intel_pstate.c 22.5 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29 30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>

35 36 37 38
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c

39

40
#define FRAC_BITS 6
41 42
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
43
#define FP_ROUNDUP(X) ((X) += 1 << FRAC_BITS)
44 45 46 47 48 49 50 51 52 53 54 55

static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

static inline int32_t div_fp(int32_t x, int32_t y)
{
	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
}

struct sample {
56
	int32_t core_pct_busy;
57 58
	u64 aperf;
	u64 mperf;
59
	unsigned long long tsc;
60 61 62 63 64 65 66 67 68 69
	int freq;
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
	int	turbo_pstate;
};

70 71 72 73 74 75
struct vid_data {
	int32_t min;
	int32_t max;
	int32_t ratio;
};

76 77 78 79 80 81 82
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
83
	int32_t last_err;
84 85 86 87 88 89 90 91 92 93
};

struct cpudata {
	int cpu;

	char name[64];

	struct timer_list timer;

	struct pstate_data pstate;
94
	struct vid_data vid;
95 96 97 98
	struct _pid pid;

	u64	prev_aperf;
	u64	prev_mperf;
99
	unsigned long long prev_tsc;
100
	struct sample sample;
101 102 103 104 105 106 107 108 109 110 111 112
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

113 114 115 116
struct pstate_funcs {
	int (*get_max)(void);
	int (*get_min)(void);
	int (*get_turbo)(void);
117 118
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
119 120
};

121 122 123
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
124 125
};

126 127 128
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;

129 130 131 132 133 134
struct perf_limits {
	int no_turbo;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
135 136
	int max_policy_pct;
	int max_sysfs_pct;
137 138 139 140 141 142 143 144
};

static struct perf_limits limits = {
	.no_turbo = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
145 146
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
147 148 149 150 151 152 153
};

static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
			int deadband, int integral) {
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
154
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{

	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

173
static signed int pid_calc(struct _pid *pid, int32_t busy)
174
{
175
	signed int result;
176 177 178
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

179
	fp_error = int_tofp(pid->setpoint) - busy;
180

181
	if (abs(fp_error) <= int_tofp(pid->deadband))
182 183 184 185 186 187 188 189 190 191 192 193 194
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

	/* limit the integral term */
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

195 196
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
197 198 199 200 201 202 203 204

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;

	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
205 206 207
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
208 209

	pid_reset(&cpu->pid,
210
		pid_params.setpoint,
211
		100,
212
		pid_params.deadband,
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
		0);
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
			pid_param_set, "%llu\n");

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
246 247 248 249 250 251
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	{NULL, NULL}
};

static struct dentry *debugfs_parent;
static void intel_pstate_debug_expose_params(void)
{
	int i = 0;

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
				debugfs_parent, pid_files[i].value,
				&fops_pid_param);
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.no_turbo = clamp_t(int, input, 0 , 1);

	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

303 304
	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

	return count;
}

show_one(no_turbo, no_turbo);
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};
static struct kobject *intel_pstate_kobject;

static void intel_pstate_sysfs_expose_params(void)
{
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
	rc = sysfs_create_group(intel_pstate_kobject,
				&intel_pstate_attr_group);
	BUG_ON(rc);
}

/************************** sysfs end ************************/
356 357 358 359
static int byt_get_min_pstate(void)
{
	u64 value;
	rdmsrl(BYT_RATIOS, value);
360
	return (value >> 8) & 0xFF;
361 362 363 364 365 366 367 368
}

static int byt_get_max_pstate(void)
{
	u64 value;
	rdmsrl(BYT_RATIOS, value);
	return (value >> 16) & 0xFF;
}
369

370 371 372 373 374 375 376
static int byt_get_turbo_pstate(void)
{
	u64 value;
	rdmsrl(BYT_TURBO_RATIOS, value);
	return value & 0x3F;
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

	val = pstate << 8;
	if (limits.no_turbo)
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
	vid = fp_toint(vid_fp);

	val |= vid;

	wrmsrl(MSR_IA32_PERF_CTL, val);
}

static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

	rdmsrl(BYT_VIDS, value);
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
}


413
static int core_get_min_pstate(void)
414 415
{
	u64 value;
416
	rdmsrl(MSR_PLATFORM_INFO, value);
417 418 419
	return (value >> 40) & 0xFF;
}

420
static int core_get_max_pstate(void)
421 422
{
	u64 value;
423
	rdmsrl(MSR_PLATFORM_INFO, value);
424 425 426
	return (value >> 8) & 0xFF;
}

427
static int core_get_turbo_pstate(void)
428 429 430
{
	u64 value;
	int nont, ret;
431
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
432
	nont = core_get_max_pstate();
433 434 435 436 437 438
	ret = ((value) & 255);
	if (ret <= nont)
		ret = nont;
	return ret;
}

439
static void core_set_pstate(struct cpudata *cpudata, int pstate)
440 441 442 443 444 445 446
{
	u64 val;

	val = pstate << 8;
	if (limits.no_turbo)
		val |= (u64)1 << 32;

447
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
}

static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.set = core_set_pstate,
	},
};

467 468 469 470 471 472 473 474 475 476 477 478
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
		.get_min = byt_get_min_pstate,
479
		.get_turbo = byt_get_turbo_pstate,
480 481
		.set = byt_set_pstate,
		.get_vid = byt_get_vid,
482 483 484 485
	},
};


486 487 488
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
489
	int max_perf_adj;
490 491 492 493
	int min_perf;
	if (limits.no_turbo)
		max_perf = cpu->pstate.max_pstate;

494 495
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
	*max = clamp_t(int, max_perf_adj,
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
	*min = clamp_t(int, min_perf,
			cpu->pstate.min_pstate, max_perf);
}

static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);

	pstate = clamp_t(int, pstate, min_perf, max_perf);

	if (pstate == cpu->pstate.current_pstate)
		return;

	trace_cpu_frequency(pstate * 100000, cpu->cpu);
515

516 517
	cpu->pstate.current_pstate = pstate;

518
	pstate_funcs.set(cpu, pstate);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
}

static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate + steps;

	intel_pstate_set_pstate(cpu, target);
}

static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate - steps;
	intel_pstate_set_pstate(cpu, target);
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
	sprintf(cpu->name, "Intel 2nd generation core");

540 541 542
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
543

544 545 546
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);

547 548 549 550 551 552 553
	/*
	 * goto max pstate so we don't slow up boot if we are built-in if we are
	 * a module we will take care of it during normal operation
	 */
	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
}

554
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
555
{
556
	struct sample *sample = &cpu->sample;
557 558
	int32_t core_pct;
	int32_t c0_pct;
559

560
	core_pct = div_fp(int_tofp(sample->aperf), int_tofp(sample->mperf));
561 562 563 564
	core_pct = mul_fp(core_pct, int_tofp(100));
	FP_ROUNDUP(core_pct);

	c0_pct = div_fp(int_tofp(sample->mperf), int_tofp(sample->tsc));
565 566

	sample->freq = fp_toint(
567
		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
568

569
	sample->core_pct_busy = mul_fp(core_pct, c0_pct);
570 571 572 573 574
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;
575
	unsigned long long tsc;
576 577 578

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
579
	tsc = native_read_tsc();
580

581 582 583 584
	aperf = aperf >> FRAC_BITS;
	mperf = mperf >> FRAC_BITS;
	tsc = tsc >> FRAC_BITS;

585 586 587 588 589 590
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
	cpu->sample.tsc = tsc;
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
	cpu->sample.tsc -= cpu->prev_tsc;
591

592
	intel_pstate_calc_busy(cpu);
593 594 595

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
596
	cpu->prev_tsc = tsc;
597 598 599 600 601 602
}

static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
	int sample_time, delay;

603
	sample_time = pid_params.sample_rate_ms;
604 605 606 607
	delay = msecs_to_jiffies(sample_time);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

608
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
609
{
610
	int32_t core_busy, max_pstate, current_pstate;
611

612
	core_busy = cpu->sample.core_pct_busy;
613
	max_pstate = int_tofp(cpu->pstate.max_pstate);
614
	current_pstate = int_tofp(cpu->pstate.current_pstate);
615 616
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
	return FP_ROUNDUP(core_busy);
617 618 619 620
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
621
	int32_t busy_scaled;
622 623 624 625 626 627 628 629 630 631
	struct _pid *pid;
	signed int ctl = 0;
	int steps;

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

	steps = abs(ctl);
632

633 634 635 636 637 638 639 640 641
	if (ctl < 0)
		intel_pstate_pstate_increase(cpu, steps);
	else
		intel_pstate_pstate_decrease(cpu, steps);
}

static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;
642
	struct sample *sample;
643 644

	intel_pstate_sample(cpu);
645

646
	sample = &cpu->sample;
647

648
	intel_pstate_adjust_busy_pstate(cpu);
649 650 651 652 653 654 655 656

	trace_pstate_sample(fp_toint(sample->core_pct_busy),
			fp_toint(intel_pstate_get_scaled_busy(cpu)),
			cpu->pstate.current_pstate,
			sample->mperf,
			sample->aperf,
			sample->freq);

657 658 659 660
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
661 662
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
663 664

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
665 666
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
667
	ICPU(0x37, byt_params),
668 669 670 671 672 673
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

static int intel_pstate_init_cpu(unsigned int cpunum)
{

	const struct x86_cpu_id *id;
	struct cpudata *cpu;

	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	intel_pstate_get_cpu_pstates(cpu);
695 696 697 698 699
	if (!cpu->pstate.current_pstate) {
		all_cpu_data[cpunum] = NULL;
		kfree(cpu);
		return -ENODATA;
	}
700 701

	cpu->cpu = cpunum;
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	init_timer_deferrable(&cpu->timer);
	cpu->timer.function = intel_pstate_timer_func;
	cpu->timer.data =
		(unsigned long)cpu;
	cpu->timer.expires = jiffies + HZ/100;
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);
	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);

	add_timer_on(&cpu->timer, cpunum);

	pr_info("Intel pstate controlling: cpu %d\n", cpunum);

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
727
	sample = &cpu->sample;
728 729 730 731 732 733 734 735 736
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];

737 738 739
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

740 741 742 743 744 745
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
		limits.no_turbo = 0;
746
		return 0;
747
	}
748 749 750 751
	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

752 753 754
	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
755
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
756 757 758 759 760 761

	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
762
	cpufreq_verify_within_cpu_limits(policy);
763 764 765 766 767 768 769 770

	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
		return -EINVAL;

	return 0;
}

771
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
772
{
773 774
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
775

776 777
	pr_info("intel_pstate CPU %d exiting\n", cpu_num);

778
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
779 780 781
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
	kfree(all_cpu_data[cpu_num]);
	all_cpu_data[cpu_num] = NULL;
782 783
}

784
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
785 786
{
	struct cpudata *cpu;
787
	int rc;
788 789 790 791 792 793 794 795 796 797 798 799 800

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

	if (!limits.no_turbo &&
		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

801 802
	policy->min = cpu->pstate.min_pstate * 100000;
	policy->max = cpu->pstate.turbo_pstate * 100000;
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

	/* cpuinfo and default policy values */
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
819
	.stop_cpu	= intel_pstate_stop_cpu,
820 821 822
	.name		= "intel_pstate",
};

823 824
static int __initdata no_load;

825 826 827 828 829 830 831 832
static int intel_pstate_msrs_not_valid(void)
{
	/* Check that all the msr's we are using are valid. */
	u64 aperf, mperf, tmp;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);

833 834 835
	if (!pstate_funcs.get_max() ||
		!pstate_funcs.get_min() ||
		!pstate_funcs.get_turbo())
836 837 838 839 840 841 842 843 844 845 846 847
		return -ENODEV;

	rdmsrl(MSR_IA32_APERF, tmp);
	if (!(tmp - aperf))
		return -ENODEV;

	rdmsrl(MSR_IA32_MPERF, tmp);
	if (!(tmp - mperf))
		return -ENODEV;

	return 0;
}
848

849
static void copy_pid_params(struct pstate_adjust_policy *policy)
850 851 852 853 854 855 856 857 858
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

859
static void copy_cpu_funcs(struct pstate_funcs *funcs)
860 861 862 863 864
{
	pstate_funcs.get_max   = funcs->get_max;
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
	pstate_funcs.set       = funcs->set;
865
	pstate_funcs.get_vid   = funcs->get_vid;
866 867
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
	{1, "HP    ", "ProLiant"},
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;

	if (acpi_disabled
	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
		    && intel_pstate_no_acpi_pss())
			return true;
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
#endif /* CONFIG_ACPI */

934 935
static int __init intel_pstate_init(void)
{
936
	int cpu, rc = 0;
937
	const struct x86_cpu_id *id;
938
	struct cpu_defaults *cpu_info;
939

940 941 942
	if (no_load)
		return -ENODEV;

943 944 945 946
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

947 948 949 950 951 952 953
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

954 955 956 957 958
	cpu_info = (struct cpu_defaults *)id->driver_data;

	copy_pid_params(&cpu_info->pid_policy);
	copy_cpu_funcs(&cpu_info->funcs);

959 960 961
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

962 963
	pr_info("Intel P-state driver initializing.\n");

964
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
965 966 967 968 969 970 971 972 973
	if (!all_cpu_data)
		return -ENOMEM;

	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
974

975 976
	return rc;
out:
977 978 979 980 981 982 983 984 985 986
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
987 988 989 990
	return -ENODEV;
}
device_initcall(intel_pstate_init);

991 992 993 994 995 996 997 998 999 1000 1001
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1002 1003 1004
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");