afe4404.c 16.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4
/*
 * AFE4404 Heart Rate Monitors and Low-Cost Pulse Oximeters
 *
5
 * Copyright (C) 2015-2016 Texas Instruments Incorporated - https://www.ti.com/
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
 *	Andrew F. Davis <afd@ti.com>
 */

#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/sysfs.h>
#include <linux/regulator/consumer.h>

#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>

#include "afe440x.h"

#define AFE4404_DRIVER_NAME		"afe4404"

/* AFE4404 registers */
#define AFE4404_TIA_GAIN_SEP		0x20
#define AFE4404_TIA_GAIN		0x21
#define AFE4404_PROG_TG_STC		0x34
#define AFE4404_PROG_TG_ENDC		0x35
#define AFE4404_LED3LEDSTC		0x36
#define AFE4404_LED3LEDENDC		0x37
#define AFE4404_CLKDIV_PRF		0x39
#define AFE4404_OFFDAC			0x3a
#define AFE4404_DEC			0x3d
#define AFE4404_AVG_LED2_ALED2VAL	0x3f
#define AFE4404_AVG_LED1_ALED1VAL	0x40

43 44
/* AFE4404 CONTROL2 register fields */
#define AFE440X_CONTROL2_OSC_ENABLE	BIT(9)
45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
enum afe4404_fields {
	/* Gains */
	F_TIA_GAIN_SEP, F_TIA_CF_SEP,
	F_TIA_GAIN, TIA_CF,

	/* LED Current */
	F_ILED1, F_ILED2, F_ILED3,

	/* Offset DAC */
	F_OFFDAC_AMB2, F_OFFDAC_LED1, F_OFFDAC_AMB1, F_OFFDAC_LED2,

	/* sentinel */
	F_MAX_FIELDS
};

static const struct reg_field afe4404_reg_fields[] = {
	/* Gains */
	[F_TIA_GAIN_SEP]	= REG_FIELD(AFE4404_TIA_GAIN_SEP, 0, 2),
	[F_TIA_CF_SEP]		= REG_FIELD(AFE4404_TIA_GAIN_SEP, 3, 5),
	[F_TIA_GAIN]		= REG_FIELD(AFE4404_TIA_GAIN, 0, 2),
	[TIA_CF]		= REG_FIELD(AFE4404_TIA_GAIN, 3, 5),
	/* LED Current */
	[F_ILED1]		= REG_FIELD(AFE440X_LEDCNTRL, 0, 5),
	[F_ILED2]		= REG_FIELD(AFE440X_LEDCNTRL, 6, 11),
	[F_ILED3]		= REG_FIELD(AFE440X_LEDCNTRL, 12, 17),
	/* Offset DAC */
	[F_OFFDAC_AMB2]		= REG_FIELD(AFE4404_OFFDAC, 0, 4),
	[F_OFFDAC_LED1]		= REG_FIELD(AFE4404_OFFDAC, 5, 9),
	[F_OFFDAC_AMB1]		= REG_FIELD(AFE4404_OFFDAC, 10, 14),
	[F_OFFDAC_LED2]		= REG_FIELD(AFE4404_OFFDAC, 15, 19),
};

78
/**
79 80 81
 * struct afe4404_data - AFE4404 device instance data
 * @dev: Device structure
 * @regmap: Register map of the device
82
 * @fields: Register fields of the device
83 84 85
 * @regulator: Pointer to the regulator for the IC
 * @trig: IIO trigger for this device
 * @irq: ADC_RDY line interrupt number
86
 * @buffer: Used to construct a scan to push to the iio buffer.
87 88 89 90
 */
struct afe4404_data {
	struct device *dev;
	struct regmap *regmap;
91
	struct regmap_field *fields[F_MAX_FIELDS];
92 93 94
	struct regulator *regulator;
	struct iio_trigger *trig;
	int irq;
95
	s32 buffer[10] __aligned(8);
96 97 98
};

enum afe4404_chan_id {
99 100
	LED2 = 1,
	ALED2,
101 102 103
	LED1,
	ALED1,
	LED2_ALED2,
104
	LED1_ALED1,
105 106
};

107 108 109 110 111 112 113 114 115 116
static const unsigned int afe4404_channel_values[] = {
	[LED2] = AFE440X_LED2VAL,
	[ALED2] = AFE440X_ALED2VAL,
	[LED1] = AFE440X_LED1VAL,
	[ALED1] = AFE440X_ALED1VAL,
	[LED2_ALED2] = AFE440X_LED2_ALED2VAL,
	[LED1_ALED1] = AFE440X_LED1_ALED1VAL,
};

static const unsigned int afe4404_channel_leds[] = {
117 118 119
	[LED2] = F_ILED2,
	[ALED2] = F_ILED3,
	[LED1] = F_ILED1,
120 121 122 123 124 125 126
};

static const unsigned int afe4404_channel_offdacs[] = {
	[LED2] = F_OFFDAC_LED2,
	[ALED2] = F_OFFDAC_AMB2,
	[LED1] = F_OFFDAC_LED1,
	[ALED1] = F_OFFDAC_AMB1,
127 128 129 130
};

static const struct iio_chan_spec afe4404_channels[] = {
	/* ADC values */
131 132 133 134 135 136
	AFE440X_INTENSITY_CHAN(LED2, BIT(IIO_CHAN_INFO_OFFSET)),
	AFE440X_INTENSITY_CHAN(ALED2, BIT(IIO_CHAN_INFO_OFFSET)),
	AFE440X_INTENSITY_CHAN(LED1, BIT(IIO_CHAN_INFO_OFFSET)),
	AFE440X_INTENSITY_CHAN(ALED1, BIT(IIO_CHAN_INFO_OFFSET)),
	AFE440X_INTENSITY_CHAN(LED2_ALED2, 0),
	AFE440X_INTENSITY_CHAN(LED1_ALED1, 0),
137
	/* LED current */
138 139 140
	AFE440X_CURRENT_CHAN(LED2),
	AFE440X_CURRENT_CHAN(ALED2),
	AFE440X_CURRENT_CHAN(LED1),
141 142 143 144 145 146 147 148 149 150 151 152
};

static const struct afe440x_val_table afe4404_res_table[] = {
	{ .integer = 500000, .fract = 0 },
	{ .integer = 250000, .fract = 0 },
	{ .integer = 100000, .fract = 0 },
	{ .integer = 50000, .fract = 0 },
	{ .integer = 25000, .fract = 0 },
	{ .integer = 10000, .fract = 0 },
	{ .integer = 1000000, .fract = 0 },
	{ .integer = 2000000, .fract = 0 },
};
153
AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4404_res_table);
154 155 156 157 158 159 160 161 162 163 164

static const struct afe440x_val_table afe4404_cap_table[] = {
	{ .integer = 0, .fract = 5000 },
	{ .integer = 0, .fract = 2500 },
	{ .integer = 0, .fract = 10000 },
	{ .integer = 0, .fract = 7500 },
	{ .integer = 0, .fract = 20000 },
	{ .integer = 0, .fract = 17500 },
	{ .integer = 0, .fract = 25000 },
	{ .integer = 0, .fract = 22500 },
};
165
AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4404_cap_table);
166 167 168 169 170 171 172 173

static ssize_t afe440x_show_register(struct device *dev,
				     struct device_attribute *attr,
				     char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct afe4404_data *afe = iio_priv(indio_dev);
	struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
174
	unsigned int reg_val;
175
	int vals[2];
176
	int ret;
177

178
	ret = regmap_field_read(afe->fields[afe440x_attr->field], &reg_val);
179 180 181
	if (ret)
		return ret;

182
	if (reg_val >= afe440x_attr->table_size)
183 184
		return -EINVAL;

185 186 187 188
	vals[0] = afe440x_attr->val_table[reg_val].integer;
	vals[1] = afe440x_attr->val_table[reg_val].fract;

	return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
}

static ssize_t afe440x_store_register(struct device *dev,
				      struct device_attribute *attr,
				      const char *buf, size_t count)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct afe4404_data *afe = iio_priv(indio_dev);
	struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
	int val, integer, fract, ret;

	ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
	if (ret)
		return ret;

204 205 206 207 208
	for (val = 0; val < afe440x_attr->table_size; val++)
		if (afe440x_attr->val_table[val].integer == integer &&
		    afe440x_attr->val_table[val].fract == fract)
			break;
	if (val == afe440x_attr->table_size)
209 210
		return -EINVAL;

211
	ret = regmap_field_write(afe->fields[afe440x_attr->field], val);
212 213 214 215 216 217
	if (ret)
		return ret;

	return count;
}

218 219
static AFE440X_ATTR(in_intensity1_resistance, F_TIA_GAIN_SEP, afe4404_res_table);
static AFE440X_ATTR(in_intensity1_capacitance, F_TIA_CF_SEP, afe4404_cap_table);
220

221 222 223 224 225 226 227 228
static AFE440X_ATTR(in_intensity2_resistance, F_TIA_GAIN_SEP, afe4404_res_table);
static AFE440X_ATTR(in_intensity2_capacitance, F_TIA_CF_SEP, afe4404_cap_table);

static AFE440X_ATTR(in_intensity3_resistance, F_TIA_GAIN, afe4404_res_table);
static AFE440X_ATTR(in_intensity3_capacitance, TIA_CF, afe4404_cap_table);

static AFE440X_ATTR(in_intensity4_resistance, F_TIA_GAIN, afe4404_res_table);
static AFE440X_ATTR(in_intensity4_capacitance, TIA_CF, afe4404_cap_table);
229 230

static struct attribute *afe440x_attributes[] = {
231 232 233 234 235 236 237 238 239 240
	&dev_attr_in_intensity_resistance_available.attr,
	&dev_attr_in_intensity_capacitance_available.attr,
	&afe440x_attr_in_intensity1_resistance.dev_attr.attr,
	&afe440x_attr_in_intensity1_capacitance.dev_attr.attr,
	&afe440x_attr_in_intensity2_resistance.dev_attr.attr,
	&afe440x_attr_in_intensity2_capacitance.dev_attr.attr,
	&afe440x_attr_in_intensity3_resistance.dev_attr.attr,
	&afe440x_attr_in_intensity3_capacitance.dev_attr.attr,
	&afe440x_attr_in_intensity4_resistance.dev_attr.attr,
	&afe440x_attr_in_intensity4_capacitance.dev_attr.attr,
241 242 243 244 245 246 247 248 249 250 251 252
	NULL
};

static const struct attribute_group afe440x_attribute_group = {
	.attrs = afe440x_attributes
};

static int afe4404_read_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan,
			    int *val, int *val2, long mask)
{
	struct afe4404_data *afe = iio_priv(indio_dev);
253 254 255
	unsigned int value_reg = afe4404_channel_values[chan->address];
	unsigned int led_field = afe4404_channel_leds[chan->address];
	unsigned int offdac_field = afe4404_channel_offdacs[chan->address];
256 257 258 259 260 261
	int ret;

	switch (chan->type) {
	case IIO_INTENSITY:
		switch (mask) {
		case IIO_CHAN_INFO_RAW:
262
			ret = regmap_read(afe->regmap, value_reg, val);
263 264 265 266
			if (ret)
				return ret;
			return IIO_VAL_INT;
		case IIO_CHAN_INFO_OFFSET:
267
			ret = regmap_field_read(afe->fields[offdac_field], val);
268 269 270 271 272 273 274 275
			if (ret)
				return ret;
			return IIO_VAL_INT;
		}
		break;
	case IIO_CURRENT:
		switch (mask) {
		case IIO_CHAN_INFO_RAW:
276
			ret = regmap_field_read(afe->fields[led_field], val);
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
			if (ret)
				return ret;
			return IIO_VAL_INT;
		case IIO_CHAN_INFO_SCALE:
			*val = 0;
			*val2 = 800000;
			return IIO_VAL_INT_PLUS_MICRO;
		}
		break;
	default:
		break;
	}

	return -EINVAL;
}

static int afe4404_write_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     int val, int val2, long mask)
{
	struct afe4404_data *afe = iio_priv(indio_dev);
298 299
	unsigned int led_field = afe4404_channel_leds[chan->address];
	unsigned int offdac_field = afe4404_channel_offdacs[chan->address];
300 301 302 303 304

	switch (chan->type) {
	case IIO_INTENSITY:
		switch (mask) {
		case IIO_CHAN_INFO_OFFSET:
305
			return regmap_field_write(afe->fields[offdac_field], val);
306 307 308 309 310
		}
		break;
	case IIO_CURRENT:
		switch (mask) {
		case IIO_CHAN_INFO_RAW:
311
			return regmap_field_write(afe->fields[led_field], val);
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		}
		break;
	default:
		break;
	}

	return -EINVAL;
}

static const struct iio_info afe4404_iio_info = {
	.attrs = &afe440x_attribute_group,
	.read_raw = afe4404_read_raw,
	.write_raw = afe4404_write_raw,
};

static irqreturn_t afe4404_trigger_handler(int irq, void *private)
{
	struct iio_poll_func *pf = private;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct afe4404_data *afe = iio_priv(indio_dev);
	int ret, bit, i = 0;

	for_each_set_bit(bit, indio_dev->active_scan_mask,
			 indio_dev->masklength) {
336
		ret = regmap_read(afe->regmap, afe4404_channel_values[bit],
337
				  &afe->buffer[i++]);
338 339 340 341
		if (ret)
			goto err;
	}

342 343
	iio_push_to_buffers_with_timestamp(indio_dev, afe->buffer,
					   pf->timestamp);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
err:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

/* Default timings from data-sheet */
#define AFE4404_TIMING_PAIRS			\
	{ AFE440X_PRPCOUNT,	39999	},	\
	{ AFE440X_LED2LEDSTC,	0	},	\
	{ AFE440X_LED2LEDENDC,	398	},	\
	{ AFE440X_LED2STC,	80	},	\
	{ AFE440X_LED2ENDC,	398	},	\
	{ AFE440X_ADCRSTSTCT0,	5600	},	\
	{ AFE440X_ADCRSTENDCT0,	5606	},	\
	{ AFE440X_LED2CONVST,	5607	},	\
	{ AFE440X_LED2CONVEND,	6066	},	\
	{ AFE4404_LED3LEDSTC,	400	},	\
	{ AFE4404_LED3LEDENDC,	798	},	\
	{ AFE440X_ALED2STC,	480	},	\
	{ AFE440X_ALED2ENDC,	798	},	\
	{ AFE440X_ADCRSTSTCT1,	6068	},	\
	{ AFE440X_ADCRSTENDCT1,	6074	},	\
	{ AFE440X_ALED2CONVST,	6075	},	\
	{ AFE440X_ALED2CONVEND,	6534	},	\
	{ AFE440X_LED1LEDSTC,	800	},	\
	{ AFE440X_LED1LEDENDC,	1198	},	\
	{ AFE440X_LED1STC,	880	},	\
	{ AFE440X_LED1ENDC,	1198	},	\
	{ AFE440X_ADCRSTSTCT2,	6536	},	\
	{ AFE440X_ADCRSTENDCT2,	6542	},	\
	{ AFE440X_LED1CONVST,	6543	},	\
	{ AFE440X_LED1CONVEND,	7003	},	\
	{ AFE440X_ALED1STC,	1280	},	\
	{ AFE440X_ALED1ENDC,	1598	},	\
	{ AFE440X_ADCRSTSTCT3,	7005	},	\
	{ AFE440X_ADCRSTENDCT3,	7011	},	\
	{ AFE440X_ALED1CONVST,	7012	},	\
	{ AFE440X_ALED1CONVEND,	7471	},	\
	{ AFE440X_PDNCYCLESTC,	7671	},	\
	{ AFE440X_PDNCYCLEENDC,	39199	}

static const struct reg_sequence afe4404_reg_sequences[] = {
	AFE4404_TIMING_PAIRS,
	{ AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN },
389
	{ AFE4404_TIA_GAIN_SEP, AFE440X_TIAGAIN_ENSEPGAIN },
390
	{ AFE440X_CONTROL2, AFE440X_CONTROL2_OSC_ENABLE	},
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
};

static const struct regmap_range afe4404_yes_ranges[] = {
	regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL),
	regmap_reg_range(AFE4404_AVG_LED2_ALED2VAL, AFE4404_AVG_LED1_ALED1VAL),
};

static const struct regmap_access_table afe4404_volatile_table = {
	.yes_ranges = afe4404_yes_ranges,
	.n_yes_ranges = ARRAY_SIZE(afe4404_yes_ranges),
};

static const struct regmap_config afe4404_regmap_config = {
	.reg_bits = 8,
	.val_bits = 24,

	.max_register = AFE4404_AVG_LED1_ALED1VAL,
	.cache_type = REGCACHE_RBTREE,
	.volatile_table = &afe4404_volatile_table,
};

static const struct of_device_id afe4404_of_match[] = {
	{ .compatible = "ti,afe4404", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, afe4404_of_match);

418
static int afe4404_suspend(struct device *dev)
419
{
420
	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	struct afe4404_data *afe = iio_priv(indio_dev);
	int ret;

	ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
				 AFE440X_CONTROL2_PDN_AFE,
				 AFE440X_CONTROL2_PDN_AFE);
	if (ret)
		return ret;

	ret = regulator_disable(afe->regulator);
	if (ret) {
		dev_err(dev, "Unable to disable regulator\n");
		return ret;
	}

	return 0;
}

439
static int afe4404_resume(struct device *dev)
440
{
441
	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	struct afe4404_data *afe = iio_priv(indio_dev);
	int ret;

	ret = regulator_enable(afe->regulator);
	if (ret) {
		dev_err(dev, "Unable to enable regulator\n");
		return ret;
	}

	ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
				 AFE440X_CONTROL2_PDN_AFE, 0);
	if (ret)
		return ret;

	return 0;
}

459 460
static DEFINE_SIMPLE_DEV_PM_OPS(afe4404_pm_ops, afe4404_suspend,
				afe4404_resume);
461 462 463 464 465 466

static int afe4404_probe(struct i2c_client *client,
			 const struct i2c_device_id *id)
{
	struct iio_dev *indio_dev;
	struct afe4404_data *afe;
467
	int i, ret;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*afe));
	if (!indio_dev)
		return -ENOMEM;

	afe = iio_priv(indio_dev);
	i2c_set_clientdata(client, indio_dev);

	afe->dev = &client->dev;
	afe->irq = client->irq;

	afe->regmap = devm_regmap_init_i2c(client, &afe4404_regmap_config);
	if (IS_ERR(afe->regmap)) {
		dev_err(afe->dev, "Unable to allocate register map\n");
		return PTR_ERR(afe->regmap);
	}

485 486 487 488 489 490 491 492 493
	for (i = 0; i < F_MAX_FIELDS; i++) {
		afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap,
							 afe4404_reg_fields[i]);
		if (IS_ERR(afe->fields[i])) {
			dev_err(afe->dev, "Unable to allocate regmap fields\n");
			return PTR_ERR(afe->fields[i]);
		}
	}

494
	afe->regulator = devm_regulator_get(afe->dev, "tx_sup");
495 496 497 498
	if (IS_ERR(afe->regulator))
		return dev_err_probe(afe->dev, PTR_ERR(afe->regulator),
				     "Unable to get regulator\n");

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	ret = regulator_enable(afe->regulator);
	if (ret) {
		dev_err(afe->dev, "Unable to enable regulator\n");
		return ret;
	}

	ret = regmap_write(afe->regmap, AFE440X_CONTROL0,
			   AFE440X_CONTROL0_SW_RESET);
	if (ret) {
		dev_err(afe->dev, "Unable to reset device\n");
		goto disable_reg;
	}

	ret = regmap_multi_reg_write(afe->regmap, afe4404_reg_sequences,
				     ARRAY_SIZE(afe4404_reg_sequences));
	if (ret) {
		dev_err(afe->dev, "Unable to set register defaults\n");
		goto disable_reg;
	}

	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->channels = afe4404_channels;
	indio_dev->num_channels = ARRAY_SIZE(afe4404_channels);
	indio_dev->name = AFE4404_DRIVER_NAME;
	indio_dev->info = &afe4404_iio_info;

	if (afe->irq > 0) {
		afe->trig = devm_iio_trigger_alloc(afe->dev,
						   "%s-dev%d",
						   indio_dev->name,
529
						   iio_device_id(indio_dev));
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
		if (!afe->trig) {
			dev_err(afe->dev, "Unable to allocate IIO trigger\n");
			ret = -ENOMEM;
			goto disable_reg;
		}

		iio_trigger_set_drvdata(afe->trig, indio_dev);

		ret = iio_trigger_register(afe->trig);
		if (ret) {
			dev_err(afe->dev, "Unable to register IIO trigger\n");
			goto disable_reg;
		}

		ret = devm_request_threaded_irq(afe->dev, afe->irq,
						iio_trigger_generic_data_rdy_poll,
						NULL, IRQF_ONESHOT,
						AFE4404_DRIVER_NAME,
						afe->trig);
		if (ret) {
			dev_err(afe->dev, "Unable to request IRQ\n");
			goto disable_reg;
		}
	}

	ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
					 afe4404_trigger_handler, NULL);
	if (ret) {
		dev_err(afe->dev, "Unable to setup buffer\n");
		goto unregister_trigger;
	}

	ret = iio_device_register(indio_dev);
	if (ret) {
		dev_err(afe->dev, "Unable to register IIO device\n");
		goto unregister_triggered_buffer;
	}

	return 0;

unregister_triggered_buffer:
	iio_triggered_buffer_cleanup(indio_dev);
unregister_trigger:
	if (afe->irq > 0)
		iio_trigger_unregister(afe->trig);
disable_reg:
	regulator_disable(afe->regulator);

	return ret;
}

static int afe4404_remove(struct i2c_client *client)
{
	struct iio_dev *indio_dev = i2c_get_clientdata(client);
	struct afe4404_data *afe = iio_priv(indio_dev);
	int ret;

	iio_device_unregister(indio_dev);

	iio_triggered_buffer_cleanup(indio_dev);

	if (afe->irq > 0)
		iio_trigger_unregister(afe->trig);

	ret = regulator_disable(afe->regulator);
595
	if (ret)
596 597 598 599 600 601 602 603 604 605 606 607 608 609
		dev_err(afe->dev, "Unable to disable regulator\n");

	return 0;
}

static const struct i2c_device_id afe4404_ids[] = {
	{ "afe4404", 0 },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, afe4404_ids);

static struct i2c_driver afe4404_i2c_driver = {
	.driver = {
		.name = AFE4404_DRIVER_NAME,
610
		.of_match_table = afe4404_of_match,
611
		.pm = pm_sleep_ptr(&afe4404_pm_ops),
612 613 614 615 616 617 618 619
	},
	.probe = afe4404_probe,
	.remove = afe4404_remove,
	.id_table = afe4404_ids,
};
module_i2c_driver(afe4404_i2c_driver);

MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
620
MODULE_DESCRIPTION("TI AFE4404 Heart Rate Monitor and Pulse Oximeter AFE");
621
MODULE_LICENSE("GPL v2");