memcontrol.c 28.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
24
#include <linux/smp.h>
25
#include <linux/page-flags.h>
26
#include <linux/backing-dev.h>
27 28
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
29 30 31
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
32
#include <linux/seq_file.h>
B
Balbir Singh 已提交
33

34 35
#include <asm/uaccess.h>

B
Balbir Singh 已提交
36
struct cgroup_subsys mem_cgroup_subsys;
37
static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
B
Balbir Singh 已提交
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx, int val)
{
	int cpu = smp_processor_id();
	stat->cpustat[cpu].count[idx] += val;
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*
 * per-zone information in memory controller.
 */

enum mem_cgroup_zstat_index {
	MEM_CGROUP_ZSTAT_ACTIVE,
	MEM_CGROUP_ZSTAT_INACTIVE,

	NR_MEM_CGROUP_ZSTAT,
};

struct mem_cgroup_per_zone {
	unsigned long count[NR_MEM_CGROUP_ZSTAT];
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

B
Balbir Singh 已提交
105 106 107 108 109 110 111
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
112 113 114
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
115 116 117 118 119 120 121
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
122 123 124 125 126 127 128
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 * TODO: Consider making these lists per zone
	 */
	struct list_head active_list;
	struct list_head inactive_list;
129
	struct mem_cgroup_lru_info info;
130 131 132 133
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
	spinlock_t lru_lock;
134
	unsigned long control_type;	/* control RSS or RSS+Pagecache */
135
	int	prev_priority;	/* for recording reclaim priority */
136 137 138 139
	/*
	 * statistics.
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
140 141
};

142 143 144 145 146 147 148 149
/*
 * We use the lower bit of the page->page_cgroup pointer as a bit spin
 * lock. We need to ensure that page->page_cgroup is atleast two
 * byte aligned (based on comments from Nick Piggin)
 */
#define PAGE_CGROUP_LOCK_BIT 	0x0
#define PAGE_CGROUP_LOCK 		(1 << PAGE_CGROUP_LOCK_BIT)

B
Balbir Singh 已提交
150 151 152 153 154 155 156 157
/*
 * A page_cgroup page is associated with every page descriptor. The
 * page_cgroup helps us identify information about the cgroup
 */
struct page_cgroup {
	struct list_head lru;		/* per cgroup LRU list */
	struct page *page;
	struct mem_cgroup *mem_cgroup;
158 159
	atomic_t ref_cnt;		/* Helpful when pages move b/w  */
					/* mapped and cached states     */
160
	int	 flags;
B
Balbir Singh 已提交
161
};
162
#define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
163
#define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
B
Balbir Singh 已提交
164

165 166 167 168 169 170 171 172 173 174
static inline int page_cgroup_nid(struct page_cgroup *pc)
{
	return page_to_nid(pc->page);
}

static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
{
	return page_zonenum(pc->page);
}

175 176 177 178 179 180 181 182
enum {
	MEM_CGROUP_TYPE_UNSPEC = 0,
	MEM_CGROUP_TYPE_MAPPED,
	MEM_CGROUP_TYPE_CACHED,
	MEM_CGROUP_TYPE_ALL,
	MEM_CGROUP_TYPE_MAX,
};

183 184 185 186 187
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
};

188

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * Always modified under lru lock. Then, not necessary to preempt_disable()
 */
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
					bool charge)
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	VM_BUG_ON(!irqs_disabled());

	if (flags & PAGE_CGROUP_FLAG_CACHE)
		__mem_cgroup_stat_add_safe(stat,
					MEM_CGROUP_STAT_CACHE, val);
	else
		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
}

static inline struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	BUG_ON(!mem->info.nodeinfo[nid]);
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

static inline struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
219

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
					enum mem_cgroup_zstat_index idx)
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
236 237
}

238
static struct mem_cgroup init_mem_cgroup;
B
Balbir Singh 已提交
239 240 241 242 243 244 245 246 247

static inline
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
static inline
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
{
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_task(p);
	css_get(&mem->css);
	mm->mem_cgroup = mem;
}

void mm_free_cgroup(struct mm_struct *mm)
{
	css_put(&mm->mem_cgroup->css);
}

269 270 271 272 273 274
static inline int page_cgroup_locked(struct page *page)
{
	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
					&page->page_cgroup);
}

275 276
void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
{
277 278 279 280 281 282 283 284 285 286 287
	int locked;

	/*
	 * While resetting the page_cgroup we might not hold the
	 * page_cgroup lock. free_hot_cold_page() is an example
	 * of such a scenario
	 */
	if (pc)
		VM_BUG_ON(!page_cgroup_locked(page));
	locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
	page->page_cgroup = ((unsigned long)pc | locked);
288 289 290 291
}

struct page_cgroup *page_get_page_cgroup(struct page *page)
{
292 293 294 295
	return (struct page_cgroup *)
		(page->page_cgroup & ~PAGE_CGROUP_LOCK);
}

296
static void __always_inline lock_page_cgroup(struct page *page)
297 298 299 300 301
{
	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
	VM_BUG_ON(!page_cgroup_locked(page));
}

302
static void __always_inline unlock_page_cgroup(struct page *page)
303 304 305 306
{
	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}

307 308 309 310 311
/*
 * Tie new page_cgroup to struct page under lock_page_cgroup()
 * This can fail if the page has been tied to a page_cgroup.
 * If success, returns 0.
 */
312 313
static int page_cgroup_assign_new_page_cgroup(struct page *page,
						struct page_cgroup *pc)
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
{
	int ret = 0;

	lock_page_cgroup(page);
	if (!page_get_page_cgroup(page))
		page_assign_page_cgroup(page, pc);
	else /* A page is tied to other pc. */
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

/*
 * Clear page->page_cgroup member under lock_page_cgroup().
 * If given "pc" value is different from one page->page_cgroup,
 * page->cgroup is not cleared.
 * Returns a value of page->page_cgroup at lock taken.
 * A can can detect failure of clearing by following
 *  clear_page_cgroup(page, pc) == pc
 */

335 336
static struct page_cgroup *clear_page_cgroup(struct page *page,
						struct page_cgroup *pc)
337 338 339 340 341 342 343 344 345 346 347
{
	struct page_cgroup *ret;
	/* lock and clear */
	lock_page_cgroup(page);
	ret = page_get_page_cgroup(page);
	if (likely(ret == pc))
		page_assign_page_cgroup(page, NULL);
	unlock_page_cgroup(page);
	return ret;
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static void __mem_cgroup_remove_list(struct page_cgroup *pc)
{
	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (from)
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
	else
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;

	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
	list_del_init(&pc->lru);
}

static void __mem_cgroup_add_list(struct page_cgroup *pc)
{
	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (!to) {
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
		list_add(&pc->lru, &pc->mem_cgroup->inactive_list);
	} else {
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
		list_add(&pc->lru, &pc->mem_cgroup->active_list);
	}
	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
}

377
static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
378
{
379 380 381 382 383 384 385 386
	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);

	if (from)
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
	else
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;

387
	if (active) {
388
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
389
		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
390
		list_move(&pc->lru, &pc->mem_cgroup->active_list);
391
	} else {
392
		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
393
		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
394
		list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
395
	}
396 397
}

398 399 400 401 402 403 404 405 406 407
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;

	task_lock(task);
	ret = task->mm && mm_cgroup(task->mm) == mem;
	task_unlock(task);
	return ret;
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/*
 * This routine assumes that the appropriate zone's lru lock is already held
 */
void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
{
	struct mem_cgroup *mem;
	if (!pc)
		return;

	mem = pc->mem_cgroup;

	spin_lock(&mem->lru_lock);
	__mem_cgroup_move_lists(pc, active);
	spin_unlock(&mem->lru_lock);
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * Calculate mapped_ratio under memory controller. This will be used in
 * vmscan.c for deteremining we have to reclaim mapped pages.
 */
int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
{
	long total, rss;

	/*
	 * usage is recorded in bytes. But, here, we assume the number of
	 * physical pages can be represented by "long" on any arch.
	 */
	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	return (int)((rss * 100L) / total);
}
440 441 442 443 444 445 446 447 448 449 450 451 452 453
/*
 * This function is called from vmscan.c. In page reclaiming loop. balance
 * between active and inactive list is calculated. For memory controller
 * page reclaiming, we should use using mem_cgroup's imbalance rather than
 * zone's global lru imbalance.
 */
long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
{
	unsigned long active, inactive;
	/* active and inactive are the number of pages. 'long' is ok.*/
	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
	return (long) (active / (inactive + 1));
}
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
	return mem->prev_priority;
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
	mem->prev_priority = priority;
}

474 475 476 477 478 479 480 481 482 483 484 485
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
					int active)
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
486
	struct page_cgroup *pc, *tmp;
487 488 489 490 491 492 493

	if (active)
		src = &mem_cont->active_list;
	else
		src = &mem_cont->inactive_list;

	spin_lock(&mem_cont->lru_lock);
494 495
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
496
		if (scan >= nr_to_scan)
497
			break;
498 499 500
		page = pc->page;
		VM_BUG_ON(!pc);

H
Hugh Dickins 已提交
501
		if (unlikely(!PageLRU(page)))
502 503
			continue;

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
		if (PageActive(page) && !active) {
			__mem_cgroup_move_lists(pc, true);
			continue;
		}
		if (!PageActive(page) && active) {
			__mem_cgroup_move_lists(pc, false);
			continue;
		}

		/*
		 * Reclaim, per zone
		 * TODO: make the active/inactive lists per zone
		 */
		if (page_zone(page) != z)
			continue;

H
Hugh Dickins 已提交
520 521
		scan++;
		list_move(&pc->lru, &pc_list);
522 523 524 525 526 527 528 529 530 531 532 533 534 535

		if (__isolate_lru_page(page, mode) == 0) {
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	list_splice(&pc_list, src);
	spin_unlock(&mem_cont->lru_lock);

	*scanned = scan;
	return nr_taken;
}

536 537 538 539 540 541
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
542 543
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype)
544 545
{
	struct mem_cgroup *mem;
546
	struct page_cgroup *pc;
547 548
	unsigned long flags;
	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
549 550 551 552 553 554 555 556

	/*
	 * Should page_cgroup's go to their own slab?
	 * One could optimize the performance of the charging routine
	 * by saving a bit in the page_flags and using it as a lock
	 * to see if the cgroup page already has a page_cgroup associated
	 * with it
	 */
557
retry:
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	if (page) {
		lock_page_cgroup(page);
		pc = page_get_page_cgroup(page);
		/*
		 * The page_cgroup exists and
		 * the page has already been accounted.
		 */
		if (pc) {
			if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
				/* this page is under being uncharged ? */
				unlock_page_cgroup(page);
				cpu_relax();
				goto retry;
			} else {
				unlock_page_cgroup(page);
				goto done;
			}
575
		}
576
		unlock_page_cgroup(page);
577 578
	}

579
	pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
580 581 582 583
	if (pc == NULL)
		goto err;

	/*
584 585
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
586 587 588 589 590 591
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
	if (!mm)
		mm = &init_mm;

592
	rcu_read_lock();
593 594 595 596 597 598 599 600 601 602 603 604
	mem = rcu_dereference(mm->mem_cgroup);
	/*
	 * For every charge from the cgroup, increment reference
	 * count
	 */
	css_get(&mem->css);
	rcu_read_unlock();

	/*
	 * If we created the page_cgroup, we should free it on exceeding
	 * the cgroup limit.
	 */
605
	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
606 607
		if (!(gfp_mask & __GFP_WAIT))
			goto out;
608 609

		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
610 611 612 613 614 615 616 617 618 619 620
			continue;

		/*
 		 * try_to_free_mem_cgroup_pages() might not give us a full
 		 * picture of reclaim. Some pages are reclaimed and might be
 		 * moved to swap cache or just unmapped from the cgroup.
 		 * Check the limit again to see if the reclaim reduced the
 		 * current usage of the cgroup before giving up
 		 */
		if (res_counter_check_under_limit(&mem->res))
			continue;
621 622 623 624

		if (!nr_retries--) {
			mem_cgroup_out_of_memory(mem, gfp_mask);
			goto out;
625
		}
626
		congestion_wait(WRITE, HZ/10);
627 628 629 630 631
	}

	atomic_set(&pc->ref_cnt, 1);
	pc->mem_cgroup = mem;
	pc->page = page;
632
	pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
633 634
	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
		pc->flags |= PAGE_CGROUP_FLAG_CACHE;
635

636
	if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
637
		/*
638 639
		 * Another charge has been added to this page already.
		 * We take lock_page_cgroup(page) again and read
640 641 642 643 644
		 * page->cgroup, increment refcnt.... just retry is OK.
		 */
		res_counter_uncharge(&mem->res, PAGE_SIZE);
		css_put(&mem->css);
		kfree(pc);
645 646
		if (!page)
			goto done;
647 648
		goto retry;
	}
649

650
	spin_lock_irqsave(&mem->lru_lock, flags);
651
	/* Update statistics vector */
652
	__mem_cgroup_add_list(pc);
653 654
	spin_unlock_irqrestore(&mem->lru_lock, flags);

655 656
done:
	return 0;
657 658
out:
	css_put(&mem->css);
659 660 661 662 663
	kfree(pc);
err:
	return -ENOMEM;
}

664 665 666 667 668 669 670
int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
			gfp_t gfp_mask)
{
	return mem_cgroup_charge_common(page, mm, gfp_mask,
			MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

671 672 673
/*
 * See if the cached pages should be charged at all?
 */
674 675
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
676
{
677
	int ret = 0;
678 679 680 681
	struct mem_cgroup *mem;
	if (!mm)
		mm = &init_mm;

682
	rcu_read_lock();
683
	mem = rcu_dereference(mm->mem_cgroup);
684 685
	css_get(&mem->css);
	rcu_read_unlock();
686
	if (mem->control_type == MEM_CGROUP_TYPE_ALL)
687
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
688
				MEM_CGROUP_CHARGE_TYPE_CACHE);
689 690
	css_put(&mem->css);
	return ret;
691 692
}

693 694 695 696 697 698 699 700
/*
 * Uncharging is always a welcome operation, we never complain, simply
 * uncharge.
 */
void mem_cgroup_uncharge(struct page_cgroup *pc)
{
	struct mem_cgroup *mem;
	struct page *page;
701
	unsigned long flags;
702

703 704 705 706
	/*
	 * This can handle cases when a page is not charged at all and we
	 * are switching between handling the control_type.
	 */
707 708 709 710 711
	if (!pc)
		return;

	if (atomic_dec_and_test(&pc->ref_cnt)) {
		page = pc->page;
712 713
		/*
		 * get page->cgroup and clear it under lock.
714
		 * force_empty can drop page->cgroup without checking refcnt.
715 716 717 718 719 720
		 */
		if (clear_page_cgroup(page, pc) == pc) {
			mem = pc->mem_cgroup;
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			spin_lock_irqsave(&mem->lru_lock, flags);
721
			__mem_cgroup_remove_list(pc);
722 723 724
			spin_unlock_irqrestore(&mem->lru_lock, flags);
			kfree(pc);
		}
725
	}
726
}
727

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
/*
 * Returns non-zero if a page (under migration) has valid page_cgroup member.
 * Refcnt of page_cgroup is incremented.
 */

int mem_cgroup_prepare_migration(struct page *page)
{
	struct page_cgroup *pc;
	int ret = 0;
	lock_page_cgroup(page);
	pc = page_get_page_cgroup(page);
	if (pc && atomic_inc_not_zero(&pc->ref_cnt))
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

void mem_cgroup_end_migration(struct page *page)
{
	struct page_cgroup *pc = page_get_page_cgroup(page);
	mem_cgroup_uncharge(pc);
}
/*
 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
 * And no race with uncharge() routines because page_cgroup for *page*
 * has extra one reference by mem_cgroup_prepare_migration.
 */

void mem_cgroup_page_migration(struct page *page, struct page *newpage)
{
	struct page_cgroup *pc;
759 760
	struct mem_cgroup *mem;
	unsigned long flags;
761 762 763 764
retry:
	pc = page_get_page_cgroup(page);
	if (!pc)
		return;
765
	mem = pc->mem_cgroup;
766 767
	if (clear_page_cgroup(page, pc) != pc)
		goto retry;
768 769 770 771

	spin_lock_irqsave(&mem->lru_lock, flags);

	__mem_cgroup_remove_list(pc);
772 773 774 775
	pc->page = newpage;
	lock_page_cgroup(newpage);
	page_assign_page_cgroup(newpage, pc);
	unlock_page_cgroup(newpage);
776 777 778
	__mem_cgroup_add_list(pc);

	spin_unlock_irqrestore(&mem->lru_lock, flags);
779 780
	return;
}
781

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * This routine ignores page_cgroup->ref_cnt.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
#define FORCE_UNCHARGE_BATCH	(128)
static void
mem_cgroup_force_empty_list(struct mem_cgroup *mem, struct list_head *list)
{
	struct page_cgroup *pc;
	struct page *page;
	int count;
	unsigned long flags;

retry:
	count = FORCE_UNCHARGE_BATCH;
	spin_lock_irqsave(&mem->lru_lock, flags);

	while (--count && !list_empty(list)) {
		pc = list_entry(list->prev, struct page_cgroup, lru);
		page = pc->page;
		/* Avoid race with charge */
		atomic_set(&pc->ref_cnt, 0);
		if (clear_page_cgroup(page, pc) == pc) {
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
808
			__mem_cgroup_remove_list(pc);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
			kfree(pc);
		} else 	/* being uncharged ? ...do relax */
			break;
	}
	spin_unlock_irqrestore(&mem->lru_lock, flags);
	if (!list_empty(list)) {
		cond_resched();
		goto retry;
	}
	return;
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */

int mem_cgroup_force_empty(struct mem_cgroup *mem)
{
	int ret = -EBUSY;
	css_get(&mem->css);
	/*
	 * page reclaim code (kswapd etc..) will move pages between
`	 * active_list <-> inactive_list while we don't take a lock.
	 * So, we have to do loop here until all lists are empty.
	 */
	while (!(list_empty(&mem->active_list) &&
		 list_empty(&mem->inactive_list))) {
		if (atomic_read(&mem->css.cgroup->count) > 0)
			goto out;
		/* drop all page_cgroup in active_list */
		mem_cgroup_force_empty_list(mem, &mem->active_list);
		/* drop all page_cgroup in inactive_list */
		mem_cgroup_force_empty_list(mem, &mem->inactive_list);
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
}



852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
{
	*tmp = memparse(buf, &buf);
	if (*buf != '\0')
		return -EINVAL;

	/*
	 * Round up the value to the closest page size
	 */
	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
	return 0;
}

static ssize_t mem_cgroup_read(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			char __user *userbuf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
868 869
{
	return res_counter_read(&mem_cgroup_from_cont(cont)->res,
870 871
				cft->private, userbuf, nbytes, ppos,
				NULL);
B
Balbir Singh 已提交
872 873 874 875 876 877 878
}

static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
				struct file *file, const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
879 880
				cft->private, userbuf, nbytes, ppos,
				mem_cgroup_write_strategy);
B
Balbir Singh 已提交
881 882
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
static ssize_t mem_control_type_write(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			const char __user *userbuf,
			size_t nbytes, loff_t *pos)
{
	int ret;
	char *buf, *end;
	unsigned long tmp;
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_cont(cont);
	buf = kmalloc(nbytes + 1, GFP_KERNEL);
	ret = -ENOMEM;
	if (buf == NULL)
		goto out;

	buf[nbytes] = 0;
	ret = -EFAULT;
	if (copy_from_user(buf, userbuf, nbytes))
		goto out_free;

	ret = -EINVAL;
	tmp = simple_strtoul(buf, &end, 10);
	if (*end != '\0')
		goto out_free;

	if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
		goto out_free;

	mem->control_type = tmp;
	ret = nbytes;
out_free:
	kfree(buf);
out:
	return ret;
}

static ssize_t mem_control_type_read(struct cgroup *cont,
				struct cftype *cft,
				struct file *file, char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	unsigned long val;
	char buf[64], *s;
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_cont(cont);
	s = buf;
	val = mem->control_type;
	s += sprintf(s, "%lu\n", val);
	return simple_read_from_buffer((void __user *)userbuf, nbytes,
			ppos, buf, s - buf);
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

static ssize_t mem_force_empty_write(struct cgroup *cont,
				struct cftype *cft, struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	int ret;
	ret = mem_cgroup_force_empty(mem);
	if (!ret)
		ret = nbytes;
	return ret;
}

/*
 * Note: This should be removed if cgroup supports write-only file.
 */

static ssize_t mem_force_empty_read(struct cgroup *cont,
				struct cftype *cft,
				struct file *file, char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return -EINVAL;
}


964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
static const struct mem_cgroup_stat_desc {
	const char *msg;
	u64 unit;
} mem_cgroup_stat_desc[] = {
	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
};

static int mem_control_stat_show(struct seq_file *m, void *arg)
{
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
	struct mem_cgroup_stat *stat = &mem_cont->stat;
	int i;

	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
		s64 val;

		val = mem_cgroup_read_stat(stat, i);
		val *= mem_cgroup_stat_desc[i].unit;
		seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
				(long long)val);
	}
987 988 989 990 991 992 993 994 995 996 997
	/* showing # of active pages */
	{
		unsigned long active, inactive;

		inactive = mem_cgroup_get_all_zonestat(mem_cont,
						MEM_CGROUP_ZSTAT_INACTIVE);
		active = mem_cgroup_get_all_zonestat(mem_cont,
						MEM_CGROUP_ZSTAT_ACTIVE);
		seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
		seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
	}
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	return 0;
}

static const struct file_operations mem_control_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_stat_open(struct inode *unused, struct file *file)
{
	/* XXX __d_cont */
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_stat_file_operations;
	return single_open(file, mem_control_stat_show, cont);
}



B
Balbir Singh 已提交
1018 1019
static struct cftype mem_cgroup_files[] = {
	{
1020
		.name = "usage_in_bytes",
B
Balbir Singh 已提交
1021 1022 1023 1024
		.private = RES_USAGE,
		.read = mem_cgroup_read,
	},
	{
1025
		.name = "limit_in_bytes",
B
Balbir Singh 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034
		.private = RES_LIMIT,
		.write = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "failcnt",
		.private = RES_FAILCNT,
		.read = mem_cgroup_read,
	},
1035 1036 1037 1038 1039
	{
		.name = "control_type",
		.write = mem_control_type_write,
		.read = mem_control_type_read,
	},
1040 1041 1042 1043 1044
	{
		.name = "force_empty",
		.write = mem_force_empty_write,
		.read = mem_force_empty_read,
	},
1045 1046 1047 1048
	{
		.name = "stat",
		.open = mem_control_stat_open,
	},
B
Balbir Singh 已提交
1049 1050
};

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;

	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
	if (!pn)
		return 1;
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
	return 0;
}

1063 1064
static struct mem_cgroup init_mem_cgroup;

B
Balbir Singh 已提交
1065 1066 1067 1068
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct mem_cgroup *mem;
1069
	int node;
B
Balbir Singh 已提交
1070

1071 1072 1073 1074 1075 1076 1077 1078
	if (unlikely((cont->parent) == NULL)) {
		mem = &init_mem_cgroup;
		init_mm.mem_cgroup = mem;
	} else
		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);

	if (mem == NULL)
		return NULL;
B
Balbir Singh 已提交
1079 1080

	res_counter_init(&mem->res);
1081 1082
	INIT_LIST_HEAD(&mem->active_list);
	INIT_LIST_HEAD(&mem->inactive_list);
1083
	spin_lock_init(&mem->lru_lock);
1084
	mem->control_type = MEM_CGROUP_TYPE_ALL;
1085 1086 1087 1088 1089 1090
	memset(&mem->info, 0, sizeof(mem->info));

	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;

B
Balbir Singh 已提交
1091
	return &mem->css;
1092 1093 1094 1095 1096 1097
free_out:
	for_each_node_state(node, N_POSSIBLE)
		kfree(mem->info.nodeinfo[node]);
	if (cont->parent != NULL)
		kfree(mem);
	return NULL;
B
Balbir Singh 已提交
1098 1099
}

1100 1101 1102 1103 1104 1105 1106
static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	mem_cgroup_force_empty(mem);
}

B
Balbir Singh 已提交
1107 1108 1109
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
1110 1111 1112 1113 1114 1115
	int node;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	for_each_node_state(node, N_POSSIBLE)
		kfree(mem->info.nodeinfo[node]);

B
Balbir Singh 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	kfree(mem_cgroup_from_cont(cont));
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, mem_cgroup_files,
					ARRAY_SIZE(mem_cgroup_files));
}

B
Balbir Singh 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
	struct mm_struct *mm;
	struct mem_cgroup *mem, *old_mem;

	mm = get_task_mm(p);
	if (mm == NULL)
		return;

	mem = mem_cgroup_from_cont(cont);
	old_mem = mem_cgroup_from_cont(old_cont);

	if (mem == old_mem)
		goto out;

	/*
	 * Only thread group leaders are allowed to migrate, the mm_struct is
	 * in effect owned by the leader
	 */
	if (p->tgid != p->pid)
		goto out;

	css_get(&mem->css);
	rcu_assign_pointer(mm->mem_cgroup, mem);
	css_put(&old_mem->css);

out:
	mmput(mm);
	return;
}

B
Balbir Singh 已提交
1160 1161 1162 1163
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
1164
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
1165 1166
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
1167
	.attach = mem_cgroup_move_task,
1168
	.early_init = 0,
B
Balbir Singh 已提交
1169
};