crypto.c 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/*
 * Ultra Wide Band
 * AES-128 CCM Encryption
 *
 * Copyright (C) 2007 Intel Corporation
 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License version
 * 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 *
 *
 * We don't do any encryption here; we use the Linux Kernel's AES-128
 * crypto modules to construct keys and payload blocks in a way
 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
 * there.
 *
 * Thanks a zillion to John Keys for his help and clarifications over
 * the designed-by-a-committee text.
 *
 * So the idea is that there is this basic Pseudo-Random-Function
 * defined in WUSB1.0[6.5] which is the core of everything. It works
 * by tweaking some blocks, AES crypting them and then xoring
 * something else with them (this seems to be called CBC(AES) -- can
 * you tell I know jack about crypto?). So we just funnel it into the
 * Linux Crypto API.
 *
 * We leave a crypto test module so we can verify that vectors match,
 * every now and then.
 *
 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
 *             am learning a lot...
 *
 *             Conveniently, some data structures that need to be
 *             funneled through AES are...16 bytes in size!
 */

#include <linux/crypto.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/uwb.h>
52
#include <linux/slab.h>
53 54 55
#include <linux/usb/wusb.h>
#include <linux/scatterlist.h>

56 57 58 59
static int debug_crypto_verify = 0;

module_param(debug_crypto_verify, int, 0);
MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
60

D
David Vrabel 已提交
61 62 63 64 65 66
static void wusb_key_dump(const void *buf, size_t len)
{
	print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
		       buf, len, 0);
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
/*
 * Block of data, as understood by AES-CCM
 *
 * The code assumes this structure is nothing but a 16 byte array
 * (packed in a struct to avoid common mess ups that I usually do with
 * arrays and enforcing type checking).
 */
struct aes_ccm_block {
	u8 data[16];
} __attribute__((packed));

/*
 * Counter-mode Blocks (WUSB1.0[6.4])
 *
 * According to CCM (or so it seems), for the purpose of calculating
 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
 * ... BN.
 *
 * B0 contains flags, the CCM nonce and l(m).
 *
 * B1 contains l(a), the MAC header, the encryption offset and padding.
 *
 * If EO is nonzero, additional blocks are built from payload bytes
 * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
 * padding is not xmitted.
 */

/* WUSB1.0[T6.4] */
struct aes_ccm_b0 {
	u8 flags;	/* 0x59, per CCM spec */
	struct aes_ccm_nonce ccm_nonce;
	__be16 lm;
} __attribute__((packed));

/* WUSB1.0[T6.5] */
struct aes_ccm_b1 {
	__be16 la;
	u8 mac_header[10];
	__le16 eo;
	u8 security_reserved;	/* This is always zero */
	u8 padding;		/* 0 */
} __attribute__((packed));

/*
 * Encryption Blocks (WUSB1.0[6.4.4])
 *
 * CCM uses Ax blocks to generate a keystream with which the MIC and
 * the message's payload are encoded. A0 always encrypts/decrypts the
115
 * MIC. Ax (x>0) are used for the successive payload blocks.
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
 *
 * The x is the counter, and is increased for each block.
 */
struct aes_ccm_a {
	u8 flags;	/* 0x01, per CCM spec */
	struct aes_ccm_nonce ccm_nonce;
	__be16 counter;	/* Value of x */
} __attribute__((packed));

static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
			 size_t size)
{
	u8 *bo = _bo;
	const u8 *bi1 = _bi1, *bi2 = _bi2;
	size_t itr;
	for (itr = 0; itr < size; itr++)
		bo[itr] = bi1[itr] ^ bi2[itr];
}

/*
 * CC-MAC function WUSB1.0[6.5]
 *
 * Take a data string and produce the encrypted CBC Counter-mode MIC
 *
 * Note the names for most function arguments are made to (more or
 * less) match those used in the pseudo-function definition given in
 * WUSB1.0[6.5].
 *
 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
 *
 * @tfm_aes: AES cipher handle (initialized)
 *
 * @mic: buffer for placing the computed MIC (Message Integrity
 *       Code). This is exactly 8 bytes, and we expect the buffer to
 *       be at least eight bytes in length.
 *
 * @key: 128 bit symmetric key
 *
 * @n: CCM nonce
 *
 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
 *     we use exactly 14 bytes).
 *
 * @b: data stream to be processed; cannot be a global or const local
 *     (will confuse the scatterlists)
 *
 * @blen: size of b...
 *
 * Still not very clear how this is done, but looks like this: we
 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
 * take the payload and divide it in blocks (16 bytes), xor them with
 * the previous crypto result (16 bytes) and crypt it, repeat the next
 * block with the output of the previous one, rinse wash (I guess this
 * is what AES CBC mode means...but I truly have no idea). So we use
 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
 * Vector) is 16 bytes and is set to zero, so
 *
 * See rfc3610. Linux crypto has a CBC implementation, but the
 * documentation is scarce, to say the least, and the example code is
 * so intricated that is difficult to understand how things work. Most
 * of this is guess work -- bite me.
 *
 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
 *     using the 14 bytes of @a to fill up
 *     b1.{mac_header,e0,security_reserved,padding}.
 *
 * NOTE: The definiton of l(a) in WUSB1.0[6.5] vs the definition of
 *       l(m) is orthogonal, they bear no relationship, so it is not
 *       in conflict with the parameter's relation that
 *       WUSB1.0[6.4.2]) defines.
 *
 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
 *       first errata released on 2005/07.
 *
 * NOTE: we need to clean IV to zero at each invocation to make sure
 *       we start with a fresh empty Initial Vector, so that the CBC
 *       works ok.
 *
 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
 *       what sg[4] is for. Maybe there is a smarter way to do this.
 */
static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
			struct crypto_cipher *tfm_aes, void *mic,
			const struct aes_ccm_nonce *n,
			const struct aes_ccm_label *a, const void *b,
			size_t blen)
{
	int result = 0;
	struct blkcipher_desc desc;
	struct aes_ccm_b0 b0;
	struct aes_ccm_b1 b1;
	struct aes_ccm_a ax;
	struct scatterlist sg[4], sg_dst;
	void *iv, *dst_buf;
	size_t ivsize, dst_size;
	const u8 bzero[16] = { 0 };
	size_t zero_padding;

	/*
	 * These checks should be compile time optimized out
	 * ensure @a fills b1's mac_header and following fields
	 */
	WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
	WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
	WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
	WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));

	result = -ENOMEM;
	zero_padding = sizeof(struct aes_ccm_block)
		- blen % sizeof(struct aes_ccm_block);
	zero_padding = blen % sizeof(struct aes_ccm_block);
	if (zero_padding)
		zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
	dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
	dst_buf = kzalloc(dst_size, GFP_KERNEL);
	if (dst_buf == NULL) {
		printk(KERN_ERR "E: can't alloc destination buffer\n");
		goto error_dst_buf;
	}

	iv = crypto_blkcipher_crt(tfm_cbc)->iv;
	ivsize = crypto_blkcipher_ivsize(tfm_cbc);
	memset(iv, 0, ivsize);

	/* Setup B0 */
	b0.flags = 0x59;	/* Format B0 */
	b0.ccm_nonce = *n;
	b0.lm = cpu_to_be16(0);	/* WUSB1.0[6.5] sez l(m) is 0 */

	/* Setup B1
	 *
	 * The WUSB spec is anything but clear! WUSB1.0[6.5]
	 * says that to initialize B1 from A with 'l(a) = blen +
	 * 14'--after clarification, it means to use A's contents
	 * for MAC Header, EO, sec reserved and padding.
	 */
	b1.la = cpu_to_be16(blen + 14);
	memcpy(&b1.mac_header, a, sizeof(*a));

	sg_init_table(sg, ARRAY_SIZE(sg));
	sg_set_buf(&sg[0], &b0, sizeof(b0));
	sg_set_buf(&sg[1], &b1, sizeof(b1));
	sg_set_buf(&sg[2], b, blen);
	/* 0 if well behaved :) */
	sg_set_buf(&sg[3], bzero, zero_padding);
	sg_init_one(&sg_dst, dst_buf, dst_size);

	desc.tfm = tfm_cbc;
	desc.flags = 0;
	result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
	if (result < 0) {
		printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
		       result);
		goto error_cbc_crypt;
	}

	/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
	 * The procedure is to AES crypt the A0 block and XOR the MIC
	 * Tag agains it; we only do the first 8 bytes and place it
	 * directly in the destination buffer.
	 *
	 * POS Crypto API: size is assumed to be AES's block size.
	 * Thanks for documenting it -- tip taken from airo.c
	 */
	ax.flags = 0x01;		/* as per WUSB 1.0 spec */
	ax.ccm_nonce = *n;
	ax.counter = 0;
	crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
	bytewise_xor(mic, &ax, iv, 8);
	result = 8;
error_cbc_crypt:
	kfree(dst_buf);
error_dst_buf:
	return result;
}

/*
 * WUSB Pseudo Random Function (WUSB1.0[6.5])
 *
 * @b: buffer to the source data; cannot be a global or const local
 *     (will confuse the scatterlists)
 */
ssize_t wusb_prf(void *out, size_t out_size,
		 const u8 key[16], const struct aes_ccm_nonce *_n,
		 const struct aes_ccm_label *a,
		 const void *b, size_t blen, size_t len)
{
	ssize_t result, bytes = 0, bitr;
	struct aes_ccm_nonce n = *_n;
	struct crypto_blkcipher *tfm_cbc;
	struct crypto_cipher *tfm_aes;
	u64 sfn = 0;
	__le64 sfn_le;

	tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(tfm_cbc)) {
		result = PTR_ERR(tfm_cbc);
		printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
		goto error_alloc_cbc;
	}
	result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
	if (result < 0) {
		printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
		goto error_setkey_cbc;
	}

	tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(tfm_aes)) {
		result = PTR_ERR(tfm_aes);
		printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
		goto error_alloc_aes;
	}
	result = crypto_cipher_setkey(tfm_aes, key, 16);
	if (result < 0) {
		printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
		goto error_setkey_aes;
	}

	for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
		sfn_le = cpu_to_le64(sfn++);
		memcpy(&n.sfn, &sfn_le, sizeof(n.sfn));	/* n.sfn++... */
		result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
				      &n, a, b, blen);
		if (result < 0)
			goto error_ccm_mac;
		bytes += result;
	}
	result = bytes;
error_ccm_mac:
error_setkey_aes:
	crypto_free_cipher(tfm_aes);
error_alloc_aes:
error_setkey_cbc:
	crypto_free_blkcipher(tfm_cbc);
error_alloc_cbc:
	return result;
}

/* WUSB1.0[A.2] test vectors */
static const u8 stv_hsmic_key[16] = {
	0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
	0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
};

static const struct aes_ccm_nonce stv_hsmic_n = {
	.sfn = { 0 },
	.tkid = { 0x76, 0x98, 0x01,  },
	.dest_addr = { .data = { 0xbe, 0x00 } },
		.src_addr = { .data = { 0x76, 0x98 } },
};

/*
 * Out-of-band MIC Generation verification code
 *
 */
static int wusb_oob_mic_verify(void)
{
	int result;
	u8 mic[8];
	/* WUSB1.0[A.2] test vectors
	 *
	 * Need to keep it in the local stack as GCC 4.1.3something
	 * messes up and generates noise.
	 */
	struct usb_handshake stv_hsmic_hs = {
		.bMessageNumber = 2,
		.bStatus 	= 00,
		.tTKID 		= { 0x76, 0x98, 0x01 },
		.bReserved 	= 00,
		.CDID 		= { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
				    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
				    0x3c, 0x3d, 0x3e, 0x3f },
		.nonce	 	= { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
				    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
				    0x2c, 0x2d, 0x2e, 0x2f },
		.MIC	 	= { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
				    0x14, 0x7b } ,
	};
	size_t hs_size;

	result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
	if (result < 0)
		printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
	else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
		printk(KERN_ERR "E: OOB MIC test: "
		       "mismatch between MIC result and WUSB1.0[A2]\n");
		hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
		printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
D
David Vrabel 已提交
405
		wusb_key_dump(&stv_hsmic_hs, hs_size);
406 407
		printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
		       sizeof(stv_hsmic_n));
D
David Vrabel 已提交
408
		wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
409
		printk(KERN_ERR "E: MIC out:\n");
D
David Vrabel 已提交
410
		wusb_key_dump(mic, sizeof(mic));
411
		printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
D
David Vrabel 已提交
412
		wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
		result = -EINVAL;
	} else
		result = 0;
	return result;
}

/*
 * Test vectors for Key derivation
 *
 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
 * (errata corrected in 2005/07).
 */
static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
	0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
	0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
};

static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
	.sfn = { 0 },
	.tkid = { 0x76, 0x98, 0x01,  },
	.dest_addr = { .data = { 0xbe, 0x00 } },
	.src_addr = { .data = { 0x76, 0x98 } },
};

static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
	.kck = {
		0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
		0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
	},
	.ptk = {
		0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
		0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
	}
};

/*
 * Performa a test to make sure we match the vectors defined in
 * WUSB1.0[A.1](Errata2006/12)
 */
static int wusb_key_derive_verify(void)
{
	int result = 0;
	struct wusb_keydvt_out keydvt_out;
	/* These come from WUSB1.0[A.1] + 2006/12 errata
	 * NOTE: can't make this const or global -- somehow it seems
	 *       the scatterlists for crypto get confused and we get
	 *       bad data. There is no doc on this... */
	struct wusb_keydvt_in stv_keydvt_in_a1 = {
		.hnonce = {
			0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
			0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
		},
		.dnonce = {
			0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
			0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
		}
	};

	result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
				 &stv_keydvt_in_a1);
	if (result < 0)
		printk(KERN_ERR "E: WUSB key derivation test: "
		       "derivation failed: %d\n", result);
	if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
		printk(KERN_ERR "E: WUSB key derivation test: "
		       "mismatch between key derivation result "
		       "and WUSB1.0[A1] Errata 2006/12\n");
D
David Vrabel 已提交
480 481 482 483 484 485
		printk(KERN_ERR "E: keydvt in: key\n");
		wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
		printk(KERN_ERR "E: keydvt in: nonce\n");
		wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
		printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
		wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
486
		printk(KERN_ERR "E: keydvt out: KCK\n");
D
David Vrabel 已提交
487
		wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
488
		printk(KERN_ERR "E: keydvt out: PTK\n");
D
David Vrabel 已提交
489
		wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		result = -EINVAL;
	} else
		result = 0;
	return result;
}

/*
 * Initialize crypto system
 *
 * FIXME: we do nothing now, other than verifying. Later on we'll
 * cache the encryption stuff, so that's why we have a separate init.
 */
int wusb_crypto_init(void)
{
	int result;

506 507 508 509 510 511 512
	if (debug_crypto_verify) {
		result = wusb_key_derive_verify();
		if (result < 0)
			return result;
		return wusb_oob_mic_verify();
	}
	return 0;
513 514 515 516 517 518
}

void wusb_crypto_exit(void)
{
	/* FIXME: free cached crypto transforms */
}