svc_xprt.c 28.7 KB
Newer Older
T
Tom Tucker 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * linux/net/sunrpc/svc_xprt.c
 *
 * Author: Tom Tucker <tom@opengridcomputing.com>
 */

#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/fcntl.h>
#include <linux/net.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/file.h>
#include <linux/freezer.h>
21
#include <linux/kthread.h>
T
Tom Tucker 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include <net/sock.h>
#include <net/checksum.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/tcp_states.h>
#include <linux/uaccess.h>
#include <asm/ioctls.h>

#include <linux/sunrpc/types.h>
#include <linux/sunrpc/clnt.h>
#include <linux/sunrpc/xdr.h>
#include <linux/sunrpc/stats.h>
#include <linux/sunrpc/svc_xprt.h>

#define RPCDBG_FACILITY	RPCDBG_SVCXPRT

38 39 40 41 42 43 44 45 46 47 48 49
static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
static int svc_deferred_recv(struct svc_rqst *rqstp);
static struct cache_deferred_req *svc_defer(struct cache_req *req);
static void svc_age_temp_xprts(unsigned long closure);

/* apparently the "standard" is that clients close
 * idle connections after 5 minutes, servers after
 * 6 minutes
 *   http://www.connectathon.org/talks96/nfstcp.pdf
 */
static int svc_conn_age_period = 6*60;

T
Tom Tucker 已提交
50 51 52 53
/* List of registered transport classes */
static DEFINE_SPINLOCK(svc_xprt_class_lock);
static LIST_HEAD(svc_xprt_class_list);

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
/* SMP locking strategy:
 *
 *	svc_pool->sp_lock protects most of the fields of that pool.
 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
 *	when both need to be taken (rare), svc_serv->sv_lock is first.
 *	BKL protects svc_serv->sv_nrthread.
 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
 *             and the ->sk_info_authunix cache.
 *
 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
 *	enqueued multiply. During normal transport processing this bit
 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
 *	Providers should not manipulate this bit directly.
 *
 *	Some flags can be set to certain values at any time
 *	providing that certain rules are followed:
 *
 *	XPT_CONN, XPT_DATA:
 *		- Can be set or cleared at any time.
 *		- After a set, svc_xprt_enqueue must be called to enqueue
 *		  the transport for processing.
 *		- After a clear, the transport must be read/accepted.
 *		  If this succeeds, it must be set again.
 *	XPT_CLOSE:
 *		- Can set at any time. It is never cleared.
 *      XPT_DEAD:
 *		- Can only be set while XPT_BUSY is held which ensures
 *		  that no other thread will be using the transport or will
 *		  try to set XPT_DEAD.
 */

T
Tom Tucker 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
int svc_reg_xprt_class(struct svc_xprt_class *xcl)
{
	struct svc_xprt_class *cl;
	int res = -EEXIST;

	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);

	INIT_LIST_HEAD(&xcl->xcl_list);
	spin_lock(&svc_xprt_class_lock);
	/* Make sure there isn't already a class with the same name */
	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
			goto out;
	}
	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
	res = 0;
out:
	spin_unlock(&svc_xprt_class_lock);
	return res;
}
EXPORT_SYMBOL_GPL(svc_reg_xprt_class);

void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
{
	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
	spin_lock(&svc_xprt_class_lock);
	list_del_init(&xcl->xcl_list);
	spin_unlock(&svc_xprt_class_lock);
}
EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/*
 * Format the transport list for printing
 */
int svc_print_xprts(char *buf, int maxlen)
{
	struct list_head *le;
	char tmpstr[80];
	int len = 0;
	buf[0] = '\0';

	spin_lock(&svc_xprt_class_lock);
	list_for_each(le, &svc_xprt_class_list) {
		int slen;
		struct svc_xprt_class *xcl =
			list_entry(le, struct svc_xprt_class, xcl_list);

		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
		slen = strlen(tmpstr);
		if (len + slen > maxlen)
			break;
		len += slen;
		strcat(buf, tmpstr);
	}
	spin_unlock(&svc_xprt_class_lock);

	return len;
}

T
Tom Tucker 已提交
144 145 146 147 148
static void svc_xprt_free(struct kref *kref)
{
	struct svc_xprt *xprt =
		container_of(kref, struct svc_xprt, xpt_ref);
	struct module *owner = xprt->xpt_class->xcl_owner;
149 150 151
	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)
	    && xprt->xpt_auth_cache != NULL)
		svcauth_unix_info_release(xprt->xpt_auth_cache);
T
Tom Tucker 已提交
152 153 154 155 156 157 158 159 160 161
	xprt->xpt_ops->xpo_free(xprt);
	module_put(owner);
}

void svc_xprt_put(struct svc_xprt *xprt)
{
	kref_put(&xprt->xpt_ref, svc_xprt_free);
}
EXPORT_SYMBOL_GPL(svc_xprt_put);

T
Tom Tucker 已提交
162 163 164 165
/*
 * Called by transport drivers to initialize the transport independent
 * portion of the transport instance.
 */
166 167
void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
		   struct svc_serv *serv)
T
Tom Tucker 已提交
168 169 170 171
{
	memset(xprt, 0, sizeof(*xprt));
	xprt->xpt_class = xcl;
	xprt->xpt_ops = xcl->xcl_ops;
T
Tom Tucker 已提交
172
	kref_init(&xprt->xpt_ref);
173
	xprt->xpt_server = serv;
174 175
	INIT_LIST_HEAD(&xprt->xpt_list);
	INIT_LIST_HEAD(&xprt->xpt_ready);
176
	INIT_LIST_HEAD(&xprt->xpt_deferred);
177
	mutex_init(&xprt->xpt_mutex);
178
	spin_lock_init(&xprt->xpt_lock);
179
	set_bit(XPT_BUSY, &xprt->xpt_flags);
T
Tom Tucker 已提交
180 181
}
EXPORT_SYMBOL_GPL(svc_xprt_init);
182 183 184 185 186 187 188

int svc_create_xprt(struct svc_serv *serv, char *xprt_name, unsigned short port,
		    int flags)
{
	struct svc_xprt_class *xcl;
	struct sockaddr_in sin = {
		.sin_family		= AF_INET,
A
Al Viro 已提交
189
		.sin_addr.s_addr	= htonl(INADDR_ANY),
190 191 192 193 194
		.sin_port		= htons(port),
	};
	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
	spin_lock(&svc_xprt_class_lock);
	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
		struct svc_xprt *newxprt;

		if (strcmp(xprt_name, xcl->xcl_name))
			continue;

		if (!try_module_get(xcl->xcl_owner))
			goto err;

		spin_unlock(&svc_xprt_class_lock);
		newxprt = xcl->xcl_ops->
			xpo_create(serv, (struct sockaddr *)&sin, sizeof(sin),
				   flags);
		if (IS_ERR(newxprt)) {
			module_put(xcl->xcl_owner);
			return PTR_ERR(newxprt);
210
		}
211 212 213 214 215 216 217

		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
		spin_lock_bh(&serv->sv_lock);
		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
		spin_unlock_bh(&serv->sv_lock);
		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
		return svc_xprt_local_port(newxprt);
218
	}
219
 err:
220 221
	spin_unlock(&svc_xprt_class_lock);
	dprintk("svc: transport %s not found\n", xprt_name);
222
	return -ENOENT;
223 224
}
EXPORT_SYMBOL_GPL(svc_create_xprt);
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

/*
 * Copy the local and remote xprt addresses to the rqstp structure
 */
void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
{
	struct sockaddr *sin;

	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
	rqstp->rq_addrlen = xprt->xpt_remotelen;

	/*
	 * Destination address in request is needed for binding the
	 * source address in RPC replies/callbacks later.
	 */
	sin = (struct sockaddr *)&xprt->xpt_local;
	switch (sin->sa_family) {
	case AF_INET:
		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
		break;
	case AF_INET6:
		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
		break;
	}
}
EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/**
 * svc_print_addr - Format rq_addr field for printing
 * @rqstp: svc_rqst struct containing address to print
 * @buf: target buffer for formatted address
 * @len: length of target buffer
 *
 */
char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
{
	return __svc_print_addr(svc_addr(rqstp), buf, len);
}
EXPORT_SYMBOL_GPL(svc_print_addr);

/*
 * Queue up an idle server thread.  Must have pool->sp_lock held.
 * Note: this is really a stack rather than a queue, so that we only
 * use as many different threads as we need, and the rest don't pollute
 * the cache.
 */
static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
{
	list_add(&rqstp->rq_list, &pool->sp_threads);
}

/*
 * Dequeue an nfsd thread.  Must have pool->sp_lock held.
 */
static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
{
	list_del(&rqstp->rq_list);
}

/*
 * Queue up a transport with data pending. If there are idle nfsd
 * processes, wake 'em up.
 *
 */
void svc_xprt_enqueue(struct svc_xprt *xprt)
{
	struct svc_serv	*serv = xprt->xpt_server;
	struct svc_pool *pool;
	struct svc_rqst	*rqstp;
	int cpu;

	if (!(xprt->xpt_flags &
	      ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
		return;
	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
		return;

	cpu = get_cpu();
	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
	put_cpu();

	spin_lock_bh(&pool->sp_lock);

	if (!list_empty(&pool->sp_threads) &&
	    !list_empty(&pool->sp_sockets))
		printk(KERN_ERR
		       "svc_xprt_enqueue: "
		       "threads and transports both waiting??\n");

	if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
		/* Don't enqueue dead transports */
		dprintk("svc: transport %p is dead, not enqueued\n", xprt);
		goto out_unlock;
	}

	/* Mark transport as busy. It will remain in this state until
	 * the provider calls svc_xprt_received. We update XPT_BUSY
	 * atomically because it also guards against trying to enqueue
	 * the transport twice.
	 */
	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
		/* Don't enqueue transport while already enqueued */
		dprintk("svc: transport %p busy, not enqueued\n", xprt);
		goto out_unlock;
	}
	BUG_ON(xprt->xpt_pool != NULL);
	xprt->xpt_pool = pool;

	/* Handle pending connection */
	if (test_bit(XPT_CONN, &xprt->xpt_flags))
		goto process;

	/* Handle close in-progress */
	if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
		goto process;

	/* Check if we have space to reply to a request */
	if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
		/* Don't enqueue while not enough space for reply */
		dprintk("svc: no write space, transport %p  not enqueued\n",
			xprt);
		xprt->xpt_pool = NULL;
		clear_bit(XPT_BUSY, &xprt->xpt_flags);
		goto out_unlock;
	}

 process:
	if (!list_empty(&pool->sp_threads)) {
		rqstp = list_entry(pool->sp_threads.next,
				   struct svc_rqst,
				   rq_list);
		dprintk("svc: transport %p served by daemon %p\n",
			xprt, rqstp);
		svc_thread_dequeue(pool, rqstp);
		if (rqstp->rq_xprt)
			printk(KERN_ERR
				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
				rqstp, rqstp->rq_xprt);
		rqstp->rq_xprt = xprt;
		svc_xprt_get(xprt);
		rqstp->rq_reserved = serv->sv_max_mesg;
		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
		BUG_ON(xprt->xpt_pool != pool);
		wake_up(&rqstp->rq_wait);
	} else {
		dprintk("svc: transport %p put into queue\n", xprt);
		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
		BUG_ON(xprt->xpt_pool != pool);
	}

out_unlock:
	spin_unlock_bh(&pool->sp_lock);
}
EXPORT_SYMBOL_GPL(svc_xprt_enqueue);

/*
 * Dequeue the first transport.  Must be called with the pool->sp_lock held.
 */
static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
{
	struct svc_xprt	*xprt;

	if (list_empty(&pool->sp_sockets))
		return NULL;

	xprt = list_entry(pool->sp_sockets.next,
			  struct svc_xprt, xpt_ready);
	list_del_init(&xprt->xpt_ready);

	dprintk("svc: transport %p dequeued, inuse=%d\n",
		xprt, atomic_read(&xprt->xpt_ref.refcount));

	return xprt;
}

/*
 * svc_xprt_received conditionally queues the transport for processing
 * by another thread. The caller must hold the XPT_BUSY bit and must
 * not thereafter touch transport data.
 *
 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 * insufficient) data.
 */
void svc_xprt_received(struct svc_xprt *xprt)
{
	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
	xprt->xpt_pool = NULL;
	clear_bit(XPT_BUSY, &xprt->xpt_flags);
	svc_xprt_enqueue(xprt);
}
EXPORT_SYMBOL_GPL(svc_xprt_received);

/**
 * svc_reserve - change the space reserved for the reply to a request.
 * @rqstp:  The request in question
 * @space: new max space to reserve
 *
 * Each request reserves some space on the output queue of the transport
 * to make sure the reply fits.  This function reduces that reserved
 * space to be the amount of space used already, plus @space.
 *
 */
void svc_reserve(struct svc_rqst *rqstp, int space)
{
	space += rqstp->rq_res.head[0].iov_len;

	if (space < rqstp->rq_reserved) {
		struct svc_xprt *xprt = rqstp->rq_xprt;
		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
		rqstp->rq_reserved = space;

		svc_xprt_enqueue(xprt);
	}
}
439
EXPORT_SYMBOL(svc_reserve);
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

static void svc_xprt_release(struct svc_rqst *rqstp)
{
	struct svc_xprt	*xprt = rqstp->rq_xprt;

	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);

	svc_free_res_pages(rqstp);
	rqstp->rq_res.page_len = 0;
	rqstp->rq_res.page_base = 0;

	/* Reset response buffer and release
	 * the reservation.
	 * But first, check that enough space was reserved
	 * for the reply, otherwise we have a bug!
	 */
	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
		printk(KERN_ERR "RPC request reserved %d but used %d\n",
		       rqstp->rq_reserved,
		       rqstp->rq_res.len);

	rqstp->rq_res.head[0].iov_len = 0;
	svc_reserve(rqstp, 0);
	rqstp->rq_xprt = NULL;

	svc_xprt_put(xprt);
}

/*
 * External function to wake up a server waiting for data
 * This really only makes sense for services like lockd
 * which have exactly one thread anyway.
 */
void svc_wake_up(struct svc_serv *serv)
{
	struct svc_rqst	*rqstp;
	unsigned int i;
	struct svc_pool *pool;

	for (i = 0; i < serv->sv_nrpools; i++) {
		pool = &serv->sv_pools[i];

		spin_lock_bh(&pool->sp_lock);
		if (!list_empty(&pool->sp_threads)) {
			rqstp = list_entry(pool->sp_threads.next,
					   struct svc_rqst,
					   rq_list);
			dprintk("svc: daemon %p woken up.\n", rqstp);
			/*
			svc_thread_dequeue(pool, rqstp);
			rqstp->rq_xprt = NULL;
			 */
			wake_up(&rqstp->rq_wait);
		}
		spin_unlock_bh(&pool->sp_lock);
	}
}
497
EXPORT_SYMBOL(svc_wake_up);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

int svc_port_is_privileged(struct sockaddr *sin)
{
	switch (sin->sa_family) {
	case AF_INET:
		return ntohs(((struct sockaddr_in *)sin)->sin_port)
			< PROT_SOCK;
	case AF_INET6:
		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
			< PROT_SOCK;
	default:
		return 0;
	}
}

/*
 * Make sure that we don't have too many active connections.  If we
 * have, something must be dropped.
 *
 * There's no point in trying to do random drop here for DoS
 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 * attacker can easily beat that.
 *
 * The only somewhat efficient mechanism would be if drop old
 * connections from the same IP first. But right now we don't even
 * record the client IP in svc_sock.
 */
static void svc_check_conn_limits(struct svc_serv *serv)
{
	if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
		struct svc_xprt *xprt = NULL;
		spin_lock_bh(&serv->sv_lock);
		if (!list_empty(&serv->sv_tempsocks)) {
			if (net_ratelimit()) {
				/* Try to help the admin */
				printk(KERN_NOTICE "%s: too many open  "
				       "connections, consider increasing the "
				       "number of nfsd threads\n",
				       serv->sv_name);
			}
			/*
			 * Always select the oldest connection. It's not fair,
			 * but so is life
			 */
			xprt = list_entry(serv->sv_tempsocks.prev,
					  struct svc_xprt,
					  xpt_list);
			set_bit(XPT_CLOSE, &xprt->xpt_flags);
			svc_xprt_get(xprt);
		}
		spin_unlock_bh(&serv->sv_lock);

		if (xprt) {
			svc_xprt_enqueue(xprt);
			svc_xprt_put(xprt);
		}
	}
}

/*
 * Receive the next request on any transport.  This code is carefully
 * organised not to touch any cachelines in the shared svc_serv
 * structure, only cachelines in the local svc_pool.
 */
int svc_recv(struct svc_rqst *rqstp, long timeout)
{
	struct svc_xprt		*xprt = NULL;
	struct svc_serv		*serv = rqstp->rq_server;
	struct svc_pool		*pool = rqstp->rq_pool;
	int			len, i;
	int			pages;
	struct xdr_buf		*arg;
	DECLARE_WAITQUEUE(wait, current);

	dprintk("svc: server %p waiting for data (to = %ld)\n",
		rqstp, timeout);

	if (rqstp->rq_xprt)
		printk(KERN_ERR
			"svc_recv: service %p, transport not NULL!\n",
			 rqstp);
	if (waitqueue_active(&rqstp->rq_wait))
		printk(KERN_ERR
			"svc_recv: service %p, wait queue active!\n",
			 rqstp);

	/* now allocate needed pages.  If we get a failure, sleep briefly */
	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
	for (i = 0; i < pages ; i++)
		while (rqstp->rq_pages[i] == NULL) {
			struct page *p = alloc_page(GFP_KERNEL);
			if (!p) {
				int j = msecs_to_jiffies(500);
591 592
				if (kthread_should_stop())
					return -EINTR;
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
				schedule_timeout_uninterruptible(j);
			}
			rqstp->rq_pages[i] = p;
		}
	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
	BUG_ON(pages >= RPCSVC_MAXPAGES);

	/* Make arg->head point to first page and arg->pages point to rest */
	arg = &rqstp->rq_arg;
	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
	arg->head[0].iov_len = PAGE_SIZE;
	arg->pages = rqstp->rq_pages + 1;
	arg->page_base = 0;
	/* save at least one page for response */
	arg->page_len = (pages-2)*PAGE_SIZE;
	arg->len = (pages-1)*PAGE_SIZE;
	arg->tail[0].iov_len = 0;

	try_to_freeze();
	cond_resched();
613
	if (signalled() || kthread_should_stop())
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		return -EINTR;

	spin_lock_bh(&pool->sp_lock);
	xprt = svc_xprt_dequeue(pool);
	if (xprt) {
		rqstp->rq_xprt = xprt;
		svc_xprt_get(xprt);
		rqstp->rq_reserved = serv->sv_max_mesg;
		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
	} else {
		/* No data pending. Go to sleep */
		svc_thread_enqueue(pool, rqstp);

		/*
		 * We have to be able to interrupt this wait
		 * to bring down the daemons ...
		 */
		set_current_state(TASK_INTERRUPTIBLE);
632 633 634 635 636 637 638 639 640 641 642 643 644 645

		/*
		 * checking kthread_should_stop() here allows us to avoid
		 * locking and signalling when stopping kthreads that call
		 * svc_recv. If the thread has already been woken up, then
		 * we can exit here without sleeping. If not, then it
		 * it'll be woken up quickly during the schedule_timeout
		 */
		if (kthread_should_stop()) {
			set_current_state(TASK_RUNNING);
			spin_unlock_bh(&pool->sp_lock);
			return -EINTR;
		}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
		add_wait_queue(&rqstp->rq_wait, &wait);
		spin_unlock_bh(&pool->sp_lock);

		schedule_timeout(timeout);

		try_to_freeze();

		spin_lock_bh(&pool->sp_lock);
		remove_wait_queue(&rqstp->rq_wait, &wait);

		xprt = rqstp->rq_xprt;
		if (!xprt) {
			svc_thread_dequeue(pool, rqstp);
			spin_unlock_bh(&pool->sp_lock);
			dprintk("svc: server %p, no data yet\n", rqstp);
661 662 663 664
			if (signalled() || kthread_should_stop())
				return -EINTR;
			else
				return -EAGAIN;
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
		}
	}
	spin_unlock_bh(&pool->sp_lock);

	len = 0;
	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
		dprintk("svc_recv: found XPT_CLOSE\n");
		svc_delete_xprt(xprt);
	} else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
		struct svc_xprt *newxpt;
		newxpt = xprt->xpt_ops->xpo_accept(xprt);
		if (newxpt) {
			/*
			 * We know this module_get will succeed because the
			 * listener holds a reference too
			 */
			__module_get(newxpt->xpt_class->xcl_owner);
			svc_check_conn_limits(xprt->xpt_server);
			spin_lock_bh(&serv->sv_lock);
			set_bit(XPT_TEMP, &newxpt->xpt_flags);
			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
			serv->sv_tmpcnt++;
			if (serv->sv_temptimer.function == NULL) {
				/* setup timer to age temp transports */
				setup_timer(&serv->sv_temptimer,
					    svc_age_temp_xprts,
					    (unsigned long)serv);
				mod_timer(&serv->sv_temptimer,
					  jiffies + svc_conn_age_period * HZ);
			}
			spin_unlock_bh(&serv->sv_lock);
			svc_xprt_received(newxpt);
		}
		svc_xprt_received(xprt);
	} else {
		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
			rqstp, pool->sp_id, xprt,
			atomic_read(&xprt->xpt_ref.refcount));
		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
		if (rqstp->rq_deferred) {
			svc_xprt_received(xprt);
			len = svc_deferred_recv(rqstp);
		} else
			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
		dprintk("svc: got len=%d\n", len);
	}

	/* No data, incomplete (TCP) read, or accept() */
	if (len == 0 || len == -EAGAIN) {
		rqstp->rq_res.len = 0;
		svc_xprt_release(rqstp);
		return -EAGAIN;
	}
	clear_bit(XPT_OLD, &xprt->xpt_flags);

	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
	rqstp->rq_chandle.defer = svc_defer;

	if (serv->sv_stats)
		serv->sv_stats->netcnt++;
	return len;
}
727
EXPORT_SYMBOL(svc_recv);
728 729 730 731 732 733 734 735 736

/*
 * Drop request
 */
void svc_drop(struct svc_rqst *rqstp)
{
	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
	svc_xprt_release(rqstp);
}
737
EXPORT_SYMBOL(svc_drop);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

/*
 * Return reply to client.
 */
int svc_send(struct svc_rqst *rqstp)
{
	struct svc_xprt	*xprt;
	int		len;
	struct xdr_buf	*xb;

	xprt = rqstp->rq_xprt;
	if (!xprt)
		return -EFAULT;

	/* release the receive skb before sending the reply */
	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);

	/* calculate over-all length */
	xb = &rqstp->rq_res;
	xb->len = xb->head[0].iov_len +
		xb->page_len +
		xb->tail[0].iov_len;

	/* Grab mutex to serialize outgoing data. */
	mutex_lock(&xprt->xpt_mutex);
	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
		len = -ENOTCONN;
	else
		len = xprt->xpt_ops->xpo_sendto(rqstp);
	mutex_unlock(&xprt->xpt_mutex);
	svc_xprt_release(rqstp);

	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
		return 0;
	return len;
}

/*
 * Timer function to close old temporary transports, using
 * a mark-and-sweep algorithm.
 */
static void svc_age_temp_xprts(unsigned long closure)
{
	struct svc_serv *serv = (struct svc_serv *)closure;
	struct svc_xprt *xprt;
	struct list_head *le, *next;
	LIST_HEAD(to_be_aged);

	dprintk("svc_age_temp_xprts\n");

	if (!spin_trylock_bh(&serv->sv_lock)) {
		/* busy, try again 1 sec later */
		dprintk("svc_age_temp_xprts: busy\n");
		mod_timer(&serv->sv_temptimer, jiffies + HZ);
		return;
	}

	list_for_each_safe(le, next, &serv->sv_tempsocks) {
		xprt = list_entry(le, struct svc_xprt, xpt_list);

		/* First time through, just mark it OLD. Second time
		 * through, close it. */
		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
			continue;
		if (atomic_read(&xprt->xpt_ref.refcount) > 1
		    || test_bit(XPT_BUSY, &xprt->xpt_flags))
			continue;
		svc_xprt_get(xprt);
		list_move(le, &to_be_aged);
		set_bit(XPT_CLOSE, &xprt->xpt_flags);
		set_bit(XPT_DETACHED, &xprt->xpt_flags);
	}
	spin_unlock_bh(&serv->sv_lock);

	while (!list_empty(&to_be_aged)) {
		le = to_be_aged.next;
		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
		list_del_init(le);
		xprt = list_entry(le, struct svc_xprt, xpt_list);

		dprintk("queuing xprt %p for closing\n", xprt);

		/* a thread will dequeue and close it soon */
		svc_xprt_enqueue(xprt);
		svc_xprt_put(xprt);
	}

	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
}

/*
 * Remove a dead transport
 */
void svc_delete_xprt(struct svc_xprt *xprt)
{
	struct svc_serv	*serv = xprt->xpt_server;

	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
	xprt->xpt_ops->xpo_detach(xprt);

	spin_lock_bh(&serv->sv_lock);
	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
		list_del_init(&xprt->xpt_list);
	/*
	 * We used to delete the transport from whichever list
	 * it's sk_xprt.xpt_ready node was on, but we don't actually
	 * need to.  This is because the only time we're called
	 * while still attached to a queue, the queue itself
	 * is about to be destroyed (in svc_destroy).
	 */
	if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) {
		BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2);
		if (test_bit(XPT_TEMP, &xprt->xpt_flags))
			serv->sv_tmpcnt--;
		svc_xprt_put(xprt);
	}
	spin_unlock_bh(&serv->sv_lock);
}

void svc_close_xprt(struct svc_xprt *xprt)
{
	set_bit(XPT_CLOSE, &xprt->xpt_flags);
	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
		/* someone else will have to effect the close */
		return;

	svc_xprt_get(xprt);
	svc_delete_xprt(xprt);
	clear_bit(XPT_BUSY, &xprt->xpt_flags);
	svc_xprt_put(xprt);
}
869
EXPORT_SYMBOL_GPL(svc_close_xprt);
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

void svc_close_all(struct list_head *xprt_list)
{
	struct svc_xprt *xprt;
	struct svc_xprt *tmp;

	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
		set_bit(XPT_CLOSE, &xprt->xpt_flags);
		if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
			/* Waiting to be processed, but no threads left,
			 * So just remove it from the waiting list
			 */
			list_del_init(&xprt->xpt_ready);
			clear_bit(XPT_BUSY, &xprt->xpt_flags);
		}
		svc_close_xprt(xprt);
	}
}

/*
 * Handle defer and revisit of requests
 */

static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
{
	struct svc_deferred_req *dr =
		container_of(dreq, struct svc_deferred_req, handle);
	struct svc_xprt *xprt = dr->xprt;

	if (too_many) {
		svc_xprt_put(xprt);
		kfree(dr);
		return;
	}
	dprintk("revisit queued\n");
	dr->xprt = NULL;
	spin_lock(&xprt->xpt_lock);
	list_add(&dr->handle.recent, &xprt->xpt_deferred);
	spin_unlock(&xprt->xpt_lock);
	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
	svc_xprt_enqueue(xprt);
	svc_xprt_put(xprt);
}

914 915 916 917 918 919 920 921 922
/*
 * Save the request off for later processing. The request buffer looks
 * like this:
 *
 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
 *
 * This code can only handle requests that consist of an xprt-header
 * and rpc-header.
 */
923 924 925 926 927 928 929 930 931 932 933
static struct cache_deferred_req *svc_defer(struct cache_req *req)
{
	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
	struct svc_deferred_req *dr;

	if (rqstp->rq_arg.page_len)
		return NULL; /* if more than a page, give up FIXME */
	if (rqstp->rq_deferred) {
		dr = rqstp->rq_deferred;
		rqstp->rq_deferred = NULL;
	} else {
934 935
		size_t skip;
		size_t size;
936
		/* FIXME maybe discard if size too large */
937
		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
938 939 940 941 942 943 944 945 946 947
		dr = kmalloc(size, GFP_KERNEL);
		if (dr == NULL)
			return NULL;

		dr->handle.owner = rqstp->rq_server;
		dr->prot = rqstp->rq_prot;
		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
		dr->addrlen = rqstp->rq_addrlen;
		dr->daddr = rqstp->rq_daddr;
		dr->argslen = rqstp->rq_arg.len >> 2;
948 949 950 951 952 953
		dr->xprt_hlen = rqstp->rq_xprt_hlen;

		/* back up head to the start of the buffer and copy */
		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
		       dr->argslen << 2);
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	}
	svc_xprt_get(rqstp->rq_xprt);
	dr->xprt = rqstp->rq_xprt;

	dr->handle.revisit = svc_revisit;
	return &dr->handle;
}

/*
 * recv data from a deferred request into an active one
 */
static int svc_deferred_recv(struct svc_rqst *rqstp)
{
	struct svc_deferred_req *dr = rqstp->rq_deferred;

969 970 971 972
	/* setup iov_base past transport header */
	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
	/* The iov_len does not include the transport header bytes */
	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
973
	rqstp->rq_arg.page_len = 0;
974 975
	/* The rq_arg.len includes the transport header bytes */
	rqstp->rq_arg.len     = dr->argslen<<2;
976 977 978
	rqstp->rq_prot        = dr->prot;
	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
	rqstp->rq_addrlen     = dr->addrlen;
979 980
	/* Save off transport header len in case we get deferred again */
	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
981 982
	rqstp->rq_daddr       = dr->daddr;
	rqstp->rq_respages    = rqstp->rq_pages;
983
	return (dr->argslen<<2) - dr->xprt_hlen;
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
}


static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
{
	struct svc_deferred_req *dr = NULL;

	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
		return NULL;
	spin_lock(&xprt->xpt_lock);
	clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
	if (!list_empty(&xprt->xpt_deferred)) {
		dr = list_entry(xprt->xpt_deferred.next,
				struct svc_deferred_req,
				handle.recent);
		list_del_init(&dr->handle.recent);
		set_bit(XPT_DEFERRED, &xprt->xpt_flags);
	}
	spin_unlock(&xprt->xpt_lock);
	return dr;
}
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

/*
 * Return the transport instance pointer for the endpoint accepting
 * connections/peer traffic from the specified transport class,
 * address family and port.
 *
 * Specifying 0 for the address family or port is effectively a
 * wild-card, and will result in matching the first transport in the
 * service's list that has a matching class name.
 */
struct svc_xprt *svc_find_xprt(struct svc_serv *serv, char *xcl_name,
			       int af, int port)
{
	struct svc_xprt *xprt;
	struct svc_xprt *found = NULL;

	/* Sanity check the args */
	if (!serv || !xcl_name)
		return found;

	spin_lock_bh(&serv->sv_lock);
	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
			continue;
		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
			continue;
		if (port && port != svc_xprt_local_port(xprt))
			continue;
		found = xprt;
1034
		svc_xprt_get(xprt);
1035 1036 1037 1038 1039 1040
		break;
	}
	spin_unlock_bh(&serv->sv_lock);
	return found;
}
EXPORT_SYMBOL_GPL(svc_find_xprt);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

/*
 * Format a buffer with a list of the active transports. A zero for
 * the buflen parameter disables target buffer overflow checking.
 */
int svc_xprt_names(struct svc_serv *serv, char *buf, int buflen)
{
	struct svc_xprt *xprt;
	char xprt_str[64];
	int totlen = 0;
	int len;

	/* Sanity check args */
	if (!serv)
		return 0;

	spin_lock_bh(&serv->sv_lock);
	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
		len = snprintf(xprt_str, sizeof(xprt_str),
			       "%s %d\n", xprt->xpt_class->xcl_name,
			       svc_xprt_local_port(xprt));
		/* If the string was truncated, replace with error string */
		if (len >= sizeof(xprt_str))
			strcpy(xprt_str, "name-too-long\n");
		/* Don't overflow buffer */
		len = strlen(xprt_str);
		if (buflen && (len + totlen >= buflen))
			break;
		strcpy(buf+totlen, xprt_str);
		totlen += len;
	}
	spin_unlock_bh(&serv->sv_lock);
	return totlen;
}
EXPORT_SYMBOL_GPL(svc_xprt_names);