fs-writeback.c 71.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32

33 34 35
/*
 * 4MB minimal write chunk size
 */
36
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56
	enum wb_reason reason;		/* why was writeback initiated? */
57

58
	struct list_head list;		/* pending work list */
59
	struct wb_completion *done;	/* set if the caller waits */
60 61
};

62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


75 76 77 78 79 80 81 82 83 84 85 86
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
87 88
static inline struct inode *wb_inode(struct list_head *head)
{
89
	return list_entry(head, struct inode, i_io_list);
N
Nick Piggin 已提交
90 91
}

92 93 94 95 96 97 98 99
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

100 101
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

102 103 104 105 106 107
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
108
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 110
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
111 112 113 114 115 116 117
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119
		clear_bit(WB_has_dirty_io, &wb->state);
120 121
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
122
	}
123 124 125
}

/**
126
 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 128
 * @inode: inode to be moved
 * @wb: target bdi_writeback
129
 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130
 *
131
 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 133 134
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
135
static bool inode_io_list_move_locked(struct inode *inode,
136 137 138 139 140
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

141
	list_move(&inode->i_io_list, head);
142 143 144 145 146 147 148 149 150 151

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
152
 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 154 155 156 157 158
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
159
static void inode_io_list_del_locked(struct inode *inode,
160 161 162 163
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

164
	list_del_init(&inode->i_io_list);
165 166 167
	wb_io_lists_depopulated(wb);
}

168
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
169
{
170 171 172 173
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
174 175
}

176 177 178 179 180 181 182 183 184 185 186
static void finish_writeback_work(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
{
	struct wb_completion *done = work->done;

	if (work->auto_free)
		kfree(work);
	if (done && atomic_dec_and_test(&done->cnt))
		wake_up_all(&wb->bdi->wb_waitq);
}

187 188
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
189
{
190
	trace_writeback_queue(wb, work);
191

192 193
	if (work->done)
		atomic_inc(&work->done->cnt);
194 195 196 197 198 199 200 201 202

	spin_lock_bh(&wb->work_lock);

	if (test_bit(WB_registered, &wb->state)) {
		list_add_tail(&work->list, &wb->work_list);
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	} else
		finish_writeback_work(wb, work);

203
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
204 205
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

224 225
#ifdef CONFIG_CGROUP_WRITEBACK

226 227 228 229 230 231 232 233 234 235 236 237 238 239
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

240 241 242
static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
static struct workqueue_struct *isw_wq;

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);

299
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
300 301 302 303
		if (likely(wb == inode->i_wb)) {
			wb_put(wb);	/* @inode already has ref */
			return wb;
		}
304 305

		spin_unlock(&wb->list_lock);
306
		wb_put(wb);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

326 327 328 329 330 331 332 333
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

334 335 336 337 338 339 340 341 342 343
static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
{
	down_write(&bdi->wb_switch_rwsem);
}

static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
{
	up_write(&bdi->wb_switch_rwsem);
}

344 345 346 347 348
static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
349
	struct backing_dev_info *bdi = inode_to_bdi(inode);
350 351
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
352
	struct bdi_writeback *new_wb = isw->new_wb;
M
Matthew Wilcox 已提交
353 354
	XA_STATE(xas, &mapping->i_pages, 0);
	struct page *page;
355
	bool switched = false;
356

357 358 359 360 361 362
	/*
	 * If @inode switches cgwb membership while sync_inodes_sb() is
	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
	 */
	down_read(&bdi->wb_switch_rwsem);

363 364 365 366
	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
M
Matthew Wilcox 已提交
367
	 * synchronizing against the i_pages lock.
368
	 *
M
Matthew Wilcox 已提交
369
	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
370 371
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
372
	 */
373 374 375 376 377 378 379
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
380
	spin_lock(&inode->i_lock);
M
Matthew Wilcox 已提交
381
	xa_lock_irq(&mapping->i_pages);
382 383 384

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
385
	 * the inode and we shouldn't modify ->i_io_list.
386 387 388 389 390 391 392
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
M
Matthew Wilcox 已提交
393
	 * pages actually under writeback.
394
	 */
M
Matthew Wilcox 已提交
395 396
	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
		if (PageDirty(page)) {
397 398
			dec_wb_stat(old_wb, WB_RECLAIMABLE);
			inc_wb_stat(new_wb, WB_RECLAIMABLE);
399 400 401
		}
	}

M
Matthew Wilcox 已提交
402 403 404 405 406
	xas_set(&xas, 0);
	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
		WARN_ON_ONCE(!PageWriteback(page));
		dec_wb_stat(old_wb, WB_WRITEBACK);
		inc_wb_stat(new_wb, WB_WRITEBACK);
407 408 409 410 411 412 413 414 415 416
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
417
	if (!list_empty(&inode->i_io_list)) {
418 419
		struct inode *pos;

420
		inode_io_list_del_locked(inode, old_wb);
421
		inode->i_wb = new_wb;
422
		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
423 424 425
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
426
		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
427 428 429
	} else {
		inode->i_wb = new_wb;
	}
430

431
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
432 433 434
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
435 436
	switched = true;
skip_switch:
437 438 439 440 441 442
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

M
Matthew Wilcox 已提交
443
	xa_unlock_irq(&mapping->i_pages);
444
	spin_unlock(&inode->i_lock);
445 446
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
447

448 449
	up_read(&bdi->wb_switch_rwsem);

450 451 452 453
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
454
	wb_put(new_wb);
455 456

	iput(inode);
457
	kfree(isw);
458 459

	atomic_dec(&isw_nr_in_flight);
460 461 462 463 464 465 466 467 468
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
469
	queue_work(isw_wq, &isw->work);
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

490 491 492 493 494 495 496 497 498
	/*
	 * Avoid starting new switches while sync_inodes_sb() is in
	 * progress.  Otherwise, if the down_write protected issue path
	 * blocks heavily, we might end up starting a large number of
	 * switches which will block on the rwsem.
	 */
	if (!down_read_trylock(&bdi->wb_switch_rwsem))
		return;

499 500
	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
501
		goto out_unlock;
502 503 504 505 506 507 508 509 510 511 512 513

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
514
	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
515 516 517 518 519
	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
520
	inode->i_state |= I_WB_SWITCH;
521
	__iget(inode);
522 523 524 525
	spin_unlock(&inode->i_lock);

	isw->inode = inode;

526 527
	atomic_inc(&isw_nr_in_flight);

528 529
	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
M
Matthew Wilcox 已提交
530 531
	 * the RCU protected stat update paths to grab the i_page
	 * lock so that stat transfer can synchronize against them.
532 533 534
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
535
	goto out_unlock;
536 537 538 539 540

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
541 542
out_unlock:
	up_read(&bdi->wb_switch_rwsem);
543 544
}

545 546 547 548 549 550 551 552 553 554 555 556 557
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
558 559 560 561 562
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

563
	wbc->wb = inode_to_wb(inode);
564 565 566 567 568 569 570 571 572
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

573 574
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
575 576 577 578 579 580 581

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
582 583 584
}

/**
585 586
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
587 588 589
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
620 621 622
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
623 624
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
625 626
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
627 628
	int max_id;

629 630 631 632 633 634
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
687 688
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
689 690 691 692 693 694 695 696 697 698
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

699 700 701 702
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	id = mem_cgroup_css_from_page(page)->id;

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}
745
EXPORT_SYMBOL_GPL(wbc_account_io);
746

747 748
/**
 * inode_congested - test whether an inode is congested
749
 * @inode: inode to test for congestion (may be NULL)
750 751 752 753 754 755 756 757 758
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
759 760 761
 *
 * @inode is allowed to be NULL as this function is often called on
 * mapping->host which is NULL for the swapper space.
762 763 764
 */
int inode_congested(struct inode *inode, int cong_bits)
{
765 766 767 768
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
769
	if (inode && inode_to_wb_is_valid(inode)) {
770
		struct bdi_writeback *wb;
G
Greg Thelen 已提交
771 772
		struct wb_lock_cookie lock_cookie = {};
		bool congested;
773

G
Greg Thelen 已提交
774
		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
775
		congested = wb_congested(wb, cong_bits);
G
Greg Thelen 已提交
776
		unlocked_inode_to_wb_end(inode, &lock_cookie);
777
		return congested;
778 779 780 781 782 783
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
827
	struct bdi_writeback *last_wb = NULL;
828 829
	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
					      struct bdi_writeback, bdi_node);
830 831 832 833

	might_sleep();
restart:
	rcu_read_lock();
834
	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
835 836 837 838 839
		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
		struct wb_writeback_work fallback_work;
		struct wb_writeback_work *work;
		long nr_pages;

840 841 842 843 844
		if (last_wb) {
			wb_put(last_wb);
			last_wb = NULL;
		}

845 846 847 848 849 850
		/* SYNC_ALL writes out I_DIRTY_TIME too */
		if (!wb_has_dirty_io(wb) &&
		    (base_work->sync_mode == WB_SYNC_NONE ||
		     list_empty(&wb->b_dirty_time)))
			continue;
		if (skip_if_busy && writeback_in_progress(wb))
851 852
			continue;

853 854 855 856 857 858 859 860 861
		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);

		work = kmalloc(sizeof(*work), GFP_ATOMIC);
		if (work) {
			*work = *base_work;
			work->nr_pages = nr_pages;
			work->auto_free = 1;
			wb_queue_work(wb, work);
			continue;
862
		}
863 864 865 866 867 868 869 870 871 872

		/* alloc failed, execute synchronously using on-stack fallback */
		work = &fallback_work;
		*work = *base_work;
		work->nr_pages = nr_pages;
		work->auto_free = 0;
		work->done = &fallback_work_done;

		wb_queue_work(wb, work);

873 874 875 876 877 878 879 880
		/*
		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
		 * continuing iteration from @wb after dropping and
		 * regrabbing rcu read lock.
		 */
		wb_get(wb);
		last_wb = wb;

881 882 883
		rcu_read_unlock();
		wb_wait_for_completion(bdi, &fallback_work_done);
		goto restart;
884 885
	}
	rcu_read_unlock();
886 887 888

	if (last_wb)
		wb_put(last_wb);
889 890
}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
/**
 * cgroup_writeback_umount - flush inode wb switches for umount
 *
 * This function is called when a super_block is about to be destroyed and
 * flushes in-flight inode wb switches.  An inode wb switch goes through
 * RCU and then workqueue, so the two need to be flushed in order to ensure
 * that all previously scheduled switches are finished.  As wb switches are
 * rare occurrences and synchronize_rcu() can take a while, perform
 * flushing iff wb switches are in flight.
 */
void cgroup_writeback_umount(void)
{
	if (atomic_read(&isw_nr_in_flight)) {
		synchronize_rcu();
		flush_workqueue(isw_wq);
	}
}

static int __init cgroup_writeback_init(void)
{
	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
	if (!isw_wq)
		return -ENOMEM;
	return 0;
}
fs_initcall(cgroup_writeback_init);

918 919
#else	/* CONFIG_CGROUP_WRITEBACK */

920 921 922
static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

944 945 946 947 948
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

949 950 951 952 953 954
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

955
	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
956 957 958 959 960
		base_work->auto_free = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

961 962
#endif	/* CONFIG_CGROUP_WRITEBACK */

963 964 965 966 967 968 969 970 971 972 973 974
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_node_page_state(NR_FILE_DIRTY) +
		global_node_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
975
{
976 977 978
	if (!wb_has_dirty_io(wb))
		return;

979 980 981 982 983 984
	/*
	 * All callers of this function want to start writeback of all
	 * dirty pages. Places like vmscan can call this at a very
	 * high frequency, causing pointless allocations of tons of
	 * work items and keeping the flusher threads busy retrieving
	 * that work. Ensure that we only allow one of them pending and
985
	 * inflight at the time.
986
	 */
987 988
	if (test_bit(WB_start_all, &wb->state) ||
	    test_and_set_bit(WB_start_all, &wb->state))
989 990
		return;

991 992
	wb->start_all_reason = reason;
	wb_wakeup(wb);
993
}
994

995
/**
996 997
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
998 999
 *
 * Description:
1000
 *   This makes sure WB_SYNC_NONE background writeback happens. When
1001
 *   this function returns, it is only guaranteed that for given wb
1002 1003
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
1004
 */
1005
void wb_start_background_writeback(struct bdi_writeback *wb)
1006
{
1007 1008 1009 1010
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
1011
	trace_writeback_wake_background(wb);
1012
	wb_wakeup(wb);
L
Linus Torvalds 已提交
1013 1014
}

1015 1016 1017
/*
 * Remove the inode from the writeback list it is on.
 */
1018
void inode_io_list_del(struct inode *inode)
1019
{
1020
	struct bdi_writeback *wb;
1021

1022
	wb = inode_to_wb_and_lock_list(inode);
1023
	inode_io_list_del_locked(inode, wb);
1024
	spin_unlock(&wb->list_lock);
1025 1026
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/*
 * mark an inode as under writeback on the sb
 */
void sb_mark_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1037
		if (list_empty(&inode->i_wb_list)) {
1038
			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1039 1040
			trace_sb_mark_inode_writeback(inode);
		}
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

/*
 * clear an inode as under writeback on the sb
 */
void sb_clear_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (!list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1055 1056 1057 1058
		if (!list_empty(&inode->i_wb_list)) {
			list_del_init(&inode->i_wb_list);
			trace_sb_clear_inode_writeback(inode);
		}
1059 1060 1061 1062
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

1063 1064 1065 1066 1067
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1068
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1069 1070 1071
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
1072
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1073
{
1074
	if (!list_empty(&wb->b_dirty)) {
1075
		struct inode *tail;
1076

N
Nick Piggin 已提交
1077
		tail = wb_inode(wb->b_dirty.next);
1078
		if (time_before(inode->dirtied_when, tail->dirtied_when))
1079 1080
			inode->dirtied_when = jiffies;
	}
1081
	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1082 1083
}

1084
/*
1085
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1086
 */
1087
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1088
{
1089
	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1090 1091
}

J
Joern Engel 已提交
1092 1093
static void inode_sync_complete(struct inode *inode)
{
1094
	inode->i_state &= ~I_SYNC;
1095 1096
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
1097
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
1098 1099 1100 1101
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

1102 1103 1104 1105 1106 1107 1108 1109
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
1110
	 * from permanently stopping the whole bdi writeback.
1111 1112 1113 1114 1115 1116
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1117 1118
#define EXPIRE_DIRTY_ATIME 0x0001

1119
/*
1120
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
1121
 * @delaying_queue to @dispatch_queue.
1122
 */
1123
static int move_expired_inodes(struct list_head *delaying_queue,
1124
			       struct list_head *dispatch_queue,
1125
			       int flags,
1126
			       struct wb_writeback_work *work)
1127
{
1128 1129
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1130 1131
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1132
	struct super_block *sb = NULL;
1133
	struct inode *inode;
1134
	int do_sb_sort = 0;
1135
	int moved = 0;
1136

1137 1138
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1139 1140
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1141 1142
		older_than_this = &expire_time;
	}
1143
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1144
		inode = wb_inode(delaying_queue->prev);
1145 1146
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1147
			break;
1148
		list_move(&inode->i_io_list, &tmp);
1149
		moved++;
1150 1151
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1152 1153
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1154 1155 1156
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1157 1158
	}

1159 1160 1161
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1162
		goto out;
1163 1164
	}

1165 1166
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1167
		sb = wb_inode(tmp.prev)->i_sb;
1168
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1169
			inode = wb_inode(pos);
1170
			if (inode->i_sb == sb)
1171
				list_move(&inode->i_io_list, dispatch_queue);
1172
		}
1173
	}
1174 1175
out:
	return moved;
1176 1177 1178 1179
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1180 1181 1182 1183 1184 1185 1186 1187
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1188
 */
1189
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1190
{
1191
	int moved;
1192

1193
	assert_spin_locked(&wb->list_lock);
1194
	list_splice_init(&wb->b_more_io, &wb->b_io);
1195 1196 1197
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1198 1199
	if (moved)
		wb_io_lists_populated(wb);
1200
	trace_writeback_queue_io(wb, work, moved);
1201 1202
}

1203
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1204
{
T
Tejun Heo 已提交
1205 1206 1207 1208 1209 1210 1211 1212
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1213
	return 0;
1214 1215
}

L
Linus Torvalds 已提交
1216
/*
1217 1218
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1219
 */
1220 1221 1222
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1223 1224 1225 1226 1227
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1228 1229
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1230 1231
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1232
		spin_lock(&inode->i_lock);
1233
	}
1234 1235
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1289 1290 1291 1292 1293 1294 1295 1296 1297
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1323
	} else if (inode->i_state & I_DIRTY_TIME) {
1324
		inode->dirtied_when = jiffies;
1325
		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1326 1327
	} else {
		/* The inode is clean. Remove from writeback lists. */
1328
		inode_io_list_del_locked(inode, wb);
1329 1330 1331
	}
}

1332
/*
1333 1334 1335
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1336 1337
 */
static int
1338
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1339 1340
{
	struct address_space *mapping = inode->i_mapping;
1341
	long nr_to_write = wbc->nr_to_write;
1342
	unsigned dirty;
L
Linus Torvalds 已提交
1343 1344
	int ret;

1345
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1346

T
Tejun Heo 已提交
1347 1348
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1349 1350
	ret = do_writepages(mapping, wbc);

1351 1352 1353
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1354 1355 1356
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1357
	 */
1358
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1359
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1360 1361 1362 1363
		if (ret == 0)
			ret = err;
	}

1364 1365 1366 1367 1368
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1369
	spin_lock(&inode->i_lock);
1370

1371
	dirty = inode->i_state & I_DIRTY;
1372
	if (inode->i_state & I_DIRTY_TIME) {
1373
		if ((dirty & I_DIRTY_INODE) ||
1374
		    wbc->sync_mode == WB_SYNC_ALL ||
1375 1376 1377 1378 1379 1380 1381 1382 1383
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1384
	inode->i_state &= ~dirty;
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1402
	spin_unlock(&inode->i_lock);
1403

1404 1405
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1406
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1407
	if (dirty & ~I_DIRTY_PAGES) {
1408
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1409 1410 1411
		if (ret == 0)
			ret = err;
	}
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
1424 1425
static int writeback_single_inode(struct inode *inode,
				  struct writeback_control *wbc)
1426
{
1427
	struct bdi_writeback *wb;
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1440 1441 1442
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1443
		 */
1444
		__inode_wait_for_writeback(inode);
1445 1446 1447
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1448 1449 1450 1451 1452 1453
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1454
	 */
1455
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1456 1457
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1458 1459
		goto out;
	inode->i_state |= I_SYNC;
1460
	wbc_attach_and_unlock_inode(wbc, inode);
1461

1462
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1463

1464
	wbc_detach_inode(wbc);
1465 1466

	wb = inode_to_wb_and_lock_list(inode);
1467
	spin_lock(&inode->i_lock);
1468 1469 1470 1471
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1472
	if (!(inode->i_state & I_DIRTY_ALL))
1473
		inode_io_list_del_locked(inode, wb);
1474
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1475
	inode_sync_complete(inode);
1476 1477
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1478 1479 1480
	return ret;
}

1481
static long writeback_chunk_size(struct bdi_writeback *wb,
1482
				 struct wb_writeback_work *work)
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1501
	else {
1502
		pages = min(wb->avg_write_bandwidth / 2,
1503
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1504 1505 1506 1507
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1508 1509 1510 1511

	return pages;
}

1512 1513
/*
 * Write a portion of b_io inodes which belong to @sb.
1514
 *
1515
 * Return the number of pages and/or inodes written.
1516 1517 1518 1519
 *
 * NOTE! This is called with wb->list_lock held, and will
 * unlock and relock that for each inode it ends up doing
 * IO for.
1520
 */
1521 1522 1523
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1524
{
1525 1526 1527 1528 1529
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1530
		.for_sync		= work->for_sync,
1531 1532 1533 1534 1535 1536 1537 1538
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1539
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1540
		struct inode *inode = wb_inode(wb->b_io.prev);
1541
		struct bdi_writeback *tmp_wb;
1542 1543

		if (inode->i_sb != sb) {
1544
			if (work->sb) {
1545 1546 1547 1548 1549
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1550
				redirty_tail(inode, wb);
1551 1552 1553 1554 1555 1556 1557 1558
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1559
			break;
1560 1561
		}

1562
		/*
W
Wanpeng Li 已提交
1563 1564
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1565 1566
		 * kind writeout is handled by the freer.
		 */
1567
		spin_lock(&inode->i_lock);
1568
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1569
			spin_unlock(&inode->i_lock);
1570
			redirty_tail(inode, wb);
1571 1572
			continue;
		}
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1588 1589
		spin_unlock(&wb->list_lock);

1590 1591 1592 1593 1594
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1595 1596 1597 1598
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1599
			spin_lock(&wb->list_lock);
1600 1601
			continue;
		}
1602
		inode->i_state |= I_SYNC;
1603
		wbc_attach_and_unlock_inode(&wbc, inode);
1604

1605
		write_chunk = writeback_chunk_size(wb, work);
1606 1607
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1608

1609 1610 1611 1612
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1613
		__writeback_single_inode(inode, &wbc);
1614

1615
		wbc_detach_inode(&wbc);
1616 1617
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

		if (need_resched()) {
			/*
			 * We're trying to balance between building up a nice
			 * long list of IOs to improve our merge rate, and
			 * getting those IOs out quickly for anyone throttling
			 * in balance_dirty_pages().  cond_resched() doesn't
			 * unplug, so get our IOs out the door before we
			 * give up the CPU.
			 */
			blk_flush_plug(current);
			cond_resched();
		}

1632 1633 1634 1635 1636
		/*
		 * Requeue @inode if still dirty.  Be careful as @inode may
		 * have been switched to another wb in the meantime.
		 */
		tmp_wb = inode_to_wb_and_lock_list(inode);
1637
		spin_lock(&inode->i_lock);
1638
		if (!(inode->i_state & I_DIRTY_ALL))
1639
			wrote++;
1640
		requeue_inode(inode, tmp_wb, &wbc);
1641
		inode_sync_complete(inode);
1642
		spin_unlock(&inode->i_lock);
1643

1644 1645 1646 1647 1648
		if (unlikely(tmp_wb != wb)) {
			spin_unlock(&tmp_wb->list_lock);
			spin_lock(&wb->list_lock);
		}

1649 1650 1651 1652 1653 1654 1655 1656 1657
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1658
		}
L
Linus Torvalds 已提交
1659
	}
1660
	return wrote;
1661 1662
}

1663 1664
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1665
{
1666 1667
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1668

1669
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1670
		struct inode *inode = wb_inode(wb->b_io.prev);
1671
		struct super_block *sb = inode->i_sb;
1672

1673
		if (!trylock_super(sb)) {
1674
			/*
1675
			 * trylock_super() may fail consistently due to
1676 1677 1678 1679
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1680
			continue;
1681
		}
1682
		wrote += writeback_sb_inodes(sb, wb, work);
1683
		up_read(&sb->s_umount);
1684

1685 1686 1687 1688 1689 1690 1691
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1692
	}
1693
	/* Leave any unwritten inodes on b_io */
1694
	return wrote;
1695 1696
}

1697
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1698
				enum wb_reason reason)
1699
{
1700 1701 1702 1703
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1704
		.reason		= reason,
1705
	};
1706
	struct blk_plug plug;
1707

1708
	blk_start_plug(&plug);
1709
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1710
	if (list_empty(&wb->b_io))
1711
		queue_io(wb, &work);
1712
	__writeback_inodes_wb(wb, &work);
1713
	spin_unlock(&wb->list_lock);
1714
	blk_finish_plug(&plug);
1715

1716 1717
	return nr_pages - work.nr_pages;
}
1718 1719 1720

/*
 * Explicit flushing or periodic writeback of "old" data.
1721
 *
1722 1723 1724 1725
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1726
 *
1727 1728 1729
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1730
 *
1731 1732
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1733
 */
1734
static long wb_writeback(struct bdi_writeback *wb,
1735
			 struct wb_writeback_work *work)
1736
{
1737
	unsigned long wb_start = jiffies;
1738
	long nr_pages = work->nr_pages;
1739
	unsigned long oldest_jif;
J
Jan Kara 已提交
1740
	struct inode *inode;
1741
	long progress;
1742
	struct blk_plug plug;
1743

1744 1745
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1746

1747
	blk_start_plug(&plug);
1748
	spin_lock(&wb->list_lock);
1749 1750
	for (;;) {
		/*
1751
		 * Stop writeback when nr_pages has been consumed
1752
		 */
1753
		if (work->nr_pages <= 0)
1754
			break;
1755

1756 1757 1758 1759 1760 1761 1762
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1763
		    !list_empty(&wb->work_list))
1764 1765
			break;

N
Nick Piggin 已提交
1766
		/*
1767 1768
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1769
		 */
1770
		if (work->for_background && !wb_over_bg_thresh(wb))
1771
			break;
N
Nick Piggin 已提交
1772

1773 1774 1775 1776 1777 1778
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1779
		if (work->for_kupdate) {
1780
			oldest_jif = jiffies -
1781
				msecs_to_jiffies(dirty_expire_interval * 10);
1782
		} else if (work->for_background)
1783
			oldest_jif = jiffies;
1784

1785
		trace_writeback_start(wb, work);
1786
		if (list_empty(&wb->b_io))
1787
			queue_io(wb, work);
1788
		if (work->sb)
1789
			progress = writeback_sb_inodes(work->sb, wb, work);
1790
		else
1791
			progress = __writeback_inodes_wb(wb, work);
1792
		trace_writeback_written(wb, work);
1793

1794
		wb_update_bandwidth(wb, wb_start);
1795 1796

		/*
1797 1798 1799 1800 1801 1802
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1803
		 */
1804
		if (progress)
1805 1806
			continue;
		/*
1807
		 * No more inodes for IO, bail
1808
		 */
1809
		if (list_empty(&wb->b_more_io))
1810
			break;
1811 1812 1813 1814 1815
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
1816 1817 1818 1819 1820 1821 1822
		trace_writeback_wait(wb, work);
		inode = wb_inode(wb->b_more_io.prev);
		spin_lock(&inode->i_lock);
		spin_unlock(&wb->list_lock);
		/* This function drops i_lock... */
		inode_sleep_on_writeback(inode);
		spin_lock(&wb->list_lock);
1823
	}
1824
	spin_unlock(&wb->list_lock);
1825
	blk_finish_plug(&plug);
1826

1827
	return nr_pages - work->nr_pages;
1828 1829 1830
}

/*
1831
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1832
 */
1833
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1834
{
1835
	struct wb_writeback_work *work = NULL;
1836

1837 1838 1839
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1840 1841
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1842
	}
1843
	spin_unlock_bh(&wb->work_lock);
1844
	return work;
1845 1846
}

1847 1848
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1849
	if (wb_over_bg_thresh(wb)) {
1850 1851 1852 1853 1854 1855

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1856
			.reason		= WB_REASON_BACKGROUND,
1857 1858 1859 1860 1861 1862 1863 1864
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1865 1866 1867 1868 1869
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1870 1871 1872 1873 1874 1875
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1876 1877 1878 1879 1880 1881
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1882
	nr_pages = get_nr_dirty_pages();
1883

1884
	if (nr_pages) {
1885
		struct wb_writeback_work work = {
1886 1887 1888 1889
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1890
			.reason		= WB_REASON_PERIODIC,
1891 1892
		};

1893
		return wb_writeback(wb, &work);
1894
	}
1895 1896 1897 1898

	return 0;
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static long wb_check_start_all(struct bdi_writeback *wb)
{
	long nr_pages;

	if (!test_bit(WB_start_all, &wb->state))
		return 0;

	nr_pages = get_nr_dirty_pages();
	if (nr_pages) {
		struct wb_writeback_work work = {
			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
			.sync_mode	= WB_SYNC_NONE,
			.range_cyclic	= 1,
			.reason		= wb->start_all_reason,
		};

		nr_pages = wb_writeback(wb, &work);
	}

	clear_bit(WB_start_all, &wb->state);
	return nr_pages;
}


1923 1924 1925
/*
 * Retrieve work items and do the writeback they describe
 */
1926
static long wb_do_writeback(struct bdi_writeback *wb)
1927
{
1928
	struct wb_writeback_work *work;
1929
	long wrote = 0;
1930

1931
	set_bit(WB_writeback_running, &wb->state);
1932
	while ((work = get_next_work_item(wb)) != NULL) {
1933
		trace_writeback_exec(wb, work);
1934
		wrote += wb_writeback(wb, work);
1935
		finish_writeback_work(wb, work);
1936 1937
	}

1938 1939 1940 1941 1942
	/*
	 * Check for a flush-everything request
	 */
	wrote += wb_check_start_all(wb);

1943 1944 1945 1946
	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1947
	wrote += wb_check_background_flush(wb);
1948
	clear_bit(WB_writeback_running, &wb->state);
1949 1950 1951 1952 1953 1954

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1955
 * reschedules periodically and does kupdated style flushing.
1956
 */
1957
void wb_workfn(struct work_struct *work)
1958
{
1959 1960
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1961 1962
	long pages_written;

1963
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1964
	current->flags |= PF_SWAPWRITE;
1965

1966
	if (likely(!current_is_workqueue_rescuer() ||
1967
		   !test_bit(WB_registered, &wb->state))) {
1968
		/*
1969
		 * The normal path.  Keep writing back @wb until its
1970
		 * work_list is empty.  Note that this path is also taken
1971
		 * if @wb is shutting down even when we're running off the
1972
		 * rescuer as work_list needs to be drained.
1973
		 */
1974
		do {
1975
			pages_written = wb_do_writeback(wb);
1976
			trace_writeback_pages_written(pages_written);
1977
		} while (!list_empty(&wb->work_list));
1978 1979 1980 1981 1982 1983
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1984
		pages_written = writeback_inodes_wb(wb, 1024,
1985
						    WB_REASON_FORKER_THREAD);
1986
		trace_writeback_pages_written(pages_written);
1987 1988
	}

1989
	if (!list_empty(&wb->work_list))
J
Jan Kara 已提交
1990
		wb_wakeup(wb);
1991
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1992
		wb_wakeup_delayed(wb);
1993

1994
	current->flags &= ~PF_SWAPWRITE;
1995 1996
}

1997 1998 1999 2000 2001
/*
 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
 * write back the whole world.
 */
static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2002
					 enum wb_reason reason)
2003 2004 2005 2006 2007 2008 2009
{
	struct bdi_writeback *wb;

	if (!bdi_has_dirty_io(bdi))
		return;

	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2010
		wb_start_writeback(wb, reason);
2011 2012 2013 2014 2015 2016
}

void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
				enum wb_reason reason)
{
	rcu_read_lock();
2017
	__wakeup_flusher_threads_bdi(bdi, reason);
2018 2019 2020
	rcu_read_unlock();
}

2021
/*
2022
 * Wakeup the flusher threads to start writeback of all currently dirty pages
2023
 */
2024
void wakeup_flusher_threads(enum wb_reason reason)
2025
{
2026
	struct backing_dev_info *bdi;
2027

2028 2029 2030 2031 2032 2033
	/*
	 * If we are expecting writeback progress we must submit plugged IO.
	 */
	if (blk_needs_flush_plug(current))
		blk_schedule_flush_plug(current);

2034
	rcu_read_lock();
2035
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2036
		__wakeup_flusher_threads_bdi(bdi, reason);
2037
	rcu_read_unlock();
L
Linus Torvalds 已提交
2038 2039
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2064 2065
		struct bdi_writeback *wb;

2066
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2067 2068
			if (!list_empty(&wb->b_dirty_time))
				wb_wakeup(wb);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
2115 2116 2117 2118 2119 2120 2121
 * __mark_inode_dirty -	internal function
 *
 * @inode: inode to mark
 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *
 * Mark an inode as dirty. Callers should use mark_inode_dirty or
 * mark_inode_dirty_sync.
L
Linus Torvalds 已提交
2122
 *
2123 2124 2125 2126 2127 2128 2129 2130 2131
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
2132
 *
2133 2134 2135 2136 2137 2138
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
2139
 */
2140
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
2141
{
2142
	struct super_block *sb = inode->i_sb;
2143 2144 2145
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
2146

2147 2148 2149 2150
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
2151
	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
2152 2153
		trace_writeback_dirty_inode_start(inode, flags);

2154
		if (sb->s_op->dirty_inode)
2155
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
2156 2157

		trace_writeback_dirty_inode(inode, flags);
2158
	}
2159 2160 2161
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
2162 2163

	/*
2164 2165
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
2166 2167 2168
	 */
	smp_mb();

2169 2170
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2171 2172 2173 2174 2175
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2176
	spin_lock(&inode->i_lock);
2177 2178
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2179 2180 2181
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2182 2183
		inode_attach_wb(inode, NULL);

2184 2185
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2186 2187 2188 2189 2190 2191 2192 2193
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2194
			goto out_unlock_inode;
2195 2196 2197 2198 2199 2200

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2201
			if (inode_unhashed(inode))
2202
				goto out_unlock_inode;
2203
		}
A
Al Viro 已提交
2204
		if (inode->i_state & I_FREEING)
2205
			goto out_unlock_inode;
2206 2207 2208 2209 2210 2211

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2212
			struct bdi_writeback *wb;
2213
			struct list_head *dirty_list;
2214
			bool wakeup_bdi = false;
2215

2216
			wb = locked_inode_to_wb_and_lock_list(inode);
2217

2218 2219 2220
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2221 2222

			inode->dirtied_when = jiffies;
2223 2224
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2225

2226
			if (inode->i_state & I_DIRTY)
2227
				dirty_list = &wb->b_dirty;
2228
			else
2229
				dirty_list = &wb->b_dirty_time;
2230

2231
			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2232 2233
							       dirty_list);

2234
			spin_unlock(&wb->list_lock);
2235
			trace_writeback_dirty_inode_enqueue(inode);
2236

2237 2238 2239 2240 2241 2242
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2243 2244
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2245
			return;
L
Linus Torvalds 已提交
2246 2247
		}
	}
2248 2249
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2250 2251 2252
}
EXPORT_SYMBOL(__mark_inode_dirty);

2253 2254 2255 2256 2257 2258 2259 2260 2261
/*
 * The @s_sync_lock is used to serialise concurrent sync operations
 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
 * Concurrent callers will block on the s_sync_lock rather than doing contending
 * walks. The queueing maintains sync(2) required behaviour as all the IO that
 * has been issued up to the time this function is enter is guaranteed to be
 * completed by the time we have gained the lock and waited for all IO that is
 * in progress regardless of the order callers are granted the lock.
 */
2262
static void wait_sb_inodes(struct super_block *sb)
2263
{
2264
	LIST_HEAD(sync_list);
2265 2266 2267 2268 2269

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2270
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2271

2272
	mutex_lock(&sb->s_sync_lock);
2273 2274

	/*
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
	 * Splice the writeback list onto a temporary list to avoid waiting on
	 * inodes that have started writeback after this point.
	 *
	 * Use rcu_read_lock() to keep the inodes around until we have a
	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
	 * the local list because inodes can be dropped from either by writeback
	 * completion.
	 */
	rcu_read_lock();
	spin_lock_irq(&sb->s_inode_wblist_lock);
	list_splice_init(&sb->s_inodes_wb, &sync_list);

	/*
	 * Data integrity sync. Must wait for all pages under writeback, because
	 * there may have been pages dirtied before our sync call, but which had
	 * writeout started before we write it out.  In which case, the inode
	 * may not be on the dirty list, but we still have to wait for that
	 * writeout.
2293
	 */
2294 2295 2296
	while (!list_empty(&sync_list)) {
		struct inode *inode = list_first_entry(&sync_list, struct inode,
						       i_wb_list);
2297
		struct address_space *mapping = inode->i_mapping;
2298

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
		/*
		 * Move each inode back to the wb list before we drop the lock
		 * to preserve consistency between i_wb_list and the mapping
		 * writeback tag. Writeback completion is responsible to remove
		 * the inode from either list once the writeback tag is cleared.
		 */
		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);

		/*
		 * The mapping can appear untagged while still on-list since we
		 * do not have the mapping lock. Skip it here, wb completion
		 * will remove it.
		 */
		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
			continue;

		spin_unlock_irq(&sb->s_inode_wblist_lock);

2317
		spin_lock(&inode->i_lock);
2318
		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2319
			spin_unlock(&inode->i_lock);
2320 2321

			spin_lock_irq(&sb->s_inode_wblist_lock);
2322
			continue;
2323
		}
2324
		__iget(inode);
2325
		spin_unlock(&inode->i_lock);
2326
		rcu_read_unlock();
2327

2328 2329 2330 2331 2332 2333
		/*
		 * We keep the error status of individual mapping so that
		 * applications can catch the writeback error using fsync(2).
		 * See filemap_fdatawait_keep_errors() for details.
		 */
		filemap_fdatawait_keep_errors(mapping);
2334 2335 2336

		cond_resched();

2337 2338 2339 2340
		iput(inode);

		rcu_read_lock();
		spin_lock_irq(&sb->s_inode_wblist_lock);
2341
	}
2342 2343
	spin_unlock_irq(&sb->s_inode_wblist_lock);
	rcu_read_unlock();
2344
	mutex_unlock(&sb->s_sync_lock);
L
Linus Torvalds 已提交
2345 2346
}

2347 2348
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2349
{
2350
	DEFINE_WB_COMPLETION_ONSTACK(done);
2351
	struct wb_writeback_work work = {
2352 2353 2354 2355 2356
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2357
		.reason			= reason,
2358
	};
2359
	struct backing_dev_info *bdi = sb->s_bdi;
2360

2361
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2362
		return;
2363
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2364

2365
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2366
	wb_wait_for_completion(bdi, &done);
2367
}
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2385 2386 2387 2388 2389
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2390
 * @reason: reason why some writeback work was initiated
2391 2392 2393 2394 2395
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2396
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2397
{
2398
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2399
}
2400
EXPORT_SYMBOL(writeback_inodes_sb);
2401

2402
/**
2403
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2404
 * @sb: the superblock
2405
 * @reason: reason why some writeback work was initiated
2406
 *
2407
 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2408
 */
2409
void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2410
{
2411
	if (!down_read_trylock(&sb->s_umount))
2412
		return;
2413

2414
	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2415
	up_read(&sb->s_umount);
2416
}
2417
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2418

2419 2420
/**
 * sync_inodes_sb	-	sync sb inode pages
2421
 * @sb: the superblock
2422 2423
 *
 * This function writes and waits on any dirty inode belonging to this
2424
 * super_block.
2425
 */
2426
void sync_inodes_sb(struct super_block *sb)
2427
{
2428
	DEFINE_WB_COMPLETION_ONSTACK(done);
2429
	struct wb_writeback_work work = {
2430 2431 2432 2433
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2434
		.done		= &done,
2435
		.reason		= WB_REASON_SYNC,
2436
		.for_sync	= 1,
2437
	};
2438
	struct backing_dev_info *bdi = sb->s_bdi;
2439

2440 2441 2442 2443 2444 2445
	/*
	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
	 * bdi_has_dirty() need to be written out too.
	 */
	if (bdi == &noop_backing_dev_info)
2446
		return;
2447 2448
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2449 2450
	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
	bdi_down_write_wb_switch_rwsem(bdi);
2451
	bdi_split_work_to_wbs(bdi, &work, false);
2452
	wb_wait_for_completion(bdi, &done);
2453
	bdi_up_write_wb_switch_rwsem(bdi);
2454

2455
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2456
}
2457
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2458 2459

/**
2460 2461 2462 2463 2464 2465
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2466
 *
2467
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2468 2469 2470 2471 2472
 */
int write_inode_now(struct inode *inode, int sync)
{
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2473
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2474 2475
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2476 2477 2478
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2479
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2480 2481

	might_sleep();
2482
	return writeback_single_inode(inode, &wbc);
L
Linus Torvalds 已提交
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2499
	return writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
2500 2501
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2502 2503

/**
A
Andrew Morton 已提交
2504
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2505 2506 2507
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2508
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);