xen.c 29.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * KVM Xen emulation
 */

#include "x86.h"
#include "xen.h"
11
#include "lapic.h"
12
#include "hyperv.h"
13 14

#include <linux/kvm_host.h>
15
#include <linux/sched/stat.h>
16 17

#include <trace/events/kvm.h>
18
#include <xen/interface/xen.h>
19
#include <xen/interface/vcpu.h>
20
#include <xen/interface/event_channel.h>
21 22 23

#include "trace.h"

24 25
DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);

26 27
static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
{
28
	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
29
	struct pvclock_wall_clock *wc;
30
	gpa_t gpa = gfn_to_gpa(gfn);
31 32 33
	u32 *wc_sec_hi;
	u32 wc_version;
	u64 wall_nsec;
34
	int ret = 0;
35 36
	int idx = srcu_read_lock(&kvm->srcu);

37 38
	if (gfn == GPA_INVALID) {
		kvm_gfn_to_pfn_cache_destroy(kvm, gpc);
39
		goto out;
40
	}
41

42
	do {
43
		ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, KVM_HOST_USES_PFN,
44
						gpa, PAGE_SIZE);
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
		if (ret)
			goto out;

		/*
		 * This code mirrors kvm_write_wall_clock() except that it writes
		 * directly through the pfn cache and doesn't mark the page dirty.
		 */
		wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);

		/* It could be invalid again already, so we need to check */
		read_lock_irq(&gpc->lock);

		if (gpc->valid)
			break;

		read_unlock_irq(&gpc->lock);
	} while (1);
62 63 64 65 66 67 68 69 70 71 72

	/* Paranoia checks on the 32-bit struct layout */
	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);

#ifdef CONFIG_X86_64
	/* Paranoia checks on the 64-bit struct layout */
	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);

73 74 75 76 77 78
	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
		struct shared_info *shinfo = gpc->khva;

		wc_sec_hi = &shinfo->wc_sec_hi;
		wc = &shinfo->wc;
	} else
79
#endif
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
	{
		struct compat_shared_info *shinfo = gpc->khva;

		wc_sec_hi = &shinfo->arch.wc_sec_hi;
		wc = &shinfo->wc;
	}

	/* Increment and ensure an odd value */
	wc_version = wc->version = (wc->version + 1) | 1;
	smp_wmb();

	wc->nsec = do_div(wall_nsec,  1000000000);
	wc->sec = (u32)wall_nsec;
	*wc_sec_hi = wall_nsec >> 32;
	smp_wmb();

	wc->version = wc_version + 1;
	read_unlock_irq(&gpc->lock);
98 99

	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
100

101
out:
102 103 104 105
	srcu_read_unlock(&kvm->srcu, idx);
	return ret;
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
{
	struct kvm_vcpu_xen *vx = &v->arch.xen;
	u64 now = get_kvmclock_ns(v->kvm);
	u64 delta_ns = now - vx->runstate_entry_time;
	u64 run_delay = current->sched_info.run_delay;

	if (unlikely(!vx->runstate_entry_time))
		vx->current_runstate = RUNSTATE_offline;

	/*
	 * Time waiting for the scheduler isn't "stolen" if the
	 * vCPU wasn't running anyway.
	 */
	if (vx->current_runstate == RUNSTATE_running) {
		u64 steal_ns = run_delay - vx->last_steal;

		delta_ns -= steal_ns;

		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
	}
	vx->last_steal = run_delay;

	vx->runstate_times[vx->current_runstate] += delta_ns;
	vx->current_runstate = state;
	vx->runstate_entry_time = now;
}

void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state)
{
	struct kvm_vcpu_xen *vx = &v->arch.xen;
137 138 139 140 141
	struct gfn_to_pfn_cache *gpc = &vx->runstate_cache;
	uint64_t *user_times;
	unsigned long flags;
	size_t user_len;
	int *user_state;
142 143 144

	kvm_xen_update_runstate(v, state);

145
	if (!vx->runstate_cache.active)
146 147
		return;

148 149 150 151
	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode)
		user_len = sizeof(struct vcpu_runstate_info);
	else
		user_len = sizeof(struct compat_vcpu_runstate_info);
152

153 154 155 156
	read_lock_irqsave(&gpc->lock, flags);
	while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
					   user_len)) {
		read_unlock_irqrestore(&gpc->lock, flags);
157

158 159 160 161 162 163 164 165 166
		/* When invoked from kvm_sched_out() we cannot sleep */
		if (state == RUNSTATE_runnable)
			return;

		if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, user_len))
			return;

		read_lock_irqsave(&gpc->lock, flags);
	}
167 168

	/*
169 170 171 172 173 174 175 176
	 * The only difference between 32-bit and 64-bit versions of the
	 * runstate struct us the alignment of uint64_t in 32-bit, which
	 * means that the 64-bit version has an additional 4 bytes of
	 * padding after the first field 'state'.
	 *
	 * So we use 'int __user *user_state' to point to the state field,
	 * and 'uint64_t __user *user_times' for runstate_entry_time. So
	 * the actual array of time[] in each state starts at user_times[1].
177
	 */
178 179 180 181
	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
#ifdef CONFIG_X86_64
182 183 184 185 186
	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
#endif
187 188 189 190 191 192 193 194 195 196

	user_state = gpc->khva;

	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode)
		user_times = gpc->khva + offsetof(struct vcpu_runstate_info,
						  state_entry_time);
	else
		user_times = gpc->khva + offsetof(struct compat_vcpu_runstate_info,
						  state_entry_time);

197 198 199 200
	/*
	 * First write the updated state_entry_time at the appropriate
	 * location determined by 'offset'.
	 */
201
	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
202
		     sizeof(user_times[0]));
203
	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
204
		     sizeof(user_times[0]));
205

206
	user_times[0] = vx->runstate_entry_time | XEN_RUNSTATE_UPDATE;
207 208 209 210 211 212 213 214
	smp_wmb();

	/*
	 * Next, write the new runstate. This is in the *same* place
	 * for 32-bit and 64-bit guests, asserted here for paranoia.
	 */
	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
		     offsetof(struct compat_vcpu_runstate_info, state));
215
	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
216
		     sizeof(vx->current_runstate));
217
	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
218 219
		     sizeof(vx->current_runstate));

220
	*user_state = vx->current_runstate;
221 222 223 224 225 226 227 228 229

	/*
	 * Write the actual runstate times immediately after the
	 * runstate_entry_time.
	 */
	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
		     offsetof(struct vcpu_runstate_info, time) - sizeof(u64));
	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64));
230 231 232
	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
		     sizeof_field(struct compat_vcpu_runstate_info, time));
	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
233 234
		     sizeof(vx->runstate_times));

235
	memcpy(user_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
236 237 238 239 240 241
	smp_wmb();

	/*
	 * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's
	 * runstate_entry_time field.
	 */
242
	user_times[0] &= ~XEN_RUNSTATE_UPDATE;
243 244
	smp_wmb();

245
	read_unlock_irqrestore(&gpc->lock, flags);
246

247
	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
248 249
}

250 251 252 253 254 255 256 257
/*
 * On event channel delivery, the vcpu_info may not have been accessible.
 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
 * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
 * Do so now that we can sleep in the context of the vCPU to bring the
 * page in, and refresh the pfn cache for it.
 */
void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
258
{
259
	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
	unsigned long flags;

	if (!evtchn_pending_sel)
		return;

	/*
	 * Yes, this is an open-coded loop. But that's just what put_user()
	 * does anyway. Page it in and retry the instruction. We're just a
	 * little more honest about it.
	 */
	read_lock_irqsave(&gpc->lock, flags);
	while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
					   sizeof(struct vcpu_info))) {
		read_unlock_irqrestore(&gpc->lock, flags);

		if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
						 sizeof(struct vcpu_info)))
			return;

		read_lock_irqsave(&gpc->lock, flags);
	}

	/* Now gpc->khva is a valid kernel address for the vcpu_info */
	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
		struct vcpu_info *vi = gpc->khva;

		asm volatile(LOCK_PREFIX "orq %0, %1\n"
			     "notq %0\n"
			     LOCK_PREFIX "andq %0, %2\n"
			     : "=r" (evtchn_pending_sel),
			       "+m" (vi->evtchn_pending_sel),
			       "+m" (v->arch.xen.evtchn_pending_sel)
			     : "0" (evtchn_pending_sel));
		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
	} else {
		u32 evtchn_pending_sel32 = evtchn_pending_sel;
		struct compat_vcpu_info *vi = gpc->khva;

		asm volatile(LOCK_PREFIX "orl %0, %1\n"
			     "notl %0\n"
			     LOCK_PREFIX "andl %0, %2\n"
			     : "=r" (evtchn_pending_sel32),
			       "+m" (vi->evtchn_pending_sel),
			       "+m" (v->arch.xen.evtchn_pending_sel)
			     : "0" (evtchn_pending_sel32));
		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
	}
	read_unlock_irqrestore(&gpc->lock, flags);

	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
}

int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
{
	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
	unsigned long flags;
317 318 319 320 321 322 323 324 325 326 327
	u8 rc = 0;

	/*
	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
	 */

	/* No need for compat handling here */
	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
	BUILD_BUG_ON(sizeof(rc) !=
328
		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
329
	BUILD_BUG_ON(sizeof(rc) !=
330
		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
331

332 333 334 335
	read_lock_irqsave(&gpc->lock, flags);
	while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
					   sizeof(struct vcpu_info))) {
		read_unlock_irqrestore(&gpc->lock, flags);
336

337 338 339 340 341 342 343 344 345 346
		/*
		 * This function gets called from kvm_vcpu_block() after setting the
		 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
		 * from a HLT. So we really mustn't sleep. If the page ended up absent
		 * at that point, just return 1 in order to trigger an immediate wake,
		 * and we'll end up getting called again from a context where we *can*
		 * fault in the page and wait for it.
		 */
		if (in_atomic() || !task_is_running(current))
			return 1;
347

348 349
		if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
						 sizeof(struct vcpu_info))) {
350 351 352 353 354 355
			/*
			 * If this failed, userspace has screwed up the
			 * vcpu_info mapping. No interrupts for you.
			 */
			return 0;
		}
356
		read_lock_irqsave(&gpc->lock, flags);
357 358
	}

359 360
	rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
	read_unlock_irqrestore(&gpc->lock, flags);
361 362 363
	return rc;
}

364 365 366 367
int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
{
	int r = -ENOENT;

368 369
	mutex_lock(&kvm->lock);

370
	switch (data->type) {
371
	case KVM_XEN_ATTR_TYPE_LONG_MODE:
372 373 374 375 376 377 378
		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
			r = -EINVAL;
		} else {
			kvm->arch.xen.long_mode = !!data->u.long_mode;
			r = 0;
		}
		break;
379

380 381
	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
		r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
382
		break;
383

384
	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
385
		if (data->u.vector && data->u.vector < 0x10)
386 387 388 389 390 391 392
			r = -EINVAL;
		else {
			kvm->arch.xen.upcall_vector = data->u.vector;
			r = 0;
		}
		break;

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	default:
		break;
	}

	mutex_unlock(&kvm->lock);
	return r;
}

int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
{
	int r = -ENOENT;

	mutex_lock(&kvm->lock);

	switch (data->type) {
408 409 410 411
	case KVM_XEN_ATTR_TYPE_LONG_MODE:
		data->u.long_mode = kvm->arch.xen.long_mode;
		r = 0;
		break;
412 413

	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
414 415 416 417
		if (kvm->arch.xen.shinfo_cache.active)
			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
		else
			data->u.shared_info.gfn = GPA_INVALID;
418
		r = 0;
419 420
		break;

421 422 423 424 425
	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
		data->u.vector = kvm->arch.xen.upcall_vector;
		r = 0;
		break;

426 427 428 429 430 431 432 433
	default:
		break;
	}

	mutex_unlock(&kvm->lock);
	return r;
}

434 435
int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
{
J
Joao Martins 已提交
436
	int idx, r = -ENOENT;
437 438

	mutex_lock(&vcpu->kvm->lock);
J
Joao Martins 已提交
439
	idx = srcu_read_lock(&vcpu->kvm->srcu);
440 441

	switch (data->type) {
J
Joao Martins 已提交
442 443 444 445
	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
		/* No compat necessary here. */
		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
			     sizeof(struct compat_vcpu_info));
446 447
		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
			     offsetof(struct compat_vcpu_info, time));
J
Joao Martins 已提交
448

449
		if (data->u.gpa == GPA_INVALID) {
450
			kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.xen.vcpu_info_cache);
451
			r = 0;
452 453 454
			break;
		}

455
		r = kvm_gfn_to_pfn_cache_init(vcpu->kvm,
J
Joao Martins 已提交
456
					      &vcpu->arch.xen.vcpu_info_cache,
457
					      NULL, KVM_HOST_USES_PFN, data->u.gpa,
J
Joao Martins 已提交
458
					      sizeof(struct vcpu_info));
459
		if (!r)
460
			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
461

J
Joao Martins 已提交
462 463
		break;

464
	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
465
		if (data->u.gpa == GPA_INVALID) {
466 467
			kvm_gfn_to_pfn_cache_destroy(vcpu->kvm,
						     &vcpu->arch.xen.vcpu_time_info_cache);
468
			r = 0;
469 470 471
			break;
		}

472
		r = kvm_gfn_to_pfn_cache_init(vcpu->kvm,
473
					      &vcpu->arch.xen.vcpu_time_info_cache,
474
					      NULL, KVM_HOST_USES_PFN, data->u.gpa,
475
					      sizeof(struct pvclock_vcpu_time_info));
476
		if (!r)
477 478 479
			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
		break;

480 481 482 483 484 485
	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
		if (!sched_info_on()) {
			r = -EOPNOTSUPP;
			break;
		}
		if (data->u.gpa == GPA_INVALID) {
486 487
			kvm_gfn_to_pfn_cache_destroy(vcpu->kvm,
						     &vcpu->arch.xen.runstate_cache);
488 489 490 491
			r = 0;
			break;
		}

492
		r = kvm_gfn_to_pfn_cache_init(vcpu->kvm,
493
					      &vcpu->arch.xen.runstate_cache,
494
					      NULL, KVM_HOST_USES_PFN, data->u.gpa,
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
					      sizeof(struct vcpu_runstate_info));
		break;

	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
		if (!sched_info_on()) {
			r = -EOPNOTSUPP;
			break;
		}
		if (data->u.runstate.state > RUNSTATE_offline) {
			r = -EINVAL;
			break;
		}

		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
		r = 0;
		break;

	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
		if (!sched_info_on()) {
			r = -EOPNOTSUPP;
			break;
		}
		if (data->u.runstate.state > RUNSTATE_offline) {
			r = -EINVAL;
			break;
		}
		if (data->u.runstate.state_entry_time !=
		    (data->u.runstate.time_running +
		     data->u.runstate.time_runnable +
		     data->u.runstate.time_blocked +
		     data->u.runstate.time_offline)) {
			r = -EINVAL;
			break;
		}
		if (get_kvmclock_ns(vcpu->kvm) <
		    data->u.runstate.state_entry_time) {
			r = -EINVAL;
			break;
		}

		vcpu->arch.xen.current_runstate = data->u.runstate.state;
		vcpu->arch.xen.runstate_entry_time =
			data->u.runstate.state_entry_time;
		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
			data->u.runstate.time_running;
		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
			data->u.runstate.time_runnable;
		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
			data->u.runstate.time_blocked;
		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
			data->u.runstate.time_offline;
		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
		r = 0;
		break;

	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
		if (!sched_info_on()) {
			r = -EOPNOTSUPP;
			break;
		}
		if (data->u.runstate.state > RUNSTATE_offline &&
		    data->u.runstate.state != (u64)-1) {
			r = -EINVAL;
			break;
		}
		/* The adjustment must add up */
		if (data->u.runstate.state_entry_time !=
		    (data->u.runstate.time_running +
		     data->u.runstate.time_runnable +
		     data->u.runstate.time_blocked +
		     data->u.runstate.time_offline)) {
			r = -EINVAL;
			break;
		}

		if (get_kvmclock_ns(vcpu->kvm) <
		    (vcpu->arch.xen.runstate_entry_time +
		     data->u.runstate.state_entry_time)) {
			r = -EINVAL;
			break;
		}

		vcpu->arch.xen.runstate_entry_time +=
			data->u.runstate.state_entry_time;
		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
			data->u.runstate.time_running;
		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
			data->u.runstate.time_runnable;
		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
			data->u.runstate.time_blocked;
		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
			data->u.runstate.time_offline;

		if (data->u.runstate.state <= RUNSTATE_offline)
			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
		r = 0;
		break;

593 594 595 596
	default:
		break;
	}

J
Joao Martins 已提交
597
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
598 599 600 601 602 603 604 605 606 607 608
	mutex_unlock(&vcpu->kvm->lock);
	return r;
}

int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
{
	int r = -ENOENT;

	mutex_lock(&vcpu->kvm->lock);

	switch (data->type) {
J
Joao Martins 已提交
609
	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
610
		if (vcpu->arch.xen.vcpu_info_cache.active)
J
Joao Martins 已提交
611
			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
612 613 614
		else
			data->u.gpa = GPA_INVALID;
		r = 0;
J
Joao Martins 已提交
615 616
		break;

617
	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
618
		if (vcpu->arch.xen.vcpu_time_info_cache.active)
619
			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
620 621 622
		else
			data->u.gpa = GPA_INVALID;
		r = 0;
623 624
		break;

625 626 627 628 629
	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
		if (!sched_info_on()) {
			r = -EOPNOTSUPP;
			break;
		}
630
		if (vcpu->arch.xen.runstate_cache.active) {
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
			r = 0;
		}
		break;

	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
		if (!sched_info_on()) {
			r = -EOPNOTSUPP;
			break;
		}
		data->u.runstate.state = vcpu->arch.xen.current_runstate;
		r = 0;
		break;

	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
		if (!sched_info_on()) {
			r = -EOPNOTSUPP;
			break;
		}
		data->u.runstate.state = vcpu->arch.xen.current_runstate;
		data->u.runstate.state_entry_time =
			vcpu->arch.xen.runstate_entry_time;
		data->u.runstate.time_running =
			vcpu->arch.xen.runstate_times[RUNSTATE_running];
		data->u.runstate.time_runnable =
			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
		data->u.runstate.time_blocked =
			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
		data->u.runstate.time_offline =
			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
		r = 0;
		break;

	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
		r = -EINVAL;
		break;

668 669 670 671 672 673 674 675
	default:
		break;
	}

	mutex_unlock(&vcpu->kvm->lock);
	return r;
}

676 677 678 679 680
int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
{
	struct kvm *kvm = vcpu->kvm;
	u32 page_num = data & ~PAGE_MASK;
	u64 page_addr = data & PAGE_MASK;
681 682 683 684
	bool lm = is_long_mode(vcpu);

	/* Latch long_mode for shared_info pages etc. */
	vcpu->kvm->arch.xen.long_mode = lm;
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

	/*
	 * If Xen hypercall intercept is enabled, fill the hypercall
	 * page with VMCALL/VMMCALL instructions since that's what
	 * we catch. Else the VMM has provided the hypercall pages
	 * with instructions of its own choosing, so use those.
	 */
	if (kvm_xen_hypercall_enabled(kvm)) {
		u8 instructions[32];
		int i;

		if (page_num)
			return 1;

		/* mov imm32, %eax */
		instructions[0] = 0xb8;

		/* vmcall / vmmcall */
703
		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

		/* ret */
		instructions[8] = 0xc3;

		/* int3 to pad */
		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);

		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
			*(u32 *)&instructions[1] = i;
			if (kvm_vcpu_write_guest(vcpu,
						 page_addr + (i * sizeof(instructions)),
						 instructions, sizeof(instructions)))
				return 1;
		}
	} else {
719 720 721 722 723 724
		/*
		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
		 */
		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
				     : kvm->arch.xen_hvm_config.blob_addr_32;
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
				  : kvm->arch.xen_hvm_config.blob_size_32;
		u8 *page;

		if (page_num >= blob_size)
			return 1;

		blob_addr += page_num * PAGE_SIZE;

		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
			kfree(page);
			return 1;
		}
	}
	return 0;
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759
int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
{
	if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL)
		return -EINVAL;

	/*
	 * With hypercall interception the kernel generates its own
	 * hypercall page so it must not be provided.
	 */
	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
	     xhc->blob_size_32 || xhc->blob_size_64))
		return -EINVAL;

760 761 762 763 764 765 766
	mutex_lock(&kvm->lock);

	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
		static_branch_inc(&kvm_xen_enabled.key);
	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
		static_branch_slow_dec_deferred(&kvm_xen_enabled);

767
	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
768 769

	mutex_unlock(&kvm->lock);
770 771 772
	return 0;
}

773 774 775 776
void kvm_xen_init_vm(struct kvm *kvm)
{
}

777 778
void kvm_xen_destroy_vm(struct kvm *kvm)
{
779 780
	kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache);

781 782 783 784
	if (kvm->arch.xen_hvm_config.msr)
		static_branch_slow_dec_deferred(&kvm_xen_enabled);
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
{
	kvm_rax_write(vcpu, result);
	return kvm_skip_emulated_instruction(vcpu);
}

static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;

	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
		return 1;

	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
}

int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
{
	bool longmode;
	u64 input, params[6];

	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);

808 809
	/* Hyper-V hypercalls get bit 31 set in EAX */
	if ((input & 0x80000000) &&
810
	    kvm_hv_hypercall_enabled(vcpu))
811 812
		return kvm_hv_hypercall(vcpu);

813
	longmode = is_64_bit_hypercall(vcpu);
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	if (!longmode) {
		params[0] = (u32)kvm_rbx_read(vcpu);
		params[1] = (u32)kvm_rcx_read(vcpu);
		params[2] = (u32)kvm_rdx_read(vcpu);
		params[3] = (u32)kvm_rsi_read(vcpu);
		params[4] = (u32)kvm_rdi_read(vcpu);
		params[5] = (u32)kvm_rbp_read(vcpu);
	}
#ifdef CONFIG_X86_64
	else {
		params[0] = (u64)kvm_rdi_read(vcpu);
		params[1] = (u64)kvm_rsi_read(vcpu);
		params[2] = (u64)kvm_rdx_read(vcpu);
		params[3] = (u64)kvm_r10_read(vcpu);
		params[4] = (u64)kvm_r8_read(vcpu);
		params[5] = (u64)kvm_r9_read(vcpu);
	}
#endif
	trace_kvm_xen_hypercall(input, params[0], params[1], params[2],
				params[3], params[4], params[5]);

	vcpu->run->exit_reason = KVM_EXIT_XEN;
	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
	vcpu->run->xen.u.hcall.longmode = longmode;
838
	vcpu->run->xen.u.hcall.cpl = static_call(kvm_x86_get_cpl)(vcpu);
839 840 841 842 843 844 845 846 847 848 849 850 851
	vcpu->run->xen.u.hcall.input = input;
	vcpu->run->xen.u.hcall.params[0] = params[0];
	vcpu->run->xen.u.hcall.params[1] = params[1];
	vcpu->run->xen.u.hcall.params[2] = params[2];
	vcpu->run->xen.u.hcall.params[3] = params[3];
	vcpu->run->xen.u.hcall.params[4] = params[4];
	vcpu->run->xen.u.hcall.params[5] = params[5];
	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
	vcpu->arch.complete_userspace_io =
		kvm_xen_hypercall_complete_userspace;

	return 0;
}
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882

static inline int max_evtchn_port(struct kvm *kvm)
{
	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
		return EVTCHN_2L_NR_CHANNELS;
	else
		return COMPAT_EVTCHN_2L_NR_CHANNELS;
}

/*
 * This follows the kvm_set_irq() API, so it returns:
 *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
 *  = 0   Interrupt was coalesced (previous irq is still pending)
 *  > 0   Number of CPUs interrupt was delivered to
 */
int kvm_xen_set_evtchn_fast(struct kvm_kernel_irq_routing_entry *e,
			    struct kvm *kvm)
{
	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
	struct kvm_vcpu *vcpu;
	unsigned long *pending_bits, *mask_bits;
	unsigned long flags;
	int port_word_bit;
	bool kick_vcpu = false;
	int idx;
	int rc;

	vcpu = kvm_get_vcpu_by_id(kvm, e->xen_evtchn.vcpu);
	if (!vcpu)
		return -1;

883
	if (!vcpu->arch.xen.vcpu_info_cache.active)
884 885 886 887 888 889 890 891
		return -1;

	if (e->xen_evtchn.port >= max_evtchn_port(kvm))
		return -1;

	rc = -EWOULDBLOCK;

	idx = srcu_read_lock(&kvm->srcu);
892 893

	read_lock_irqsave(&gpc->lock, flags);
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE))
		goto out_rcu;

	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
		struct shared_info *shinfo = gpc->khva;
		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
		port_word_bit = e->xen_evtchn.port / 64;
	} else {
		struct compat_shared_info *shinfo = gpc->khva;
		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
		port_word_bit = e->xen_evtchn.port / 32;
	}

	/*
	 * If this port wasn't already set, and if it isn't masked, then
	 * we try to set the corresponding bit in the in-kernel shadow of
	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
	 * already set, then we kick the vCPU in question to write to the
	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
	 */
	if (test_and_set_bit(e->xen_evtchn.port, pending_bits)) {
		rc = 0; /* It was already raised */
	} else if (test_bit(e->xen_evtchn.port, mask_bits)) {
		rc = -1; /* Masked */
	} else {
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
		rc = 1; /* Delivered to the bitmap in shared_info. */
		/* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
		read_unlock_irqrestore(&gpc->lock, flags);
		gpc = &vcpu->arch.xen.vcpu_info_cache;

		read_lock_irqsave(&gpc->lock, flags);
		if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, sizeof(struct vcpu_info))) {
			/*
			 * Could not access the vcpu_info. Set the bit in-kernel
			 * and prod the vCPU to deliver it for itself.
			 */
			if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
				kick_vcpu = true;
			goto out_rcu;
		}

		if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
			struct vcpu_info *vcpu_info = gpc->khva;
			if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
				kick_vcpu = true;
			}
		} else {
			struct compat_vcpu_info *vcpu_info = gpc->khva;
			if (!test_and_set_bit(port_word_bit,
					      (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
				kick_vcpu = true;
			}
		}
951 952 953 954
	}

 out_rcu:
	read_unlock_irqrestore(&gpc->lock, flags);
955
	srcu_read_unlock(&kvm->srcu, idx);
956 957

	if (kick_vcpu) {
958
		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		kvm_vcpu_kick(vcpu);
	}

	return rc;
}

/* This is the version called from kvm_set_irq() as the .set function */
static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
			 int irq_source_id, int level, bool line_status)
{
	bool mm_borrowed = false;
	int rc;

	if (!level)
		return -1;

	rc = kvm_xen_set_evtchn_fast(e, kvm);
	if (rc != -EWOULDBLOCK)
		return rc;

	if (current->mm != kvm->mm) {
		/*
		 * If not on a thread which already belongs to this KVM,
		 * we'd better be in the irqfd workqueue.
		 */
		if (WARN_ON_ONCE(current->mm))
			return -EINVAL;

		kthread_use_mm(kvm->mm);
		mm_borrowed = true;
	}

	/*
	 * For the irqfd workqueue, using the main kvm->lock mutex is
	 * fine since this function is invoked from kvm_set_irq() with
	 * no other lock held, no srcu. In future if it will be called
	 * directly from a vCPU thread (e.g. on hypercall for an IPI)
	 * then it may need to switch to using a leaf-node mutex for
	 * serializing the shared_info mapping.
	 */
	mutex_lock(&kvm->lock);

	/*
	 * It is theoretically possible for the page to be unmapped
	 * and the MMU notifier to invalidate the shared_info before
	 * we even get to use it. In that case, this looks like an
	 * infinite loop. It was tempting to do it via the userspace
	 * HVA instead... but that just *hides* the fact that it's
	 * an infinite loop, because if a fault occurs and it waits
	 * for the page to come back, it can *still* immediately
	 * fault and have to wait again, repeatedly.
	 *
	 * Conversely, the page could also have been reinstated by
	 * another thread before we even obtain the mutex above, so
	 * check again *first* before remapping it.
	 */
	do {
		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
		int idx;

		rc = kvm_xen_set_evtchn_fast(e, kvm);
		if (rc != -EWOULDBLOCK)
			break;

		idx = srcu_read_lock(&kvm->srcu);
1024
		rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa, PAGE_SIZE);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		srcu_read_unlock(&kvm->srcu, idx);
	} while(!rc);

	mutex_unlock(&kvm->lock);

	if (mm_borrowed)
		kthread_unuse_mm(kvm->mm);

	return rc;
}

int kvm_xen_setup_evtchn(struct kvm *kvm,
			 struct kvm_kernel_irq_routing_entry *e,
			 const struct kvm_irq_routing_entry *ue)

{
	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
		return -EINVAL;

	/* We only support 2 level event channels for now */
	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
		return -EINVAL;

	e->xen_evtchn.port = ue->u.xen_evtchn.port;
	e->xen_evtchn.vcpu = ue->u.xen_evtchn.vcpu;
	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
	e->set = evtchn_set_fn;

	return 0;
}
1055 1056 1057 1058 1059

void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_gfn_to_pfn_cache_destroy(vcpu->kvm,
				     &vcpu->arch.xen.runstate_cache);
1060 1061
	kvm_gfn_to_pfn_cache_destroy(vcpu->kvm,
				     &vcpu->arch.xen.vcpu_info_cache);
1062 1063
	kvm_gfn_to_pfn_cache_destroy(vcpu->kvm,
				     &vcpu->arch.xen.vcpu_time_info_cache);
1064
}