / 3;
	} else if (p == 5 || p == 7) {
		*p0 = p;
		*p1 = 1;
		*p2 = 1;
	} else if (p == 15) {
		*p0 = 3;
		*p1 = 1;
		*p2 = 5;
	} else if (p == 21) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 3;
	} else if (p == 35) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 5;
	}
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
struct skl_wrpll_params {
	uint32_t        dco_fraction;
	uint32_t        dco_integer;
	uint32_t        qdiv_ratio;
	uint32_t        qdiv_mode;
	uint32_t        kdiv;
	uint32_t        pdiv;
	uint32_t        central_freq;
};

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
				      uint64_t afe_clock,
				      uint64_t central_freq,
				      uint32_t p0, uint32_t p1, uint32_t p2)
{
	uint64_t dco_freq;

	switch (central_freq) {
	case 9600000000ULL:
		params->central_freq = 0;
		break;
	case 9000000000ULL:
		params->central_freq = 1;
		break;
	case 8400000000ULL:
		params->central_freq = 3;
	}

	switch (p0) {
	case 1:
		params->pdiv = 0;
		break;
	case 2:
		params->pdiv = 1;
		break;
	case 3:
		params->pdiv = 2;
		break;
	case 7:
		params->pdiv = 4;
		break;
	default:
		WARN(1, "Incorrect PDiv\n");
	}

	switch (p2) {
	case 5:
		params->kdiv = 0;
		break;
	case 2:
		params->kdiv = 1;
		break;
	case 3:
		params->kdiv = 2;
		break;
	case 1:
		params->kdiv = 3;
		break;
	default:
		WARN(1, "Incorrect KDiv\n");
	}

	params->qdiv_ratio = p1;
	params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;

	dco_freq = p0 * p1 * p2 * afe_clock;

	/*
	 * Intermediate values are in Hz.
	 * Divide by MHz to match bsepc
	 */
1461
	params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
1462
	params->dco_fraction =
1463 1464
		div_u64((div_u64(dco_freq, 24) -
			 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
1465 1466
}

1467
static bool
1468 1469 1470 1471
skl_ddi_calculate_wrpll(int clock /* in Hz */,
			struct skl_wrpll_params *wrpll_params)
{
	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1472 1473 1474
	uint64_t dco_central_freq[3] = {8400000000ULL,
					9000000000ULL,
					9600000000ULL};
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	static const int even_dividers[] = {  4,  6,  8, 10, 12, 14, 16, 18, 20,
					     24, 28, 30, 32, 36, 40, 42, 44,
					     48, 52, 54, 56, 60, 64, 66, 68,
					     70, 72, 76, 78, 80, 84, 88, 90,
					     92, 96, 98 };
	static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
	static const struct {
		const int *list;
		int n_dividers;
	} dividers[] = {
		{ even_dividers, ARRAY_SIZE(even_dividers) },
		{ odd_dividers, ARRAY_SIZE(odd_dividers) },
	};
	struct skl_wrpll_context ctx;
	unsigned int dco, d, i;
	unsigned int p0, p1, p2;

	skl_wrpll_context_init(&ctx);

	for (d = 0; d < ARRAY_SIZE(dividers); d++) {
		for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
			for (i = 0; i < dividers[d].n_dividers; i++) {
				unsigned int p = dividers[d].list[i];
				uint64_t dco_freq = p * afe_clock;

				skl_wrpll_try_divider(&ctx,
						      dco_central_freq[dco],
						      dco_freq,
						      p);
1504 1505 1506 1507 1508 1509 1510
				/*
				 * Skip the remaining dividers if we're sure to
				 * have found the definitive divider, we can't
				 * improve a 0 deviation.
				 */
				if (ctx.min_deviation == 0)
					goto skip_remaining_dividers;
1511 1512
			}
		}
1513

1514
skip_remaining_dividers:
1515 1516 1517 1518 1519 1520
		/*
		 * If a solution is found with an even divider, prefer
		 * this one.
		 */
		if (d == 0 && ctx.p)
			break;
1521 1522
	}

1523 1524
	if (!ctx.p) {
		DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
1525
		return false;
1526
	}
1527

1528 1529 1530 1531 1532 1533 1534 1535
	/*
	 * gcc incorrectly analyses that these can be used without being
	 * initialized. To be fair, it's hard to guess.
	 */
	p0 = p1 = p2 = 0;
	skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
	skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
				  p0, p1, p2);
1536 1537

	return true;
1538 1539 1540 1541
}

static bool
skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1542
		   struct intel_crtc_state *crtc_state,
1543
		   struct intel_encoder *intel_encoder)
1544 1545 1546
{
	struct intel_shared_dpll *pll;
	uint32_t ctrl1, cfgcr1, cfgcr2;
1547
	int clock = crtc_state->port_clock;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */

	ctrl1 = DPLL_CTRL1_OVERRIDE(0);

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		struct skl_wrpll_params wrpll_params = { 0, };

		ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);

1561 1562
		if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
			return false;
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

		cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
			 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
			 wrpll_params.dco_integer;

		cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
			 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
			 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
			 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
			 wrpll_params.central_freq;
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1574 1575
		switch (crtc_state->port_clock / 2) {
		case 81000:
1576
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1577
			break;
1578
		case 135000:
1579
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1580
			break;
1581
		case 270000:
1582
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1583 1584 1585 1586 1587 1588 1589
			break;
		}

		cfgcr1 = cfgcr2 = 0;
	} else /* eDP */
		return true;

1590 1591 1592
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1593 1594 1595
	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1596

1597
	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1598 1599 1600 1601 1602 1603 1604
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
				 pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL 1 */
1605
	crtc_state->ddi_pll_sel = pll->id + 1;
1606 1607 1608

	return true;
}
1609

1610 1611
/* bxt clock parameters */
struct bxt_clk_div {
1612
	int clock;
1613 1614 1615 1616 1617 1618 1619 1620 1621
	uint32_t p1;
	uint32_t p2;
	uint32_t m2_int;
	uint32_t m2_frac;
	bool m2_frac_en;
	uint32_t n;
};

/* pre-calculated values for DP linkrates */
1622 1623 1624 1625 1626 1627 1628 1629
static const struct bxt_clk_div bxt_dp_clk_val[] = {
	{162000, 4, 2, 32, 1677722, 1, 1},
	{270000, 4, 1, 27,       0, 0, 1},
	{540000, 2, 1, 27,       0, 0, 1},
	{216000, 3, 2, 32, 1677722, 1, 1},
	{243000, 4, 1, 24, 1258291, 1, 1},
	{324000, 4, 1, 32, 1677722, 1, 1},
	{432000, 3, 1, 32, 1677722, 1, 1}
1630 1631 1632 1633 1634
};

static bool
bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
		   struct intel_crtc_state *crtc_state,
1635
		   struct intel_encoder *intel_encoder)
1636 1637 1638
{
	struct intel_shared_dpll *pll;
	struct bxt_clk_div clk_div = {0};
1639 1640
	int vco = 0;
	uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1641
	uint32_t lanestagger;
1642
	int clock = crtc_state->port_clock;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		intel_clock_t best_clock;

		/* Calculate HDMI div */
		/*
		 * FIXME: tie the following calculation into
		 * i9xx_crtc_compute_clock
		 */
		if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
			DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
					 clock, pipe_name(intel_crtc->pipe));
			return false;
		}

		clk_div.p1 = best_clock.p1;
		clk_div.p2 = best_clock.p2;
		WARN_ON(best_clock.m1 != 2);
		clk_div.n = best_clock.n;
		clk_div.m2_int = best_clock.m2 >> 22;
		clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
		clk_div.m2_frac_en = clk_div.m2_frac != 0;

1666
		vco = best_clock.vco;
1667 1668
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
			intel_encoder->type == INTEL_OUTPUT_EDP) {
1669
		int i;
1670

1671 1672 1673 1674 1675 1676
		clk_div = bxt_dp_clk_val[0];
		for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
			if (bxt_dp_clk_val[i].clock == clock) {
				clk_div = bxt_dp_clk_val[i];
				break;
			}
1677
		}
1678 1679 1680
		vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
	}

1681
	if (vco >= 6200000 && vco <= 6700000) {
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		prop_coef = 4;
		int_coef = 9;
		gain_ctl = 3;
		targ_cnt = 8;
	} else if ((vco > 5400000 && vco < 6200000) ||
			(vco >= 4800000 && vco < 5400000)) {
		prop_coef = 5;
		int_coef = 11;
		gain_ctl = 3;
		targ_cnt = 9;
	} else if (vco == 5400000) {
		prop_coef = 3;
		int_coef = 8;
		gain_ctl = 1;
		targ_cnt = 9;
	} else {
		DRM_ERROR("Invalid VCO\n");
		return false;
1700 1701
	}

1702 1703 1704
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	if (clock > 270000)
		lanestagger = 0x18;
	else if (clock > 135000)
		lanestagger = 0x0d;
	else if (clock > 67000)
		lanestagger = 0x07;
	else if (clock > 33000)
		lanestagger = 0x04;
	else
		lanestagger = 0x02;

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	crtc_state->dpll_hw_state.ebb0 =
		PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
	crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
	crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
	crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;

	if (clk_div.m2_frac_en)
		crtc_state->dpll_hw_state.pll3 =
			PORT_PLL_M2_FRAC_ENABLE;

	crtc_state->dpll_hw_state.pll6 =
1727
		prop_coef | PORT_PLL_INT_COEFF(int_coef);
1728
	crtc_state->dpll_hw_state.pll6 |=
1729 1730 1731
		PORT_PLL_GAIN_CTL(gain_ctl);

	crtc_state->dpll_hw_state.pll8 = targ_cnt;
1732

1733 1734
	crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;

1735 1736 1737
	crtc_state->dpll_hw_state.pll10 =
		PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
		| PORT_PLL_DCO_AMP_OVR_EN_H;
1738

1739 1740
	crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;

1741
	crtc_state->dpll_hw_state.pcsdw12 =
1742
		LANESTAGGER_STRAP_OVRD | lanestagger;
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
			pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL A */
	crtc_state->ddi_pll_sel = pll->id;

	return true;
}

1757 1758 1759 1760 1761 1762 1763
/*
 * Tries to find a *shared* PLL for the CRTC and store it in
 * intel_crtc->ddi_pll_sel.
 *
 * For private DPLLs, compute_config() should do the selection for us. This
 * function should be folded into compute_config() eventually.
 */
1764 1765
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
			  struct intel_crtc_state *crtc_state)
1766
{
1767
	struct drm_device *dev = intel_crtc->base.dev;
1768
	struct intel_encoder *intel_encoder =
1769
		intel_ddi_get_crtc_new_encoder(crtc_state);
1770

1771
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1772
		return skl_ddi_pll_select(intel_crtc, crtc_state,
1773
					  intel_encoder);
1774 1775
	else if (IS_BROXTON(dev))
		return bxt_ddi_pll_select(intel_crtc, crtc_state,
1776
					  intel_encoder);
1777
	else
1778
		return hsw_ddi_pll_select(intel_crtc, crtc_state,
1779
					  intel_encoder);
1780 1781
}

1782 1783 1784 1785 1786
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1787
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1788 1789 1790
	int type = intel_encoder->type;
	uint32_t temp;

1791
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1792
		temp = TRANS_MSA_SYNC_CLK;
1793
		switch (intel_crtc->config->pipe_bpp) {
1794
		case 18:
1795
			temp |= TRANS_MSA_6_BPC;
1796 1797
			break;
		case 24:
1798
			temp |= TRANS_MSA_8_BPC;
1799 1800
			break;
		case 30:
1801
			temp |= TRANS_MSA_10_BPC;
1802 1803
			break;
		case 36:
1804
			temp |= TRANS_MSA_12_BPC;
1805 1806
			break;
		default:
1807
			BUG();
1808
		}
1809
		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1810 1811 1812
	}
}

1813 1814 1815 1816 1817
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1818
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1819 1820 1821 1822 1823 1824 1825 1826 1827
	uint32_t temp;
	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (state == true)
		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	else
		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}

1828
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1829 1830 1831
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1832
	struct drm_encoder *encoder = &intel_encoder->base;
1833 1834
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1835
	enum pipe pipe = intel_crtc->pipe;
1836
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1837
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1838
	int type = intel_encoder->type;
1839 1840
	uint32_t temp;

1841 1842
	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
	temp = TRANS_DDI_FUNC_ENABLE;
1843
	temp |= TRANS_DDI_SELECT_PORT(port);
1844

1845
	switch (intel_crtc->config->pipe_bpp) {
1846
	case 18:
1847
		temp |= TRANS_DDI_BPC_6;
1848 1849
		break;
	case 24:
1850
		temp |= TRANS_DDI_BPC_8;
1851 1852
		break;
	case 30:
1853
		temp |= TRANS_DDI_BPC_10;
1854 1855
		break;
	case 36:
1856
		temp |= TRANS_DDI_BPC_12;
1857 1858
		break;
	default:
1859
		BUG();
1860
	}
1861

1862
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1863
		temp |= TRANS_DDI_PVSYNC;
1864
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1865
		temp |= TRANS_DDI_PHSYNC;
1866

1867 1868 1869
	if (cpu_transcoder == TRANSCODER_EDP) {
		switch (pipe) {
		case PIPE_A:
1870 1871 1872 1873
			/* On Haswell, can only use the always-on power well for
			 * eDP when not using the panel fitter, and when not
			 * using motion blur mitigation (which we don't
			 * support). */
1874
			if (IS_HASWELL(dev) &&
1875 1876
			    (intel_crtc->config->pch_pfit.enabled ||
			     intel_crtc->config->pch_pfit.force_thru))
1877 1878 1879
				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
			else
				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
			break;
		case PIPE_B:
			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
			break;
		case PIPE_C:
			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
			break;
		default:
			BUG();
			break;
		}
	}

1893
	if (type == INTEL_OUTPUT_HDMI) {
1894
		if (intel_crtc->config->has_hdmi_sink)
1895
			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1896
		else
1897
			temp |= TRANS_DDI_MODE_SELECT_DVI;
1898

1899
	} else if (type == INTEL_OUTPUT_ANALOG) {
1900
		temp |= TRANS_DDI_MODE_SELECT_FDI;
1901
		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1902 1903 1904 1905 1906

	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
		   type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

1907 1908 1909 1910 1911
		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;

1912
		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1913 1914 1915 1916 1917 1918 1919
	} else if (type == INTEL_OUTPUT_DP_MST) {
		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;

		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1920

1921
		temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1922
	} else {
1923 1924
		WARN(1, "Invalid encoder type %d for pipe %c\n",
		     intel_encoder->type, pipe_name(pipe));
1925 1926
	}

1927
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1928
}
1929

1930 1931
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
				       enum transcoder cpu_transcoder)
1932
{
1933
	uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1934 1935
	uint32_t val = I915_READ(reg);

1936
	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1937
	val |= TRANS_DDI_PORT_NONE;
1938
	I915_WRITE(reg, val);
1939 1940
}

1941 1942 1943 1944 1945 1946 1947 1948 1949
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
	struct drm_device *dev = intel_connector->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	int type = intel_connector->base.connector_type;
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	enum pipe pipe = 0;
	enum transcoder cpu_transcoder;
1950
	enum intel_display_power_domain power_domain;
1951 1952
	uint32_t tmp;

1953
	power_domain = intel_display_port_power_domain(intel_encoder);
1954
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1955 1956
		return false;

1957 1958 1959 1960 1961 1962
	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
		return false;

	if (port == PORT_A)
		cpu_transcoder = TRANSCODER_EDP;
	else
D
Daniel Vetter 已提交
1963
		cpu_transcoder = (enum transcoder) pipe;
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));

	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
	case TRANS_DDI_MODE_SELECT_DVI:
		return (type == DRM_MODE_CONNECTOR_HDMIA);

	case TRANS_DDI_MODE_SELECT_DP_SST:
		if (type == DRM_MODE_CONNECTOR_eDP)
			return true;
		return (type == DRM_MODE_CONNECTOR_DisplayPort);
1976 1977 1978 1979
	case TRANS_DDI_MODE_SELECT_DP_MST:
		/* if the transcoder is in MST state then
		 * connector isn't connected */
		return false;
1980 1981 1982 1983 1984 1985 1986 1987 1988

	case TRANS_DDI_MODE_SELECT_FDI:
		return (type == DRM_MODE_CONNECTOR_VGA);

	default:
		return false;
	}
}

1989 1990 1991 1992 1993
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
			    enum pipe *pipe)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1994
	enum port port = intel_ddi_get_encoder_port(encoder);
1995
	enum intel_display_power_domain power_domain;
1996 1997 1998
	u32 tmp;
	int i;

1999
	power_domain = intel_display_port_power_domain(encoder);
2000
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
2001 2002
		return false;

2003
	tmp = I915_READ(DDI_BUF_CTL(port));
2004 2005 2006 2007

	if (!(tmp & DDI_BUF_CTL_ENABLE))
		return false;

2008 2009
	if (port == PORT_A) {
		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
		case TRANS_DDI_EDP_INPUT_A_ON:
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
			*pipe = PIPE_A;
			break;
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
			*pipe = PIPE_B;
			break;
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
			*pipe = PIPE_C;
			break;
		}

		return true;
	} else {
		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));

			if ((tmp & TRANS_DDI_PORT_MASK)
			    == TRANS_DDI_SELECT_PORT(port)) {
2031 2032 2033
				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
					return false;

2034 2035 2036
				*pipe = i;
				return true;
			}
2037 2038 2039
		}
	}

2040
	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
2041

2042
	return false;
2043 2044
}

2045 2046 2047
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_crtc *crtc = &intel_crtc->base;
2048 2049
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2050 2051
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2052
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2053

2054 2055 2056
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_PORT(port));
2057 2058 2059 2060 2061
}

void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2062
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2063

2064 2065 2066
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_DISABLED);
2067 2068
}

2069 2070 2071 2072 2073 2074
static void skl_ddi_set_iboost(struct drm_device *dev, u32 level,
			       enum port port, int type)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct ddi_buf_trans *ddi_translations;
	uint8_t iboost;
2075
	uint8_t dp_iboost, hdmi_iboost;
2076 2077 2078
	int n_entries;
	u32 reg;

2079 2080 2081 2082
	/* VBT may override standard boost values */
	dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
	hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;

2083
	if (type == INTEL_OUTPUT_DISPLAYPORT) {
2084 2085 2086 2087 2088 2089
		if (dp_iboost) {
			iboost = dp_iboost;
		} else {
			ddi_translations = skl_get_buf_trans_dp(dev, &n_entries);
			iboost = ddi_translations[port].i_boost;
		}
2090
	} else if (type == INTEL_OUTPUT_EDP) {
2091 2092 2093 2094 2095 2096
		if (dp_iboost) {
			iboost = dp_iboost;
		} else {
			ddi_translations = skl_get_buf_trans_edp(dev, &n_entries);
			iboost = ddi_translations[port].i_boost;
		}
2097
	} else if (type == INTEL_OUTPUT_HDMI) {
2098 2099 2100 2101 2102 2103
		if (hdmi_iboost) {
			iboost = hdmi_iboost;
		} else {
			ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries);
			iboost = ddi_translations[port].i_boost;
		}
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	} else {
		return;
	}

	/* Make sure that the requested I_boost is valid */
	if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
		DRM_ERROR("Invalid I_boost value %u\n", iboost);
		return;
	}

	reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
	reg &= ~BALANCE_LEG_MASK(port);
	reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));

	if (iboost)
		reg |= iboost << BALANCE_LEG_SHIFT(port);
	else
		reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);

	I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
}

static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
				    enum port port, int type)
2128 2129 2130 2131 2132 2133
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct bxt_ddi_buf_trans *ddi_translations;
	u32 n_entries, i;
	uint32_t val;

2134 2135 2136 2137 2138
	if (type == INTEL_OUTPUT_EDP && dev_priv->edp_low_vswing) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
		ddi_translations = bxt_ddi_translations_edp;
	} else if (type == INTEL_OUTPUT_DISPLAYPORT
			|| type == INTEL_OUTPUT_EDP) {
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
		ddi_translations = bxt_ddi_translations_dp;
	} else if (type == INTEL_OUTPUT_HDMI) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
		ddi_translations = bxt_ddi_translations_hdmi;
	} else {
		DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
				type);
		return;
	}

	/* Check if default value has to be used */
	if (level >= n_entries ||
	    (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
		for (i = 0; i < n_entries; i++) {
			if (ddi_translations[i].default_index) {
				level = i;
				break;
			}
		}
	}

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
	val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
	       ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
2176
	val &= ~SCALE_DCOMP_METHOD;
2177
	if (ddi_translations[level].enable)
2178 2179 2180 2181 2182
		val |= SCALE_DCOMP_METHOD;

	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
	val &= ~DE_EMPHASIS;
	val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);

	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
static uint32_t translate_signal_level(int signal_levels)
{
	uint32_t level;

	switch (signal_levels) {
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
			      signal_levels);
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 0;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 1;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		level = 2;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
		level = 3;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 5;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		level = 6;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 7;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		level = 8;
		break;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		level = 9;
		break;
	}

	return level;
}

uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dport->base.base.dev;
	struct intel_encoder *encoder = &dport->base;
	uint8_t train_set = intel_dp->train_set[0];
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	enum port port = dport->port;
	uint32_t level;

	level = translate_signal_level(signal_levels);

2254
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2255 2256 2257 2258 2259 2260 2261
		skl_ddi_set_iboost(dev, level, port, encoder->type);
	else if (IS_BROXTON(dev))
		bxt_ddi_vswing_sequence(dev, level, port, encoder->type);

	return DDI_BUF_TRANS_SELECT(level);
}

P
Paulo Zanoni 已提交
2262
static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
2263
{
2264
	struct drm_encoder *encoder = &intel_encoder->base;
2265 2266
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2267
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
2268
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2269
	int type = intel_encoder->type;
2270
	int hdmi_level;
2271

2272 2273
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2274
		intel_edp_panel_on(intel_dp);
2275
	}
2276

2277
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2278
		uint32_t dpll = crtc->config->ddi_pll_sel;
2279 2280
		uint32_t val;

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		/*
		 * DPLL0 is used for eDP and is the only "private" DPLL (as
		 * opposed to shared) on SKL
		 */
		if (type == INTEL_OUTPUT_EDP) {
			WARN_ON(dpll != SKL_DPLL0);

			val = I915_READ(DPLL_CTRL1);

			val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
				 DPLL_CTRL1_SSC(dpll) |
2292
				 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2293
			val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
2294 2295 2296 2297 2298 2299

			I915_WRITE(DPLL_CTRL1, val);
			POSTING_READ(DPLL_CTRL1);
		}

		/* DDI -> PLL mapping  */
2300 2301 2302 2303 2304 2305 2306 2307
		val = I915_READ(DPLL_CTRL2);

		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));

		I915_WRITE(DPLL_CTRL2, val);
2308

2309
	} else if (INTEL_INFO(dev)->gen < 9) {
2310 2311
		WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
		I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
2312
	}
2313

2314
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2315
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2316

2317 2318
		intel_dp_set_link_params(intel_dp, crtc->config);

2319
		intel_ddi_init_dp_buf_reg(intel_encoder);
2320 2321 2322

		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
		intel_dp_start_link_train(intel_dp);
2323
		if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
2324
			intel_dp_stop_link_train(intel_dp);
2325 2326 2327
	} else if (type == INTEL_OUTPUT_HDMI) {
		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);

2328 2329 2330 2331 2332 2333
		if (IS_BROXTON(dev)) {
			hdmi_level = dev_priv->vbt.
				ddi_port_info[port].hdmi_level_shift;
			bxt_ddi_vswing_sequence(dev, hdmi_level, port,
					INTEL_OUTPUT_HDMI);
		}
2334
		intel_hdmi->set_infoframes(encoder,
2335 2336
					   crtc->config->has_hdmi_sink,
					   &crtc->config->base.adjusted_mode);
2337
	}
2338 2339
}

P
Paulo Zanoni 已提交
2340
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
2341 2342
{
	struct drm_encoder *encoder = &intel_encoder->base;
2343 2344
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2345
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
2346
	int type = intel_encoder->type;
2347
	uint32_t val;
2348
	bool wait = false;
2349 2350 2351 2352 2353

	val = I915_READ(DDI_BUF_CTL(port));
	if (val & DDI_BUF_CTL_ENABLE) {
		val &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(port), val);
2354
		wait = true;
2355
	}
2356

2357 2358 2359 2360 2361 2362 2363 2364
	val = I915_READ(DP_TP_CTL(port));
	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
	I915_WRITE(DP_TP_CTL(port), val);

	if (wait)
		intel_wait_ddi_buf_idle(dev_priv, port);

2365
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2366
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2367
		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2368
		intel_edp_panel_vdd_on(intel_dp);
2369
		intel_edp_panel_off(intel_dp);
2370 2371
	}

2372
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2373 2374
		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
					DPLL_CTRL2_DDI_CLK_OFF(port)));
2375
	else if (INTEL_INFO(dev)->gen < 9)
2376
		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
2377 2378
}

P
Paulo Zanoni 已提交
2379
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
2380
{
2381
	struct drm_encoder *encoder = &intel_encoder->base;
2382 2383
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2384
	struct drm_device *dev = encoder->dev;
2385
	struct drm_i915_private *dev_priv = dev->dev_private;
2386 2387
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
2388

2389
	if (type == INTEL_OUTPUT_HDMI) {
2390 2391 2392
		struct intel_digital_port *intel_dig_port =
			enc_to_dig_port(encoder);

2393 2394 2395 2396
		/* In HDMI/DVI mode, the port width, and swing/emphasis values
		 * are ignored so nothing special needs to be done besides
		 * enabling the port.
		 */
2397
		I915_WRITE(DDI_BUF_CTL(port),
2398 2399
			   intel_dig_port->saved_port_bits |
			   DDI_BUF_CTL_ENABLE);
2400 2401 2402
	} else if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

2403
		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2404 2405
			intel_dp_stop_link_train(intel_dp);

2406
		intel_edp_backlight_on(intel_dp);
R
Rodrigo Vivi 已提交
2407
		intel_psr_enable(intel_dp);
V
Vandana Kannan 已提交
2408
		intel_edp_drrs_enable(intel_dp);
2409
	}
2410

2411
	if (intel_crtc->config->has_audio) {
2412
		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2413
		intel_audio_codec_enable(intel_encoder);
2414
	}
2415 2416
}

P
Paulo Zanoni 已提交
2417
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2418
{
2419
	struct drm_encoder *encoder = &intel_encoder->base;
2420 2421
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2422
	int type = intel_encoder->type;
2423 2424
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2425

2426
	if (intel_crtc->config->has_audio) {
2427
		intel_audio_codec_disable(intel_encoder);
2428 2429
		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
	}
2430

2431 2432 2433
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

V
Vandana Kannan 已提交
2434
		intel_edp_drrs_disable(intel_dp);
R
Rodrigo Vivi 已提交
2435
		intel_psr_disable(intel_dp);
2436
		intel_edp_backlight_off(intel_dp);
2437
	}
2438
}
P
Paulo Zanoni 已提交
2439

2440 2441 2442
static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
2443
	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2444 2445 2446 2447
	POSTING_READ(WRPLL_CTL(pll->id));
	udelay(20);
}

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(WRPLL_CTL(pll->id));
	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
	POSTING_READ(WRPLL_CTL(pll->id));
}

2458 2459 2460 2461 2462 2463
static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

2464
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2465 2466 2467 2468 2469 2470 2471 2472
		return false;

	val = I915_READ(WRPLL_CTL(pll->id));
	hw_state->wrpll = val;

	return val & WRPLL_PLL_ENABLE;
}

2473
static const char * const hsw_ddi_pll_names[] = {
2474 2475 2476 2477
	"WRPLL 1",
	"WRPLL 2",
};

2478
static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
P
Paulo Zanoni 已提交
2479
{
2480 2481
	int i;

2482
	dev_priv->num_shared_dpll = 2;
2483

2484
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2485 2486
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2487
		dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
2488
		dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
2489 2490
		dev_priv->shared_dplls[i].get_hw_state =
			hsw_ddi_pll_get_hw_state;
2491
	}
2492 2493
}

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
static const char * const skl_ddi_pll_names[] = {
	"DPLL 1",
	"DPLL 2",
	"DPLL 3",
};

struct skl_dpll_regs {
	u32 ctl, cfgcr1, cfgcr2;
};

/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[3] = {
	{
		/* DPLL 1 */
		.ctl = LCPLL2_CTL,
2509 2510
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
2511 2512 2513
	},
	{
		/* DPLL 2 */
2514
		.ctl = WRPLL_CTL(0),
2515 2516
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
2517 2518 2519
	},
	{
		/* DPLL 3 */
2520
		.ctl = WRPLL_CTL(1),
2521 2522
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
	},
};

static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(DPLL_CTRL1);

	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2539
		 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	val |= pll->config.hw_state.ctrl1 << (dpll * 6);

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);

	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
	POSTING_READ(regs[pll->id].cfgcr1);
	POSTING_READ(regs[pll->id].cfgcr2);

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);

	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
		DRM_ERROR("DPLL %d not locked\n", dpll);
}

static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
	POSTING_READ(regs[pll->id].ctl);
}

static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(regs[pll->id].ctl);
	if (!(val & LCPLL_PLL_ENABLE))
		return false;

	val = I915_READ(DPLL_CTRL1);
	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;

	/* avoid reading back stale values if HDMI mode is not enabled */
	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
	}

	return true;
}

static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			skl_ddi_pll_get_hw_state;
	}
}

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
static void broxton_phy_init(struct drm_i915_private *dev_priv,
			     enum dpio_phy phy)
{
	enum port port;
	uint32_t val;

	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
	val |= GT_DISPLAY_POWER_ON(phy);
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);

	/* Considering 10ms timeout until BSpec is updated */
	if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
		DRM_ERROR("timeout during PHY%d power on\n", phy);

	for (port =  (phy == DPIO_PHY0 ? PORT_B : PORT_A);
	     port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
		int lane;

		for (lane = 0; lane < 4; lane++) {
			val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
			/*
			 * Note that on CHV this flag is called UPAR, but has
			 * the same function.
			 */
			val &= ~LATENCY_OPTIM;
			if (lane != 1)
				val |= LATENCY_OPTIM;

			I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
		}
	}

	/* Program PLL Rcomp code offset */
	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
	val &= ~IREF0RC_OFFSET_MASK;
	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);

	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
	val &= ~IREF1RC_OFFSET_MASK;
	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);

	/* Program power gating */
	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
		SUS_CLK_CONFIG;
	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);

	if (phy == DPIO_PHY0) {
		val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
		I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
	}

	val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
	val &= ~OCL2_LDOFUSE_PWR_DIS;
	/*
	 * On PHY1 disable power on the second channel, since no port is
	 * connected there. On PHY0 both channels have a port, so leave it
	 * enabled.
	 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
	 * power down the second channel on PHY0 as well.
	 */
	if (phy == DPIO_PHY1)
		val |= OCL2_LDOFUSE_PWR_DIS;
	I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);

	if (phy == DPIO_PHY0) {
		uint32_t grc_code;
		/*
		 * PHY0 isn't connected to an RCOMP resistor so copy over
		 * the corresponding calibrated value from PHY1, and disable
		 * the automatic calibration on PHY0.
		 */
		if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
			     10))
			DRM_ERROR("timeout waiting for PHY1 GRC\n");

		val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
		val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
		grc_code = val << GRC_CODE_FAST_SHIFT |
			   val << GRC_CODE_SLOW_SHIFT |
			   val;
		I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);

		val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
		val |= GRC_DIS | GRC_RDY_OVRD;
		I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
	}

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val |= COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_init(struct drm_device *dev)
{
	/* Enable PHY1 first since it provides Rcomp for PHY0 */
	broxton_phy_init(dev->dev_private, DPIO_PHY1);
	broxton_phy_init(dev->dev_private, DPIO_PHY0);
}

static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
			       enum dpio_phy phy)
{
	uint32_t val;

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val &= ~COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_uninit(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	broxton_phy_uninit(dev_priv, DPIO_PHY1);
	broxton_phy_uninit(dev_priv, DPIO_PHY0);

	/* FIXME: do this in broxton_phy_uninit per phy */
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
}

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
static const char * const bxt_ddi_pll_names[] = {
	"PORT PLL A",
	"PORT PLL B",
	"PORT PLL C",
};

static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t temp;
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_REF_SEL;
	/* Non-SSC reference */
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

	/* Disable 10 bit clock */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Write P1 & P2 */
	temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
	temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
	temp |= pll->config.hw_state.ebb0;
	I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);

	/* Write M2 integer */
	temp = I915_READ(BXT_PORT_PLL(port, 0));
	temp &= ~PORT_PLL_M2_MASK;
	temp |= pll->config.hw_state.pll0;
	I915_WRITE(BXT_PORT_PLL(port, 0), temp);

	/* Write N */
	temp = I915_READ(BXT_PORT_PLL(port, 1));
	temp &= ~PORT_PLL_N_MASK;
	temp |= pll->config.hw_state.pll1;
	I915_WRITE(BXT_PORT_PLL(port, 1), temp);

	/* Write M2 fraction */
	temp = I915_READ(BXT_PORT_PLL(port, 2));
	temp &= ~PORT_PLL_M2_FRAC_MASK;
	temp |= pll->config.hw_state.pll2;
	I915_WRITE(BXT_PORT_PLL(port, 2), temp);

	/* Write M2 fraction enable */
	temp = I915_READ(BXT_PORT_PLL(port, 3));
	temp &= ~PORT_PLL_M2_FRAC_ENABLE;
	temp |= pll->config.hw_state.pll3;
	I915_WRITE(BXT_PORT_PLL(port, 3), temp);

	/* Write coeff */
	temp = I915_READ(BXT_PORT_PLL(port, 6));
	temp &= ~PORT_PLL_PROP_COEFF_MASK;
	temp &= ~PORT_PLL_INT_COEFF_MASK;
	temp &= ~PORT_PLL_GAIN_CTL_MASK;
	temp |= pll->config.hw_state.pll6;
	I915_WRITE(BXT_PORT_PLL(port, 6), temp);

	/* Write calibration val */
	temp = I915_READ(BXT_PORT_PLL(port, 8));
	temp &= ~PORT_PLL_TARGET_CNT_MASK;
	temp |= pll->config.hw_state.pll8;
	I915_WRITE(BXT_PORT_PLL(port, 8), temp);

2805 2806
	temp = I915_READ(BXT_PORT_PLL(port, 9));
	temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
2807
	temp |= pll->config.hw_state.pll9;
2808 2809 2810 2811 2812 2813 2814
	I915_WRITE(BXT_PORT_PLL(port, 9), temp);

	temp = I915_READ(BXT_PORT_PLL(port, 10));
	temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
	temp &= ~PORT_PLL_DCO_AMP_MASK;
	temp |= pll->config.hw_state.pll10;
	I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2815 2816 2817 2818 2819

	/* Recalibrate with new settings */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp |= PORT_PLL_RECALIBRATE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2820 2821
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	temp |= pll->config.hw_state.ebb4;
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Enable PLL */
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));

	if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
			PORT_PLL_LOCK), 200))
		DRM_ERROR("PLL %d not locked\n", port);

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
	temp &= ~LANE_STAGGER_MASK;
	temp &= ~LANESTAGGER_STRAP_OVRD;
	temp |= pll->config.hw_state.pcsdw12;
	I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
}

static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t temp;

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
}

static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll,
					struct intel_dpll_hw_state *hw_state)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t val;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(BXT_PORT_PLL_ENABLE(port));
	if (!(val & PORT_PLL_ENABLE))
		return false;

	hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
2872 2873
	hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;

2874 2875 2876
	hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
	hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;

2877
	hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
2878 2879
	hw_state->pll0 &= PORT_PLL_M2_MASK;

2880
	hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
2881 2882
	hw_state->pll1 &= PORT_PLL_N_MASK;

2883
	hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
2884 2885
	hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;

2886
	hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
2887 2888
	hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;

2889
	hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
2890 2891 2892 2893
	hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
			  PORT_PLL_INT_COEFF_MASK |
			  PORT_PLL_GAIN_CTL_MASK;

2894
	hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2895 2896
	hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;

2897 2898 2899
	hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
	hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;

2900
	hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2901 2902 2903
	hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
			   PORT_PLL_DCO_AMP_MASK;

2904 2905 2906 2907 2908 2909
	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers. We configure all lanes the same way, so
	 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
	 */
	hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2910
	if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
2911 2912 2913
		DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
				 hw_state->pcsdw12,
				 I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
2914
	hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934

	return true;
}

static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			bxt_ddi_pll_get_hw_state;
	}
}

2935 2936 2937 2938 2939
void intel_ddi_pll_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t val = I915_READ(LCPLL_CTL);

2940
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2941
		skl_shared_dplls_init(dev_priv);
2942 2943
	else if (IS_BROXTON(dev))
		bxt_shared_dplls_init(dev_priv);
2944 2945
	else
		hsw_shared_dplls_init(dev_priv);
P
Paulo Zanoni 已提交
2946

2947
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2948 2949 2950
		int cdclk_freq;

		cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
2951
		dev_priv->skl_boot_cdclk = cdclk_freq;
2952 2953
		if (skl_sanitize_cdclk(dev_priv))
			DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n");
2954 2955
		else
			intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
2956 2957
	} else if (IS_BROXTON(dev)) {
		broxton_init_cdclk(dev);
2958
		broxton_ddi_phy_init(dev);
2959 2960 2961 2962 2963 2964 2965 2966 2967
	} else {
		/*
		 * The LCPLL register should be turned on by the BIOS. For now
		 * let's just check its state and print errors in case
		 * something is wrong.  Don't even try to turn it on.
		 */

		if (val & LCPLL_CD_SOURCE_FCLK)
			DRM_ERROR("CDCLK source is not LCPLL\n");
P
Paulo Zanoni 已提交
2968

2969 2970 2971
		if (val & LCPLL_PLL_DISABLE)
			DRM_ERROR("LCPLL is disabled\n");
	}
P
Paulo Zanoni 已提交
2972
}
2973

2974
void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
2975
{
2976 2977 2978
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
2979
	enum port port = intel_dig_port->port;
2980
	uint32_t val;
2981
	bool wait = false;
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000

	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
		val = I915_READ(DDI_BUF_CTL(port));
		if (val & DDI_BUF_CTL_ENABLE) {
			val &= ~DDI_BUF_CTL_ENABLE;
			I915_WRITE(DDI_BUF_CTL(port), val);
			wait = true;
		}

		val = I915_READ(DP_TP_CTL(port));
		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(port), val);
		POSTING_READ(DP_TP_CTL(port));

		if (wait)
			intel_wait_ddi_buf_idle(dev_priv, port);
	}

3001
	val = DP_TP_CTL_ENABLE |
3002
	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
3003 3004 3005 3006 3007 3008 3009
	if (intel_dp->is_mst)
		val |= DP_TP_CTL_MODE_MST;
	else {
		val |= DP_TP_CTL_MODE_SST;
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
	}
3010 3011 3012 3013 3014 3015 3016 3017 3018
	I915_WRITE(DP_TP_CTL(port), val);
	POSTING_READ(DP_TP_CTL(port));

	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
	POSTING_READ(DDI_BUF_CTL(port));

	udelay(600);
}
P
Paulo Zanoni 已提交
3019

3020 3021 3022 3023 3024 3025 3026 3027
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	uint32_t val;

	intel_ddi_post_disable(intel_encoder);

3028
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3029
	val &= ~FDI_RX_ENABLE;
3030
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3031

3032
	val = I915_READ(FDI_RX_MISC(PIPE_A));
3033 3034
	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
3035
	I915_WRITE(FDI_RX_MISC(PIPE_A), val);
3036

3037
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3038
	val &= ~FDI_PCDCLK;
3039
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3040

3041
	val = I915_READ(FDI_RX_CTL(PIPE_A));
3042
	val &= ~FDI_RX_PLL_ENABLE;
3043
	I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3044 3045
}

3046
void intel_ddi_get_config(struct intel_encoder *encoder,
3047
			  struct intel_crtc_state *pipe_config)
3048 3049 3050
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
3051
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
3052
	struct intel_hdmi *intel_hdmi;
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	u32 temp, flags = 0;

	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (temp & TRANS_DDI_PHSYNC)
		flags |= DRM_MODE_FLAG_PHSYNC;
	else
		flags |= DRM_MODE_FLAG_NHSYNC;
	if (temp & TRANS_DDI_PVSYNC)
		flags |= DRM_MODE_FLAG_PVSYNC;
	else
		flags |= DRM_MODE_FLAG_NVSYNC;

3065
	pipe_config->base.adjusted_mode.flags |= flags;
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082

	switch (temp & TRANS_DDI_BPC_MASK) {
	case TRANS_DDI_BPC_6:
		pipe_config->pipe_bpp = 18;
		break;
	case TRANS_DDI_BPC_8:
		pipe_config->pipe_bpp = 24;
		break;
	case TRANS_DDI_BPC_10:
		pipe_config->pipe_bpp = 30;
		break;
	case TRANS_DDI_BPC_12:
		pipe_config->pipe_bpp = 36;
		break;
	default:
		break;
	}
3083 3084 3085

	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
3086
		pipe_config->has_hdmi_sink = true;
3087 3088 3089 3090
		intel_hdmi = enc_to_intel_hdmi(&encoder->base);

		if (intel_hdmi->infoframe_enabled(&encoder->base))
			pipe_config->has_infoframe = true;
3091
		break;
3092 3093 3094 3095 3096 3097
	case TRANS_DDI_MODE_SELECT_DVI:
	case TRANS_DDI_MODE_SELECT_FDI:
		break;
	case TRANS_DDI_MODE_SELECT_DP_SST:
	case TRANS_DDI_MODE_SELECT_DP_MST:
		pipe_config->has_dp_encoder = true;
3098 3099
		pipe_config->lane_count =
			((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
3100 3101 3102 3103 3104
		intel_dp_get_m_n(intel_crtc, pipe_config);
		break;
	default:
		break;
	}
3105

3106
	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
3107
		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
3108
		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
3109 3110
			pipe_config->has_audio = true;
	}
3111

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
	}
3131

3132
	intel_ddi_clock_get(encoder, pipe_config);
3133 3134
}

P
Paulo Zanoni 已提交
3135 3136 3137 3138 3139 3140
static void intel_ddi_destroy(struct drm_encoder *encoder)
{
	/* HDMI has nothing special to destroy, so we can go with this. */
	intel_dp_encoder_destroy(encoder);
}

3141
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
3142
				     struct intel_crtc_state *pipe_config)
P
Paulo Zanoni 已提交
3143
{
3144
	int type = encoder->type;
3145
	int port = intel_ddi_get_encoder_port(encoder);
P
Paulo Zanoni 已提交
3146

3147
	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
P
Paulo Zanoni 已提交
3148

3149 3150 3151
	if (port == PORT_A)
		pipe_config->cpu_transcoder = TRANSCODER_EDP;

P
Paulo Zanoni 已提交
3152
	if (type == INTEL_OUTPUT_HDMI)
3153
		return intel_hdmi_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
3154
	else
3155
		return intel_dp_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
3156 3157 3158 3159 3160 3161
}

static const struct drm_encoder_funcs intel_ddi_funcs = {
	.destroy = intel_ddi_destroy,
};

3162 3163 3164 3165 3166 3167
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

3168
	connector = intel_connector_alloc();
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	if (!connector)
		return NULL;

	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
	if (!intel_dp_init_connector(intel_dig_port, connector)) {
		kfree(connector);
		return NULL;
	}

	return connector;
}

static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

3187
	connector = intel_connector_alloc();
3188 3189 3190 3191 3192 3193 3194 3195 3196
	if (!connector)
		return NULL;

	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
	intel_hdmi_init_connector(intel_dig_port, connector);

	return connector;
}

P
Paulo Zanoni 已提交
3197 3198
void intel_ddi_init(struct drm_device *dev, enum port port)
{
3199
	struct drm_i915_private *dev_priv = dev->dev_private;
P
Paulo Zanoni 已提交
3200 3201 3202
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
3203 3204 3205 3206 3207 3208
	bool init_hdmi, init_dp;

	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
	if (!init_dp && !init_hdmi) {
3209
		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
3210
			      port_name(port));
3211
		return;
3212
	}
P
Paulo Zanoni 已提交
3213

3214
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
P
Paulo Zanoni 已提交
3215 3216 3217 3218 3219 3220 3221 3222 3223
	if (!intel_dig_port)
		return;

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
			 DRM_MODE_ENCODER_TMDS);

3224
	intel_encoder->compute_config = intel_ddi_compute_config;
P
Paulo Zanoni 已提交
3225 3226 3227 3228 3229
	intel_encoder->enable = intel_enable_ddi;
	intel_encoder->pre_enable = intel_ddi_pre_enable;
	intel_encoder->disable = intel_disable_ddi;
	intel_encoder->post_disable = intel_ddi_post_disable;
	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
3230
	intel_encoder->get_config = intel_ddi_get_config;
P
Paulo Zanoni 已提交
3231 3232

	intel_dig_port->port = port;
3233 3234 3235
	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
					  (DDI_BUF_PORT_REVERSAL |
					   DDI_A_4_LANES);
P
Paulo Zanoni 已提交
3236

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	/*
	 * Bspec says that DDI_A_4_LANES is the only supported configuration
	 * for Broxton.  Yet some BIOS fail to set this bit on port A if eDP
	 * wasn't lit up at boot.  Force this bit on in our internal
	 * configuration so that we use the proper lane count for our
	 * calculations.
	 */
	if (IS_BROXTON(dev) && port == PORT_A) {
		if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
			DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
			intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
		}
	}

P
Paulo Zanoni 已提交
3251
	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
3252
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3253
	intel_encoder->cloneable = 0;
P
Paulo Zanoni 已提交
3254

3255 3256 3257
	if (init_dp) {
		if (!intel_ddi_init_dp_connector(intel_dig_port))
			goto err;
3258

3259
		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
3260 3261 3262 3263
		/*
		 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
		 * interrupts to check the external panel connection.
		 */
3264
		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
3265 3266 3267
			dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
		else
			dev_priv->hotplug.irq_port[port] = intel_dig_port;
3268
	}
3269

3270 3271
	/* In theory we don't need the encoder->type check, but leave it just in
	 * case we have some really bad VBTs... */
3272 3273 3274
	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
			goto err;
3275
	}
3276 3277 3278 3279 3280 3281

	return;

err:
	drm_encoder_cleanup(encoder);
	kfree(intel_dig_port);
P
Paulo Zanoni 已提交
3282
}